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Introduction to Speaker Verification

Speaker recognition systems have become an important means of verifying
identity in e-commerce applications, forensic science, law enforcement, etc.

Two main approaches in voice biometrics:
1 Identification/Recognition (1 : N): Closed scenario vs. open scenario
2 Verification (1 : 1)

Text-independence vs. text-dependence

[SoftReport] The Software Report, “Voice Recognition Technology Holds A Wealth Of Benefits For SaaS,”
https://www.thesoftwarereport.com/voice-recognition-technology-holds-a-wealth-of-benefits-for-saas/
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Sources of variability in the context of speaker recognition:

	 IEEE SIGNAL PROCESSING MAGAZINE  [77] no vember 2015

[FIG1]  Sources of variability in speaker recognition. 

•	 Situational task stress—the subject is performing 
some task while speaking, such as operating a vehicle 
(car, plane, truck, etc.), hands-free voice input (factory 
setting, emergency responders/fire fighters, etc.), which 
can include cognitive as well as physical task stress [9].
•	 Vocal effort/style—the subject alters his or her speech 
production from normal phonation, resulting in whispered 
[10], [11], soft, loud, or shouted speech; the subject alters his 
or her speech production mechanism to speak effectively in 
the presence of noise [12], known as the Lombard effect; or the 
subject is singing versus speaking [13].
•	 Emotion—the subject is communicating his or her 
emotional state while speaking (e.g., anger, sadness, happi-
ness, etc.) [14].
•	 Physiological—the subject has some illness or is intoxi-
cated or under the influence of medication; this can 
include aging as well.
•	 Disguise—the subject intentionally alters his or her voice to 
circumvent the system. This can be by natural means (speak-
ing in a harsh voice to avoid detection, mimicking another 
person’s voice, etc.) or using a voice-conversion system.

■■ Conversation-based/higher-level mode/language of speak-
ing variability sources: these reflect different scenarios with 
respect to the voice interaction with either another person or 
technology system, or differences with respect to the specific 
language or dialect spoken, and can include

•	 human-to-human: speech that includes two or more 
individuals interacting or one person speaking and 
addressing an audience

—language or dialect spoken

—if speech is read/prompted (through visual display or 
through headphones), spontaneous, conversational, or 
disguised speech
—monologue, two-way conversation, public speech in 
front of an audience or for TV or radio, group discussion

•	 human-to-machine: speech produced where the subject 
is directing his or her speech toward a piece of technology 
(e.g., cell/smart/landline telephone and computer)

—prompted speech: voice input to a computer
—voice input for telephone/dialog system/computer 
input: interacting with a voice-based system.

■■ Technology- or external-based variability sources: these 
include how and where the audio is captured and the follow-
ing issues:

•	 electromechanical—transmission channel, handset 
(cell, cordless, and landline) [15]–[17] microphone
•	 environmental—background noise [18] (stationary, 
impulsive, time-varying, etc.), room acoustics [19], rever-
beration [20], and distant microphone
•	 data quality—duration, sampling rate, recording qual-
ity, and audio codec/compression.

These multifaceted sources of variation pose the greatest chal-
lenge in accurately modeling and recognizing a speaker, whether 
automatic algorithms are used, or if human listening/assessment 
is performed. Given that speech will contain variability, the task 
of speaker verification is deciding if the variability is due to the 
same speaker (intra {within}-speaker) or different speakers (inter 
{across}-speaker).

In current automated speaker-recognition technology, various 
mathematical tools are used to mitigate the effects of these 
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[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker Recognition by Machines and Humans: A tutorial review,” IEEE Signal
Processing Magazine, 2015
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Recursive enrollment: We update a speaker’s
reference sample after a successful verification
to strengthen the system against intra-speaker
variability

1 Aging
2 Disease
3 Mood
4 ...

If and only if the verification was successful! (i.e., s ′ = s):

e
(s)
t = λ(σ(x),Ψ, γ)e

(s)
t−1 + (1− λ(σ(x),Ψ, γ))v

(s′)
t

v
(s′)
t : New verification sample from speaker s′

e
(s)
t−1: Previous reference sample from speaker s

e
(s)
t : Updated reference sample from speaker s

λ(σ(x),Ψ, γ): Remembering factor dependent on the calibrated score σ(x)

[Espejo24] I. López-Espejo et al., “Authenticating a User,” US Patent, 2024
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Block diagram of a basic speaker verification system:

	 IEEE SIGNAL PROCESSING MAGAZINE  [83] no vember 2015

AUTOMATIC SPEAKER RECOGNITION
In automatic speaker recognition, computer programs designed 
to operate independently with minimum human intervention 
identify a speaker’s voice. The system user may adjust the 
design parameters, but to make the comparison between speech 
segments, all the user needs to do is provide the system with the 
audio recordings. In the current discussion, we focus our atten-
tion on the text-independent scenario and the speaker-verifica-
tion task. Naturally, the challenges mentioned previously affect 
the automatic systems in the same way as they do the human 
listeners or forensic experts. Various speaker-verification 
approaches can be found in the literature that address specific 
challenges; see [65]–[74] for a comprehensive tutorial review on 
automatic speaker recognition. The research community is 
largely driven by standardized tasks set forth by NIST through 
the speaker-recognition evaluation (SRE) campaigns [75]–[78]. 
We discuss the NIST SRE tasks in more detail in later sections.

A simple block diagram representation of an automatic 
speaker-verification system is shown in Figure 4. Predefined fea-
ture parameters are first extracted from the audio recordings that 
are designed to capture the idiosyncratic characteristics of a 
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[FIG3]  (a)–(c) The regions of the human brain that contribute the most in discriminating between vowels (red) and speakers (blue).  
(b) and (c) Enlarged representations of the auditory cortex (region of the brain sensitive to sounds). (d) and (e) Activation patterns of 
sounds created from the 15 most discriminative voxels (of the fMRI) for decoding (d) vowels and (e) speakers. Each axis of the polar 
plot forming a pattern displays the normalized activation level in a voxel. Note the similarity among the patterns of the same vowel 
[horizontal direction in (d)] or speaker [vertical direction in (e)]. (Figure reprinted from [5].) 
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[FIG4]  An overall block diagram of a basic speaker-verification 
system.

[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker Recognition by Machines and Humans: A tutorial review,” IEEE Signal
Processing Magazine, 2015
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Databases

VoxCeleb1: More than 100k utterances from
1,251 celebrities scraped from YouTube

VoxCeleb2: More than 1M utterances from
6,112 celebrities scraped from YouTube

[Nagrani17] A. Nagrani et al., “VoxCeleb: a large-scale speaker identification
dataset,” in Proc. of Interspeech 2017

[Chung18] J. S. Chung et al., “VoxCeleb2: Deep Speaker Recognition,” in Proc. of
Interspeech 2018

NIST SRE (Speaker
Recognition
Evaluation): From
1996 to date

NIST SRE 2018

https://sre.nist.gov/
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ROC and DET Curves

Probability that a positive sample is correctly detected as such:

True Positive Rate (TPR) = Recall ≡
TP

TP + FN

Probability that a negative sample is incorrectly classified as positive:

False Positive Rate (FPR) ≡
FP

FP + TN

The receiver operating characteristic (ROC) curve is obtained by
sweeping the sensitivity/decision threshold:

I. López-Espejo et al.: Deep Spoken KWS: An Overview
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FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].

VOLUME 4, 2016 19
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ROC and DET Curves

Area under the ROC curve (AUCROC ∈ [0, 1]): Probability that a
classifier will rank a randomly chosen positive sample higher than a
randomly chosen negative sample

I. López-Espejo et al.: Deep Spoken KWS: An Overview
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stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].
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(deep) KWS development and evaluation. This crowdsourced
database was captured at a sampling rate of 16 kHz by means
of phone and laptop microphones, being, to some extent,
noisy. Its first version, v1 [153], was released in August 2017
under a Creative Commons BY 4.0 license [211]. Recorded
by 1,881 speakers, this first version consists of 64,727 one-
second (or less) long speech segments covering one word
each out of 30 possible different words. The main difference
between the first version and the second version —which was
made publicly available in 2018— is that the latter incorpo-
rates 5 more words (i.e., a total of 35 words), more speech
segments, 105,829, and more speakers, 2,618. Table 2 lists
the words included in the Google Speech Commands Dataset
v1 (first six rows) and v2 (all the rows). In this table, words
are broken down by the standardized 10 keywords (first two
rows) and non-keywords (last five rows). To facilitate KWS
technology reproducibility and comparison, this benchmark
also standardizes the training, development and test sets, as
well as other crucial aspects of the experimental framework,
including a training data augmentation procedure involving
background noises (see, e.g., [30] for further details). Mul-
tiple recent deep KWS works have employed either the first
version [16], [30], [32], [43], [48]–[52], [57], [58], [67], [69],
[70], [86], [90], [100], [125] or the second version [32], [47],
[48], [53], [70], [82], [89], [90], [99], [100], [109], [128]–
[130], [159], [175] of the Google Speech Commands Dataset.

Despite how valuable this open reference is for KWS
research and development, we can raise two relevant points
of criticism:

1) Class balancing: The different keyword and non-
keyword classes are rather balanced (i.e., they ap-
pear with comparable frequencies) in this benchmark,
which, as we know, is generally not realistic. See Sub-
section IX-A for further comments on this question.

2) Non-streaming mode: Most of the above-referred
works using the Google Speech Commands Dataset
performs, due to the nature of this corpus, KWS eval-
uations in non-streaming mode, namely, multi-class
classification of independent short input segments. In
this mode, a full keyword or non-keyword is surely
present within every segment. However, real-life KWS
involves the continuous processing of an input audio
stream.

A few deep KWS research works [43], [58], [129], [130]
have proposed to overcome the above two limitations by
generating more realistic streaming versions of the Google
Speech Commands Dataset by concatenation of one-second
long utterances in such a manner that the resulting word class
distribution is unbalanced. Even though the author of the
Google Speech Commands Dataset reports some streaming
evaluations in the database description manuscript [154],
still, we think that this point should be standardized for the
sake of reproducibility and comparison, thereby enhancing
the usefulness of this valuable corpus.

Lastly, we wish to draw attention to the fact that we pro-

NK NK NK KW NK NKKWNK NKNK

NK NK NK NK NK NK NK NK NK NK

NK NK KW NK NK KW NK NK NK NKGround truth

SYS1

SYS2

FIGURE 11. Example of two different KWS systems SYS1 and SYS2
recognizing a sequence of keywords (KW) and non-keywords (NK). The
ground truth sequence is also shown on top.

duced three outcomes revolving around the Google Speech
Commands Dataset v2: 1) a variant of it emulating hearing
aids as a capturing device (employed, as mentioned in Sub-
section VII-C, for KWS for hearing assistive devices robust
to external speakers) [128], [129], 2) another noisier variant
with a diversity of noisy conditions15 (i.e., types of noise
and SNR levels) [130], and 3) manually-annotated speaker
gender labels16.

IX. EVALUATION METRICS
Obviously, the gold plate test of any speech communication
system is a test with relevant end-users. However, such tests
tend to be costly and time-consuming. Instead (or in addition
to subjective tests), one adheres to objective performance
metrics for estimating system performance. It is important to
choose a meaningful objective evaluation metric that allows
us to determine the goodness of a system and is highly
correlated to the subjective user experience. In what follows,
we review and provide some criticism of the most common
metrics considered in the field of KWS. These metrics are
rather intended for binary classification —e.g., keyword/non-
keyword— tasks. In the event of having multiple keywords, a
common approach consists of applying the metric computa-
tion for every keyword and, then, the result is averaged, e.g.,
see [30], [129], [130].

A. ACCURACY
Accuracy can be defined as the ratio between the number
of correct predictions/classifications and the total number
of them [212]. In the context of binary classification (e.g.,
keyword/non-keyword), accuracy can also be expressed from
the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) as follows [213]:

Accuracy =
TP + TN

TP + TN + FP + FN
. (14)

Accuracy ∈ [0, 1], where 0 and 1 indicate, respectively,
worst and perfect classification.

It is reasonable to expect that, in real-life applications like
wake-up word detection, KWS systems will hear other word
types rather than keywords most of the time. In other words,
KWS is a task in which, in principle, the keyword and non-
keyword classes are quite unbalanced. Under these circum-

15Tools to create this noisy dataset can be freely downloaded from http:
//ilopez.es.mialias.net/misc/NoisyGSCD.zip

16These labels are publicly available at https://ilopezes.files.wordpress.
com/2019/10/gscd_spk_gender.zip
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ROC and DET Curves

Given that

False Negative Rate (FNR) ≡
FN

FN + TP
= 1− TPR,

the detection error trade-off (DET) curve is simply a vertically-flipped
version of the ROC curve:

I. López-Espejo et al.: Deep Spoken KWS: An Overview
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FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].
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Introduction to Speaker Verification

ROC and DET Curves

Area under the DET curve (AUCDET ∈ [0, 1]): The smaller, the better

Equal error rate (EER): Intersection point between the identity function
and the DET curve (i.e., the point where FNR = FPR)
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stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].
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Setting the Decision Threshold
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prior probability of encountering a target speaker. For a given data 
set and task, systems evaluated using a specific error/cost criteria can 
be compared. Before discussing the common performance measures, 
we introduce the type of errors encountered in speaker verification.

TYPES OF ERRORS
There are mainly two types of errors in speaker verification (or any 
other biometric authentication) when a hard decision is made by 
the automatic system. From the speaker authentication point of 
view, we define them as

■■ false accept (FA): granting access to an impostor speaker
■■ false reject (FR): denying access to a legitimate speaker.

From the speaker-detection point of view (a target speaker is 
sought), these are called false-alarm and miss errors, respectively. 
According to these definitions, two error rates are defined as

	
.

False-Acceptance Rate (FAR) Number of impostor attempts
Number of FA errors

False-Rejection Rate (FRR) Number of legitimate attempts
Number of FR errors

=

=

Speaker-verification systems generally output a match score 
between the training speaker and the test utterance. This is true 
for most two-class recognition/binary detection problem. This 
score is a scalar variable that represents the similarity between the 
enrolled speaker and the test speaker, with higher values indicat-
ing the speakers are more similar. To make a decision, the system 
needs to use a threshold ( )x  as illustrated in Figure 10. If the 
threshold is too low, there will be a lot of FA errors, whereas if the 
threshold is too high, there will be too many FR/miss errors.

EQUAL ERROR RATE
The equal error rate (EER) is defined as the FAR and FRR values 
when they become equal. That is, by changing the threshold, we find 
a point where the FAR and FRR become equal. This is shown in 

Figure 10. The EER is a very popular performance measure for 
speaker-verification systems. Only the soft scores from the automatic 
system are required to compute the EER. No actual hard decisions 
are made. It should be noted that operating a speaker-verification sys-
tem on the threshold corresponding to the EER might not be desir-
able for practical purposes. For high-security applications, one should 
set the threshold higher, lowering the FA errors at the cost of miss 
errors. However, for high convenience, the threshold may be set 
lower. Let us discuss some examples. In authenticating users for bank 
accounts, security is of utmost importance. It is thus better to deny 
access to the legitimate user (and ask other forms of verification) as 
opposed to granting access to an impostor. On the contrary, for an 
automated customer service, denying a legitimate speaker will cause 
inconvenience and frustration to the user. In this case, accepting an 
illegitimate speaker is not as critical as in high-security applications.

DETECTION COST FUNCTION
This is, in fact, a family of performance measures introduced by 
NIST over the years. As mentioned before, the EER does not differ-
entiate between the two errors, which sometimes is not a realistic 
performance measure. The detection cost function (DCF), thus, 
introduces numerical costs/penalties for the two types of errors 
(FA and miss). The a priori probability of encountering a target 
speaker is also provided. The DCF is computed over the full range 
of decision threshold values as

	 ( ) ( ) ( ) ( ) .1DCF C P P C P PMISS Target FA FA Targetx x x= + - �

Here,
CMiss 	 =	 Cost of a miss/FR error
CFA	 = 	 Cost of an FA error
P argetT 	 = 	 Prior probability of target speaker.

( )PM xiss 	 =	 Probability of (Miss | Target, Threshold = )x
( )PFA x 	 =	 Probability of (FA | Nontarget, Threshold = ) .x
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[FIG10]  An illustration of target and nontarget score distributions and the decision threshold. Areas under the curves 
with blue and red colors represent FAR and FRR errors, respectively.
[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker Recognition by Machines and Humans: A tutorial review,” IEEE Signal

Processing Magazine, 2015
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Introduction to Speaker Verification

Detection Cost Function

The detection cost function (DCF) was
proposed by NIST (National Institute of
Standards and Technology)

DCF(τ) = CmissPmiss(τ)Ptarget + CFAPFA(τ)(1− Ptarget)

1 Cmiss : Cost of a false negative (e.g., 10)

2 CFA: Cost of a false positive (e.g., 1)

3 Ptarget : Prior probability of target speaker (e.g., 0.01)

4 Pmiss(τ): Probability of a false negative given a threshold τ

5 PFA(τ): Probability of a false positive given a threshold τ

The goal would be to find the value of τ that minimizes DCF(τ)
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Introduction to Speaker Verification

Introduction to Speaker Verification

FIVE MAIN GENERATIONS

1 GMM-UBM (Gaussian Mixture Models-Universal Background
Model): Technology based on Gaussian mixture models

2 GMM-SVM (Gaussian Mixture Models-Support Vector
Machines): GMM supervectors classified by SVMs

3 JFA (Joint Factor Analysis): Decomposition of total variability into
speaker and channel/session components

4 i-vectors (identity vectors): Modeling of total variability

5 Neural networks: Technology based on deep learning
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Introduction to Speaker Verification

1st Generation: GMM-UBM (2000)

µ1 = −1, σ1 = 1 — µ2 = 4, σ2 = 1.5
w1 = 0.7 — w2 = 0.3

[Yehoshua23] R. Yehoshua, “Gaussian Mixture Models (GMMs): from
Theory to Implementation,” https://towardsdatascience.com/

gaussian-mixture-models-gmms-from-theory-to-implementation/

Gaussian mixture models:

N (x|µ,Σ) = e−
1
2
(x−µ)⊤Σ−1(x−µ)√

(2π)d |Σ|

p(x) =
∑K

k=1 wkNk(x|µk ,Σk)∑K
k=1 wk = 1

0 ≤ wk ≤ 1 ∀k = 1, ...,K

θ = {wk ,µk ,Σk ; 1 ≤ k ≤ K}

Given a training dataset X =
{
x(1), x(2), ..., x(N)

}
,

θ∗ = argmaxθ p(X|θ) = argmaxθ
∏N

i=1 p(x
(i)|θ) (Expectation-maximization!)
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Introduction to Speaker Verification

1st Generation: GMM-UBM (2000)

λs : GMM for speaker s (MAP adaptation of a UBM)

λ0: UBM

X = {xn; n = 1, ...,T} are feature vectors from an observation O

Hypothesis contrast:

1 H0: O comes from speaker s

2 H1: O does not come from speaker s

We calculate Λ(X) = log

(
p(X|λs)

p(X|λ0)

)
= log p(X|λs)− log p(X|λ0)

If Λ(X) ≥ τ , we then accept the hypothesis H0
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advancement achieved by the so-called GMM–UBM method. In this 
approach, a speaker’s GMM is adapted or derived from the UBM 
using Bayesian adaptation [103]. In contrast to performing maxi-
mum likelihood training of the GMM for an enrollment speaker, 
this model is obtained by updating the well-trained UBM parame-
ters. This relation between the speaker model and the background 
model provides better performance than independently trained 
GMMs and also lays the foundation for the speaker model adapta-
tion techniques that were developed later. We will return to these 
relations as we proceed. In the following subsections, we describe 
the formulations of this approach.

The LR Test
Given an observation O and a hypothesized speaker ,s  the task of 
speaker verification can be stated as a hypothesis test between

	
: ,

: .

H O s

H O s

is from speaker

is no from speakert
0

1
�

In the GMM–UBM approach, the hypothesis H0  and H1  are repre-
sented by a speaker-dependent GMM sm  and the UBM .0m  Thus, 
for the set of observed feature vectors { | },x n T1n f!=X  the LR 
test is performed by evaluating the following ratio:

	 ( | )
( | )

,p
p

H
H

reject
accept

<X
X s

0 0

0$
m

m

x
x

' �

where x  is the decision threshold. Usually, the LR test is per-
formed in the logarithmic scale, providing the so-called log-LR

	 ( ) ( | ) ( | ) .log logp pX X Xs 0m mK = - � (2)

Maximum A Posteriori Adaptation of UBM
Let { | }x n T1X n f!=  denote the set of acoustic feature vectors 
obtained from the enrollment speaker s. Given a UBM as in (1) and 
the enrollment speaker’s data X, at first the probabilistic align-
ment of the feature vectors with respect the UBM components is 
calculated as
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Next, the values of ( )gnc  values are used to calculate the sufficient 
statistics for the weight, mean, and covariance parameter as
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These quantities are known as the zero-, first-, and second-order 
Baum–Welch statistics, respectively. Using these parameters, the 
posterior mean and covariance matrix of the features given the 
data vectors X  can be found as

	
[ | ] ( )

( )
,

[ | ] ( )
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.
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x x
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E N g
g
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The maximum a posteriori (MAP) adaptation update equations for 
weight, mean, and covariance, (3), (4), and (5), respectively, are 
proposed in [103] and used in [6] for speaker verification

	 [ ( ) / ( ) ] ,N g T 1g g s g gr a a r b= + -t � (3)
	 [ | ] ( )xE 1Xg g g n gn a a= + -t ,gn � (4)
	 [ | ] ( ) .x xE 1Xg g g n n

T
g g g g

T
g g

Ta a n n n nR R= + - + -t t t^ h � (5)

The scaling factor b  in (3) is computed from all the adapted mix-
ture weights to ensure that they sum to unity. Thus, the new GMM 
parameters are a weighted summation of the UBM parameters and 
the sufficient statistics obtained from the observed data (see 
“GMM–UBM System: Summary”). The variable ga  is defined as

	 ( )
( )

.N g r
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s
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+
� (6)
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[FIG7]  A schematic diagram of a GMM–UBM system using a four-mixture UBM. MAP adaptation procedure and supervector formation 
by concatenating the mean vectors are also illustrated. (a) A schematic diagram of a GMM–UBM system using a four-mixture UBM.  
(b)MAP adaptation procedure and supervector formation by concatenating the mean vectors are also illustrated.

[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker Recognition by Machines and Humans: A tutorial review,” IEEE Signal
Processing Magazine, 2015
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2nd Generation: GMM-SVM (2006)

GMM supervectors provide speaker representations of a fixed
dimensionality

GMM-SVM: GMM supervector classification by means of SVMs (Support
Vector Machines)

	 IEEE SIGNAL PROCESSING MAGAZINE  [87] no vember 2015

advancement achieved by the so-called GMM–UBM method. In this 
approach, a speaker’s GMM is adapted or derived from the UBM 
using Bayesian adaptation [103]. In contrast to performing maxi-
mum likelihood training of the GMM for an enrollment speaker, 
this model is obtained by updating the well-trained UBM parame-
ters. This relation between the speaker model and the background 
model provides better performance than independently trained 
GMMs and also lays the foundation for the speaker model adapta-
tion techniques that were developed later. We will return to these 
relations as we proceed. In the following subsections, we describe 
the formulations of this approach.

The LR Test
Given an observation O and a hypothesized speaker ,s  the task of 
speaker verification can be stated as a hypothesis test between

	
: ,

: .

H O s

H O s

is from speaker

is no from speakert
0

1
�

In the GMM–UBM approach, the hypothesis H0  and H1  are repre-
sented by a speaker-dependent GMM sm  and the UBM .0m  Thus, 
for the set of observed feature vectors { | },x n T1n f!=X  the LR 
test is performed by evaluating the following ratio:
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where x  is the decision threshold. Usually, the LR test is per-
formed in the logarithmic scale, providing the so-called log-LR

	 ( ) ( | ) ( | ) .log logp pX X Xs 0m mK = - � (2)

Maximum A Posteriori Adaptation of UBM
Let { | }x n T1X n f!=  denote the set of acoustic feature vectors 
obtained from the enrollment speaker s. Given a UBM as in (1) and 
the enrollment speaker’s data X, at first the probabilistic align-
ment of the feature vectors with respect the UBM components is 
calculated as
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Next, the values of ( )gnc  values are used to calculate the sufficient 
statistics for the weight, mean, and covariance parameter as
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These quantities are known as the zero-, first-, and second-order 
Baum–Welch statistics, respectively. Using these parameters, the 
posterior mean and covariance matrix of the features given the 
data vectors X  can be found as
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The maximum a posteriori (MAP) adaptation update equations for 
weight, mean, and covariance, (3), (4), and (5), respectively, are 
proposed in [103] and used in [6] for speaker verification
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The scaling factor b  in (3) is computed from all the adapted mix-
ture weights to ensure that they sum to unity. Thus, the new GMM 
parameters are a weighted summation of the UBM parameters and 
the sufficient statistics obtained from the observed data (see 
“GMM–UBM System: Summary”). The variable ga  is defined as
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[FIG7]  A schematic diagram of a GMM–UBM system using a four-mixture UBM. MAP adaptation procedure and supervector formation 
by concatenating the mean vectors are also illustrated. (a) A schematic diagram of a GMM–UBM system using a four-mixture UBM.  
(b)MAP adaptation procedure and supervector formation by concatenating the mean vectors are also illustrated.
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variables. For speaker rec-
ognition, the idea of 
explaining the speaker- and 
channel-dependent vari-
ability using FA in the 
GMM supervector space 
was first discussed in [112]. 
Many variants of FA meth-
ods were employed since 
then, which finally led to 
the current state-of-the-art 
i-vector approach [79]. In this section, we discuss these methods 
briefly to illustrate how the techniques have evolved.

Linear Distortion Model
In the discussions to follow, a speaker-dependent GMM supervec-
tor m s  is generally assumed to be a linear combination of four 
components. These components are as follows:

1)	speaker-/channel-/environment-independent component
)(m0

2)	speaker-dependent component ( )mspk

3)	channel-/environment-dependent component )(mchn

4)	residual .)(mres

Component 1 is usually obtained from the UBM and is a constant. 
Components 2–4 are random vectors and are responsible for vari-
ability in the supervectors due to different phenomena. Using this 
model, a GMM supervector obtained from speaker s  and session 
h is written as

	 .m m m m m,s h 0 spk chn res= + + + � (7)

For acoustic features of dimension d  and a UBM with M  mixture 
components, these GMM supervectors are of dimension ( ) .Md 1#  
As an example, the speaker- and channel-independent supervector 
m0  is the concatenation of the UBM mean vectors. We denote the 
subvectors of m0 for the gth mixture as m [ ],g0  which equals .gn  In 
the following sections, we discuss how well-known linear Gaussian 
models, including FA, can be used to develop methods based on this 
generic decomposition of the GMM supervectors. A summary of the 
various linear statistical models in speaker recognition is included 
in Table 1, which highlights both formulation and specifics on 
matrix/model traits.

Classical Map Adaptation
We revisit the MAP adaptation technique discussed previously in 
the GMM–UBM system. If we examine the adaptation equation (4), 
which is used to update the mean vectors, it is clear that this is a 
linear combination of two components: one is speaker dependent 
and the other is independent. In a more generalized way, MAP 
adaptation can be represented as an operation on the GMM mean 
supervector as: 

	 ,m m Dz ss 0= + � (8)

where D is ( )Md Md#  a diagonal matrix and z s  is a Md 1#  
standard normal random vector. We dropped the subscript 
due to session h  for simplicity. According to the linear 

distortion model of (7), 
.m Dz sspk =  As discussed 

in [113], in the special 
case when we set

      ( / ) ,D r12 R= �

the MAP adaptation equa-
tions given in (4) [6] arises 
from (8), where r  is the 
relevance factor in (6).

Eigenvoice Adaptation
Perhaps the first FA-related model used in speaker recognition was 
the eigenvoice method [105]. The eigenvoice method was initially 
proposed for speaker adaptation in speech recognition [114]. In 
essence, this method restricts the speaker model parameters to lie 
in a lower dimensional subspace, which is defined by the columns 
of the eigenvoice matrix. In this model, a speaker-dependent GMM 
mean supervector m s  is expressed as

	 ,mm Vys s0= + � (9)

where m0  is the speaker-independent supervector obtained from 
the UBM, the columns of the matrix V spans the speaker sub-
space, and y s  are the standard normal hidden variables known as 
speaker factors. Here, we dropped the subscript h for simplicity. 
In accordance with the linear distortion model in (7), the speaker-
dependent component is .m Vy sspk =  Note that this model does 
not have a residual noise term as in probabilistic PCA (PPCA) 
[115] or FA. This means that the eigenvoice model is essentially 
equivalent to PCA. The model covariance is .VVT  Since supervec-
tors are usually of a large dimension, a full rank sample covari-
ance matrix, i.e., the supercovariance matrix, is difficult to 
estimate with limited amount of data. Thus, EM algorithms 
[116], [117] are used to estimate the eigenvoices. The speaker fac-
tors need to be estimated for an enrollment speaker. Computation 
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[FIG8]  A conceptual illustration of an SVM classifier: Positive (+) 
and negative (–) examples are correspondingly labeled, with the 
optimal linear separator and support vectors shown.

[TABLE 1] a sUMMARY OF THE LINEAR STATISTICAL MODELS  
IN SPEAKER RECOGNITION.

Model Formulation Remarks

Classical MAP m m Dzs s0= + d  is diagonal, ( )z 0, INs +

Eigenvoice m m Vys s0= + v  is low rank, ( )0, Iy Ns +

Eigenchannel m m UxDz,s h s h0= + + u  is low rank, ( , ) ( )z x 0 IN ,s h +

JFA m m Ux DzVy, ,s h h s s h0= + + + ,U V  are low rank, 
( , , ) ( )z 0 Iyx N ,,s hh s +

i-vector m m Tw, ,s h s h0= + t  is low rank, ( )0 Iw N ,,s h +

[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker Recognition by Machines and Humans: A tutorial review,” IEEE Signal
Processing Magazine, 2015

Iván López-Espejo (UGR) An Introduction to Voice Identification Saturday 21st June, 2025 18 / 47



Introduction to Speaker Verification

3rd Generation: JFA (2004)

FA (Factor Analysis): Method for explaining speaker and channel
variability in the supervector space

ms,h: GMM supervector for speaker s (and for session h):

ms,h = m0 +mspk +mchn +mres

1 m0: Environment-, channel-, and speaker-independent component (constant, from the
UBM)

2 mspk : Speaker-dependent component

3 mchn: Environment- and channel-dependent component

4 mres : Residue
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Introduction to Speaker Verification

3rd Generation: JFA (2004)

Joint Factor Analysis – JFA (in the GMM supervector domain):

ms,h = m0 + Uxh︸︷︷︸
mchn

+ Vys︸︷︷︸
mspk

+Dzs,h︸ ︷︷ ︸
mres

U and V are low-rank matrices estimated during a training phase by a PCA-like
dimensionality reduction algorithm

D is a diagonal matrix estimated along with U and V by an EM-like algorithm

Given a supervector ms,h, xh, ys and zs,h (the channel, speaker, and residual factors) are
obtained by MAP or Bayesian estimation taking into consideration that
(xh, ys , zs,h) ∼ N (0, I)

ys is the speaker feature vector used for comparison/verification
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Introduction to Speaker Verification

4th Generation: i-vectors (2009)

Dr. Najim Dehak researched the use of JFA as a
feature extractor (ys) and SVMs for
classification

He realized that xh also comprised
speaker-dependent information

Total variability space: He decided to combine
speaker and channel factors into a single space:
ms,h = m0 + Tws,h

T is the total variability low-rank matrix and ws,h ∼ N (0, I)

i-vector: w∗
s,h = E [ws,h|F]

F =
∑

n γk (n)
(
xn − µUBM

k

)
γk (n) = P(k|xn) =

p(xn|k)P(k)

p(xn)
=

N (xn|µk ,Σk )wk∑
k wkN (xn|µk ,Σk )

Najim Dehak, PhD
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variables. For speaker rec-
ognition, the idea of 
explaining the speaker- and 
channel-dependent vari-
ability using FA in the 
GMM supervector space 
was first discussed in [112]. 
Many variants of FA meth-
ods were employed since 
then, which finally led to 
the current state-of-the-art 
i-vector approach [79]. In this section, we discuss these methods 
briefly to illustrate how the techniques have evolved.

Linear Distortion Model
In the discussions to follow, a speaker-dependent GMM supervec-
tor m s  is generally assumed to be a linear combination of four 
components. These components are as follows:

1)	speaker-/channel-/environment-independent component
)(m0

2)	speaker-dependent component ( )mspk

3)	channel-/environment-dependent component )(mchn

4)	residual .)(mres

Component 1 is usually obtained from the UBM and is a constant. 
Components 2–4 are random vectors and are responsible for vari-
ability in the supervectors due to different phenomena. Using this 
model, a GMM supervector obtained from speaker s  and session 
h is written as

	 .m m m m m,s h 0 spk chn res= + + + � (7)

For acoustic features of dimension d  and a UBM with M  mixture 
components, these GMM supervectors are of dimension ( ) .Md 1#  
As an example, the speaker- and channel-independent supervector 
m0  is the concatenation of the UBM mean vectors. We denote the 
subvectors of m0 for the gth mixture as m [ ],g0  which equals .gn  In 
the following sections, we discuss how well-known linear Gaussian 
models, including FA, can be used to develop methods based on this 
generic decomposition of the GMM supervectors. A summary of the 
various linear statistical models in speaker recognition is included 
in Table 1, which highlights both formulation and specifics on 
matrix/model traits.

Classical Map Adaptation
We revisit the MAP adaptation technique discussed previously in 
the GMM–UBM system. If we examine the adaptation equation (4), 
which is used to update the mean vectors, it is clear that this is a 
linear combination of two components: one is speaker dependent 
and the other is independent. In a more generalized way, MAP 
adaptation can be represented as an operation on the GMM mean 
supervector as: 

	 ,m m Dz ss 0= + � (8)

where D is ( )Md Md#  a diagonal matrix and z s  is a Md 1#  
standard normal random vector. We dropped the subscript 
due to session h  for simplicity. According to the linear 

distortion model of (7), 
.m Dz sspk =  As discussed 

in [113], in the special 
case when we set

      ( / ) ,D r12 R= �

the MAP adaptation equa-
tions given in (4) [6] arises 
from (8), where r  is the 
relevance factor in (6).

Eigenvoice Adaptation
Perhaps the first FA-related model used in speaker recognition was 
the eigenvoice method [105]. The eigenvoice method was initially 
proposed for speaker adaptation in speech recognition [114]. In 
essence, this method restricts the speaker model parameters to lie 
in a lower dimensional subspace, which is defined by the columns 
of the eigenvoice matrix. In this model, a speaker-dependent GMM 
mean supervector m s  is expressed as

	 ,mm Vys s0= + � (9)

where m0  is the speaker-independent supervector obtained from 
the UBM, the columns of the matrix V spans the speaker sub-
space, and y s  are the standard normal hidden variables known as 
speaker factors. Here, we dropped the subscript h for simplicity. 
In accordance with the linear distortion model in (7), the speaker-
dependent component is .m Vy sspk =  Note that this model does 
not have a residual noise term as in probabilistic PCA (PPCA) 
[115] or FA. This means that the eigenvoice model is essentially 
equivalent to PCA. The model covariance is .VVT  Since supervec-
tors are usually of a large dimension, a full rank sample covari-
ance matrix, i.e., the supercovariance matrix, is difficult to 
estimate with limited amount of data. Thus, EM algorithms 
[116], [117] are used to estimate the eigenvoices. The speaker fac-
tors need to be estimated for an enrollment speaker. Computation 
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[FIG8]  A conceptual illustration of an SVM classifier: Positive (+) 
and negative (–) examples are correspondingly labeled, with the 
optimal linear separator and support vectors shown.

[TABLE 1] a sUMMARY OF THE LINEAR STATISTICAL MODELS  
IN SPEAKER RECOGNITION.

Model Formulation Remarks

Classical MAP m m Dzs s0= + d  is diagonal, ( )z 0, INs +

Eigenvoice m m Vys s0= + v  is low rank, ( )0, Iy Ns +

Eigenchannel m m UxDz,s h s h0= + + u  is low rank, ( , ) ( )z x 0 IN ,s h +

JFA m m Ux DzVy, ,s h h s s h0= + + + ,U V  are low rank, 
( , , ) ( )z 0 Iyx N ,,s hh s +

i-vector m m Tw, ,s h s h0= + t  is low rank, ( )0 Iw N ,,s h +

[Hansen15] J. H. L. Hansen and T.
Hasan, “Speaker Recognition by
Machines and Humans: A tutorial
review,” IEEE Signal Processing

Magazine, 2015
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Introduction to Speaker Verification

But... How do we Use ys and ws,h for Verification?

We extract wtest from a sample for verification and claim the identity associated with
wtarget

SVMs (Support Vector Machines)
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variables. For speaker rec-
ognition, the idea of 
explaining the speaker- and 
channel-dependent vari-
ability using FA in the 
GMM supervector space 
was first discussed in [112]. 
Many variants of FA meth-
ods were employed since 
then, which finally led to 
the current state-of-the-art 
i-vector approach [79]. In this section, we discuss these methods 
briefly to illustrate how the techniques have evolved.

Linear Distortion Model
In the discussions to follow, a speaker-dependent GMM supervec-
tor m s  is generally assumed to be a linear combination of four 
components. These components are as follows:

1)	speaker-/channel-/environment-independent component
)(m0

2)	speaker-dependent component ( )mspk

3)	channel-/environment-dependent component )(mchn

4)	residual .)(mres

Component 1 is usually obtained from the UBM and is a constant. 
Components 2–4 are random vectors and are responsible for vari-
ability in the supervectors due to different phenomena. Using this 
model, a GMM supervector obtained from speaker s  and session 
h is written as

	 .m m m m m,s h 0 spk chn res= + + + � (7)

For acoustic features of dimension d  and a UBM with M  mixture 
components, these GMM supervectors are of dimension ( ) .Md 1#  
As an example, the speaker- and channel-independent supervector 
m0  is the concatenation of the UBM mean vectors. We denote the 
subvectors of m0 for the gth mixture as m [ ],g0  which equals .gn  In 
the following sections, we discuss how well-known linear Gaussian 
models, including FA, can be used to develop methods based on this 
generic decomposition of the GMM supervectors. A summary of the 
various linear statistical models in speaker recognition is included 
in Table 1, which highlights both formulation and specifics on 
matrix/model traits.

Classical Map Adaptation
We revisit the MAP adaptation technique discussed previously in 
the GMM–UBM system. If we examine the adaptation equation (4), 
which is used to update the mean vectors, it is clear that this is a 
linear combination of two components: one is speaker dependent 
and the other is independent. In a more generalized way, MAP 
adaptation can be represented as an operation on the GMM mean 
supervector as: 

	 ,m m Dz ss 0= + � (8)

where D is ( )Md Md#  a diagonal matrix and z s  is a Md 1#  
standard normal random vector. We dropped the subscript 
due to session h  for simplicity. According to the linear 

distortion model of (7), 
.m Dz sspk =  As discussed 

in [113], in the special 
case when we set

      ( / ) ,D r12 R= �

the MAP adaptation equa-
tions given in (4) [6] arises 
from (8), where r  is the 
relevance factor in (6).

Eigenvoice Adaptation
Perhaps the first FA-related model used in speaker recognition was 
the eigenvoice method [105]. The eigenvoice method was initially 
proposed for speaker adaptation in speech recognition [114]. In 
essence, this method restricts the speaker model parameters to lie 
in a lower dimensional subspace, which is defined by the columns 
of the eigenvoice matrix. In this model, a speaker-dependent GMM 
mean supervector m s  is expressed as

	 ,mm Vys s0= + � (9)

where m0  is the speaker-independent supervector obtained from 
the UBM, the columns of the matrix V spans the speaker sub-
space, and y s  are the standard normal hidden variables known as 
speaker factors. Here, we dropped the subscript h for simplicity. 
In accordance with the linear distortion model in (7), the speaker-
dependent component is .m Vy sspk =  Note that this model does 
not have a residual noise term as in probabilistic PCA (PPCA) 
[115] or FA. This means that the eigenvoice model is essentially 
equivalent to PCA. The model covariance is .VVT  Since supervec-
tors are usually of a large dimension, a full rank sample covari-
ance matrix, i.e., the supercovariance matrix, is difficult to 
estimate with limited amount of data. Thus, EM algorithms 
[116], [117] are used to estimate the eigenvoices. The speaker fac-
tors need to be estimated for an enrollment speaker. Computation 
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[FIG8]  A conceptual illustration of an SVM classifier: Positive (+) 
and negative (–) examples are correspondingly labeled, with the 
optimal linear separator and support vectors shown.

[TABLE 1] a sUMMARY OF THE LINEAR STATISTICAL MODELS  
IN SPEAKER RECOGNITION.

Model Formulation Remarks

Classical MAP m m Dzs s0= + d  is diagonal, ( )z 0, INs +

Eigenvoice m m Vys s0= + v  is low rank, ( )0, Iy Ns +

Eigenchannel m m UxDz,s h s h0= + + u  is low rank, ( , ) ( )z x 0 IN ,s h +

JFA m m Ux DzVy, ,s h h s s h0= + + + ,U V  are low rank, 
( , , ) ( )z 0 Iyx N ,,s hh s +

i-vector m m Tw, ,s h s h0= + t  is low rank, ( )0 Iw N ,,s h +

[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker
Recognition by Machines and Humans: A tutorial
review,” IEEE Signal Processing Magazine, 2015

[Karabiber24] F. Karabiber, “Cosine Similarity,”
https://www.learndatasci.com/glossary/cosine-similarity/

Cosine similarity:

Sc (wtest ,wtarget) = cos(θ) =

wtest · wtarget

∥wtest∥∥wtarget∥
∈ [−1, 1]
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Introduction to Speaker Verification

PLDA

PLDA (Probabilistic Linear Discriminant Analysis): It follows modeling
assumptions similar to JFA

An i-vector ws,h can be decomposed as:

ws,h = w0 +Φβs + Γαh + εs,h

1 w0 is an average, speaker-independent i-vector

2 Φ and Γ are low-rank matrices that characterize speaker and channel subspaces

3 (βs ,αh) ∼ N (0, I) are speaker and channel factors

4 εs,h is a residual vector

If ws,h ← ws,h/∥ws,h∥2, ws,h ∼ N (Gaussian PLDA model)

Using a full-covariance model for εs,h ∼ N (0,Σε) allows us to simplify the
PLDA model:

ws,h = w0 +Φβs + εs,h
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Introduction to Speaker Verification

PLDA

We extract wtest from a sample for verification and claim the identity
associated with wtarget

Hypothesis contrast:

1 H0: wtest and wtarget come from the same speaker

2 H1: wtest and wtarget come from different speakers

LLR(wtest ,wtarget) = log

(
P(wtest ,wtarget |H0)

P(wtest |H1)P(wtarget |H1)

)

LLR(wtest ,wtarget) can be approximated as a function of Φ and Σε

If LLR(wtest ,wtarget) ≥ τ , we accept that wtest and wtarget come from the
same speaker
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Introduction to Speaker Verification

5th Generation: Neural Networks (2018)

While there were multiple neural network-based proposals, it was the
x-vectors that broke the mold

TDNN (Time-Delay Neural Network)

Figure 1: Diagram of the DNN. Segment-level embeddings (e.g.,
a or b) can be extracted from any layer of the network after the
statistics pooling layer.

2. Baseline i-vector system
The baseline is a traditional i-vector system that is based on the
GMM-UBM Kaldi recipe described in [11]. The front-end fea-
tures consist of 20 MFCCs with a frame-length of 25ms that
are mean-normalized over a sliding window of up to 3 seconds.
Delta and acceleration are appended to create 60 dimension fea-
ture vectors. An energy-based VAD selects features correspond-
ing to speech frames. The UBM is a 2048 component full-
covariance GMM. The system uses a 600 dimension i-vector
extractor. Prior to PLDA scoring, i-vectors are centered, di-
mensionality reduced to 150 using LDA, and length normalized.
PLDA scores are normalized using adaptive s-norm [24].

3. DNN embedding system
3.1. Overview

The proposed system is a feed-forward DNN (depicted in Fig-
ure 1) that computes speaker embeddings from variable-length
acoustic segments. The architecture is based on the end-to-end
system described in [23]. However, an end-to-end approach re-
quires a large amount of in-domain data to be effective. We
replace the end-to-end loss with a multiclass cross entropy ob-
jective. In addition, a separately trained PLDA backend is used
to compare pairs of embeddings. This enables the DNN and
similarity metric to be trained on potentially different datasets.
The network is implemented using the nnet3 neural network li-
brary in the Kaldi Speech Recognition Toolkit [25].

3.2. Features

The features are 20 dimensional MFCCs with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3
seconds. The same energy-based VAD from Section 2 filters
out nonspeech frames. Instead of stacking frames at the input,
short-term temporal context is handled by a time-delay DNN
architecture.

3.3. Neural network architecture

The network, illustrated in Figure 1, consists of layers that op-
erate on speech frames, a statistics pooling layer that aggregates
over the frame-level representations, additional layers that oper-
ate at the segment-level, and finally a softmax output layer. The
nonlinearities are rectified linear units (ReLUs).

The first 5 layers of the network work at the frame level,
with a time-delay architecture [26]. Suppose t is the current
time step. At the input, we splice together frames at {t− 2, t−
1, t, t+1, t+2}. The next two layers splice together the output
of the previous layer at times {t−2, t, t+2} and {t−3, t, t+3},
respectively. The next two layers also operate at the frame-level,
but without any added temporal context. In total, the frame-
level portion of the network has a temporal context of t − 8 to
t+ 8 frames. Layers vary in size, from 512 to 1536, depending
on the splicing context used.

The statistics pooling layer receives the output of the final
frame-level layer as input, aggregates over the input segment,
and computes its mean and standard deviation. These segment-
level statistics are concatenated together and passed to two ad-
ditional hidden layers with dimension 512 and 300 (either of
which may be used to compute embeddings) and finally the soft-
max output layer. Excluding the softmax output layer (because
it is not needed after training) there is a total of 4.4 million pa-
rameters.

3.4. Training

The network is trained to classify training speakers using a mul-
ticlass cross entropy objective function (Equation 1). The pri-
mary difference between this and training in [16, 17, 21] is that
our system is trained to predict speakers from variable-length
segments, rather than frames. Suppose there are K speakers in
N training segments. Then P (spkrk | x(n)

1:T ) is the probabil-
ity of speaker k given T input frames x

(n)
1 ,x

(n)
2 , ...x

(n)
T . The

quantity dnk is 1 if the speaker label for segment n is k, other-
wise it’s 0.

E = −
N∑

n=1

K∑
k=1

dnkln(P (spkrk | x(n)
1:T )) (1)

The DNN is trained on the combined SWBD and SRE data
described in Section 4.1. We refine the dataset by removing any
recordings that are less than 10 seconds long, and any speak-
ers with fewer than 4 recordings. This leaves a total of 4,733
speakers, which is the size of the softmax output layer.

To reduce sensitivity to utterance length, it is desirable to
train the DNN on speech chunks that capture the range of du-
rations we expect to encounter at test time (e.g., a few seconds
to a few minutes). However, GPU memory limitations force
a tradeoff between minibatch size and maximum training ex-
ample length. As a comprise, we pick examples that range
from 2 to 10 seconds (200 to 1000 frames) along with a mini-
batch size of 32 to 64. The example speech chunks are sampled
densely from the recordings, resulting in about 3,400 examples
per speaker. The network is trained for several epochs using
natural gradient stochastic gradient descent [27].

3.5. Speaker embeddings

Ultimately, the goal of training the network is to produce em-
beddings that generalize well to speakers that have not been
seen in the training data. We would like embeddings to capture
speaker characteristics over the entire utterance, rather than at

[Snyder17] D. Snyder et al., “Deep Neural Network Embeddings
for Text-Independent Speaker Verification,” in Proc. of

Interspeech 2017

2.2. Phonetic bottleneck i-vector

This i-vector system incorporates phonetic bottleneck features
(BNF) from an ASR DNN acoustic model and is similar to [9].
The DNN is a time-delay acoustic model with p-norm nonlineari-
ties. The ASR DNN is trained on the Fisher English corpus and uses
the same recipe and architecture as the system described in Section
2.2 of [11], except that the penultimate layer is replaced with a 60
dimensional linear bottleneck layer. Excluding the softmax output
layer, which is not needed to compute BNFs, the DNN has 9.2
million parameters.

The BNFs are concatenated with the same 20 dimensional
MFCCs described in Section 2.1 plus deltas to create 100 dimen-
sional features. The remaining components of the system (feature
processing, UBM, i-vector extractor, and PLDA classifier) are iden-
tical to the acoustic system in Section 2.1.

2.3. The x-vector system

This section describes the x-vector system. It is based on the DNN
embeddings in [1] and described in greater detail there.

Our software framework has been made available in the Kaldi
toolkit. An example recipe is in the main branch of Kaldi at https:
//github.com/kaldi-asr/kaldi/tree/master/egs/
sre16/v2 and a pretrained x-vector system can be downloaded
from http://kaldi-asr.org/models.html. The recipe
and model are similar to the x-vector system described in Section
4.4.

Layer Layer context Total context Input x output
frame1 [t− 2, t+ 2] 5 120x512
frame2 {t− 2, t, t+ 2} 9 1536x512
frame3 {t− 3, t, t+ 3} 15 1536x512
frame4 {t} 15 512x512
frame5 {t} 15 512x1500

stats pooling [0, T ) T 1500Tx3000
segment6 {0} T 3000x512
segment7 {0} T 512x512
softmax {0} T 512xN

Table 1. The embedding DNN architecture. x-vectors are extracted
at layer segment6, before the nonlinearity. The N in the softmax
layer corresponds to the number of training speakers.

The features are 24 dimensional filterbanks with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3 seconds.
The same energy SAD as used in the baseline systems filters out
nonspeech frames.

The DNN configuration is outlined in Table 1. Suppose an input
segment has T frames. The first five layers operate on speech frames,
with a small temporal context centered at the current frame t. For
example, the input to layer frame3 is the spliced output of frame2, at
frames t− 3, t and t+ 3. This builds on the temporal context of the
earlier layers, so that frame3 sees a total context of 15 frames.

The statistics pooling layer aggregates all T frame-level outputs
from layer frame5 and computes its mean and standard deviation.
The statistics are 1500 dimensional vectors, computed once for each
input segment. This process aggregates information across the time
dimension so that subsequent layers operate on the entire segment.
In Table 1, this is denoted by a layer context of {0} and a total con-
text of T . The mean and standard deviation are concatenated to-

gether and propagated through segment-level layers and finally the
softmax output layer. The nonlinearities are all rectified linear units
(ReLUs).

The DNN is trained to classify the N speakers in the training
data. A training example consists of a chunk of speech features
(about 3 seconds average), and the corresponding speaker label. Af-
ter training, embeddings are extracted from the affine component of
layer segment6. Excluding the softmax output layer and segment7
(because they are not needed after training) there is a total of 4.2
million parameters.

2.4. PLDA classifier

The same type of PLDA [3] classifier is used for the x-vector and
i-vector systems. The representations (x-vectors or i-vectors) are
centered, and projected using LDA. The LDA dimension was tuned
on the SITW development set to 200 for i-vectors and 150 for
x-vectors. After dimensionality reduction, the representations are
length-normalized and modeled by PLDA. The scores are normal-
ized using adaptive s-norm [22].

3. EXPERIMENTAL SETUP

3.1. Training data

The training data consists of both telephone and microphone speech,
the bulk of which is in English. All wideband audio is downsampled
to 8kHz.

The SWBD portion consists of Switchboard 2 Phases 1, 2, and 3
as well as Switchboard Cellular. In total, the SWBD dataset contains
about 28k recordings from 2.6k speakers. The SRE portion con-
sists of NIST SREs from 2004 to 2010 along with Mixer 6 and con-
tains about 63k recordings from 4.4k speakers. In the experiments
in Sections 4.1–4.4 the extractors (UBM/T or embedding DNN) are
trained on SWBD and SRE and the PLDA classifiers are trained on
just SRE. Data augmentation is described in Section 3.3 and is ap-
plied to these datasets as explained throughout Section 4.

In the last experiment in Section 4.5 we incorporate audio from
the new VoxCeleb dataset [19] into both extractor and PLDA train-
ing lists. The dataset consists of videos from 1,251 celebrity speak-
ers. Although SITW and VoxCeleb were collected independently,
we discovered an overlap of 60 speakers between the two datasets.
We removed the overlapping speakers from VoxCeleb prior to using
it for training. This reduces the size of the dataset to 1,191 speakers
and about 20k recordings.

The ASR DNN used in the i-vector (BNF) system was trained
on the Fisher English corpus. To achieve a limited form of domain
adaptation, the development data from SITW and SRE16 is pooled
and used for centering and score normalization. No augmentation is
applied to these lists.

3.2. Evaluation

Our evaluation consists of two distinct datasets: Speakers in the Wild
(SITW) Core [23] and the Cantonese portion of the NIST SRE 2016
evaluation (SRE16) [24]. SITW consists of unconstrained video au-
dio of English speakers, with naturally occurring noises, reverber-
ation, as well as device and codec variability. The SRE16 portion
consists of Cantonese conversational telephone speech. Both en-
roll and test SITW utterances vary in length form 6–240 seconds.
For SRE16, the enrollment utterances contain about 60 seconds of
speech while the test utterances vary from 10–60 seconds.

[Snyder18] D. Snyder et al., “X-Vectors: Robust DNN
Embeddings for Speaker Recognition,” in Proc. of ICASSP 2018

x-vectors: Output of the segment6 layer
(from the Mel spectrogram)

The comparison of x-vectors is performed
using PLDA

Training data augmentation is key!
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DET curve for the NIST SRE16 Cantonese set

training list. On SITW, the x-vector system achieves lower error-
rates than i-vector (acoustic) and has now caught up to the i-vector
(BNF) system. On SRE16, the x-vectors are now 25% better than the
i-vectors in DCF10−2, which is almost double the improvement the
DNN embeddings had with PLDA augmentation alone. The findings
in this section indicate that data augmentation is only beneficial for
extractors trained with supervision.

4.4. PLDA and extractor augmentation

In the previous sections, we saw that PLDA augmentation was help-
ful in both i-vector and DNN embedding systems, although extractor
augmentation was only clearly beneficial in the embedding system.
In this experiment, we apply data augmentation to both the extractor
and PLDA training lists. We continue to use SWBD and SRE for
extractor training and only SRE for PLDA. On SITW the x-vectors
are now 10-25% better than i-vector (acoustic) and are slightly better
than i-vector (BNF) at all operating points. On SRE16 Cantonese,
the x-vectors continue to maintain the large lead over the i-vector
systems established in Section 4.3.

4.5. Including VoxCeleb
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Fig. 1. DET curve for the Cantonese portion of NIST SRE16 using
Section 4.5 systems.

The training data in Sections 4.1–4.4 is dominated by telephone
speech. In this experiment, we explore the effect of adding a large
amount of microphone speech to the systems in Section 4.4. The
VoxCeleb dataset [19] is augmented, and added to both the extractor
and PLDA lists. As noted in Section 3.1, we found 60 speakers
which overlap with SITW; all speech for these speakers was removed
from the training lists.

On SITW, both i-vector and x-vector systems improve signif-
icantly. However, the x-vector exploits the large increase in the
amount of in-domain data better than the i-vector systems. Com-
pared to i-vector (acoustic), the x-vectors are better by 44% in EER
and 29% in DCF10−2. Compared to the i-vector (BNF) system, it is
now better by 32% in EER and 17% in DCF10−2. On SRE16, the
i-vector systems remain roughly the same compared to Section 4.4,
but the x-vectors improve on all operating points by a small amount.

 0.01   0.1  0.5    1     2     5     10    20    40    60  

False Alarm probability (in %)

  0.1 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

  60  

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

i-vector (acoustic)

i-vector (BNF)

x-vector

Fig. 2. DET curve for the SITW Core using Section 4.5 systems.

These results are illustrated by detection error tradeoff (DET) plots
in Figures 1 and 2.

5. CONCLUSIONS

This paper studied DNN embeddings for speaker recognition. We
found that data augmentation is an easily implemented and effective
strategy for improving their performance. We also made the x-vector
system – our implementation of DNN embeddings – available in the
Kaldi toolkit. We found that the x-vector system significantly outper-
formed two standard i-vector baselines on SRE16 Cantonese. After
including a large amount of augmented microphone speech, the x-
vectors achieved much lower error-rates than our best baseline on
Speakers in the Wild. Bottleneck features from an ASR DNN are
used in our best i-vector system, and so it requires transcribed data
during training. On the other hand, the x-vector DNN needs only
speaker labels to train, making it potentially ideal for domains with
little transcribed speech. More generally, it appears that x-vectors
are now a strong contender for next-generation representations for
speaker recognition.
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training list. On SITW, the x-vector system achieves lower error-
rates than i-vector (acoustic) and has now caught up to the i-vector
(BNF) system. On SRE16, the x-vectors are now 25% better than the
i-vectors in DCF10−2, which is almost double the improvement the
DNN embeddings had with PLDA augmentation alone. The findings
in this section indicate that data augmentation is only beneficial for
extractors trained with supervision.

4.4. PLDA and extractor augmentation

In the previous sections, we saw that PLDA augmentation was help-
ful in both i-vector and DNN embedding systems, although extractor
augmentation was only clearly beneficial in the embedding system.
In this experiment, we apply data augmentation to both the extractor
and PLDA training lists. We continue to use SWBD and SRE for
extractor training and only SRE for PLDA. On SITW the x-vectors
are now 10-25% better than i-vector (acoustic) and are slightly better
than i-vector (BNF) at all operating points. On SRE16 Cantonese,
the x-vectors continue to maintain the large lead over the i-vector
systems established in Section 4.3.

4.5. Including VoxCeleb
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Fig. 1. DET curve for the Cantonese portion of NIST SRE16 using
Section 4.5 systems.

The training data in Sections 4.1–4.4 is dominated by telephone
speech. In this experiment, we explore the effect of adding a large
amount of microphone speech to the systems in Section 4.4. The
VoxCeleb dataset [19] is augmented, and added to both the extractor
and PLDA lists. As noted in Section 3.1, we found 60 speakers
which overlap with SITW; all speech for these speakers was removed
from the training lists.

On SITW, both i-vector and x-vector systems improve signif-
icantly. However, the x-vector exploits the large increase in the
amount of in-domain data better than the i-vector systems. Com-
pared to i-vector (acoustic), the x-vectors are better by 44% in EER
and 29% in DCF10−2. Compared to the i-vector (BNF) system, it is
now better by 32% in EER and 17% in DCF10−2. On SRE16, the
i-vector systems remain roughly the same compared to Section 4.4,
but the x-vectors improve on all operating points by a small amount.
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These results are illustrated by detection error tradeoff (DET) plots
in Figures 1 and 2.

5. CONCLUSIONS

This paper studied DNN embeddings for speaker recognition. We
found that data augmentation is an easily implemented and effective
strategy for improving their performance. We also made the x-vector
system – our implementation of DNN embeddings – available in the
Kaldi toolkit. We found that the x-vector system significantly outper-
formed two standard i-vector baselines on SRE16 Cantonese. After
including a large amount of augmented microphone speech, the x-
vectors achieved much lower error-rates than our best baseline on
Speakers in the Wild. Bottleneck features from an ASR DNN are
used in our best i-vector system, and so it requires transcribed data
during training. On the other hand, the x-vector DNN needs only
speaker labels to train, making it potentially ideal for domains with
little transcribed speech. More generally, it appears that x-vectors
are now a strong contender for next-generation representations for
speaker recognition.
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ECAPA-TDNN: Enhanced TDNN for speaker embedding extraction

Figure 1: The SE-Res2Block of the ECAPA-TDNN architecture.
The standard Conv1D layers have a kernel size of 1. The central
Res2Net [16] Conv1D with scale dimension s = 8 expands the
temporal context through kernel size k and dilation spacing d.

3.3. Multi-layer feature aggregation and summation

The original x-vector system only uses the feature map of the
last frame-layer for calculating the pooled statistics. Given the
hierarchical nature of a TDNN, these deeper level features are
the most complex ones and should be strongly correlated with
the speaker identities. However, due to evidence in [17, 18] we
argue that the more shallow feature maps can also contribute
towards more robust speaker embeddings. For each frame, our
proposed system concatenates the output feature maps of all
the SE-Res2Blocks. After this Multi-layer Feature Aggregation
(MFA), a dense layer processes the concatenated information to
generate the features for the attentive statistics pooling.

Another, complementary way to exploit multi-layer infor-
mation is to use the output of all preceding SE-Res2Blocks
and initial convolutional layer as input for each frame layer
block [17, 19]. We implement this by defining the residual con-
nection in each SE-Res2Block as the sum of the outputs of all
the previous blocks. We opt for a summation of the feature maps
instead of concatenation to restrain the model parameter count.
The final architecture without the summed residual connections
is shown in Figure 2.

4. Experimental setup
4.1. Training the speaker embedding extractors

We apply the fixed-condition VoxSRC 2019 training restric-
tions [12] and only use the development part of the VoxCeleb2
dataset [11] with 5994 speakers as training data. A small subset
of about 2% of the data is reserved as a validation set for hy-
perparameter optimization. It is a well known fact that neural
networks benefit from data augmentation which generates ex-
tra training samples. We generate a total of 6 extra samples for
each utterance. The first set of augmentations follow the Kaldi
recipe [2] in combination with the publicly available MUSAN
dataset (babble, noise) [20] and the RIR dataset (reverb) pro-
vided in [21]. The remaining three augmentations are generated
with the open-source SoX (tempo up, tempo down) and FFm-
peg (alternating opus or aac compression) libraries.

Figure 2: Network topology of the ECAPA-TDNN. We denote k
for kernel size and d for dilation spacing of the Conv1D layers
or SE-Res2Blocks. C and T correspond to the channel and tem-
poral dimension of the intermediate feature-maps respectively.
S is the number of training speakers.

The input features are 80-dimensional MFCCs from a
25 ms window with a 10 ms frame shift. Two second random
crops of the MFCCs feature vectors are normalized through
cepstral mean subtraction and no voice activity detection is
applied. As a final augmentation step, we apply SpecAug-
ment [22] on the log mel spectrogram of the samples. The al-
gorithm randomly masks 0 to 5 frames in the time domain and
0 to 10 channels in the frequency domain.

All models are trained with a cyclical learning rate varying
between 1e-8 and 1e-3 using the triangular2 policy as described
in [23] in conjunction with the Adam optimizer [24]. The du-
ration of one cycle is set to 130k iterations. All systems are
trained using AAM-softmax [6, 25] with a margin of 0.2 and
softmax prescaling of 30 for 4 cycles. To prevent overfitting,
we apply a weight decay on all weights in the model of 2e-5,
except for the AAM-softmax weights, which uses 2e-4. The
mini-batch size for training is 128.

We study two setups of the proposed ECAPA-TDNN archi-
tecture with either 512 or 1024 channels in the convolutional
frame layers. The dimension of the bottleneck in the SE-Block
and the attention module is set to 128. The scale dimension s in
the Res2Block [16] is set to 8. The number of nodes in the final
fully-connected layer is 192. The performance of this system
will be compared to the baselines described in Section 2.

4.2. Speaker verification

Speaker embeddings are extracted from the final fully-
connected layer for all systems. Trial scores are produced us-
ing the cosine distance between embeddings. Subsequently, all
the scores are normalized using adaptive s-norm [26, 27]. The

[Desplanques20] B. Desplanques et
al., “ECAPA-TDNN: Emphasized

Channel Attention, Propagation and
Aggregation in TDNN Based Speaker
Verification,” in Proc. of Interspeech

2020
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Figure 1: The SE-Res2Block of the ECAPA-TDNN architecture.
The standard Conv1D layers have a kernel size of 1. The central
Res2Net [16] Conv1D with scale dimension s = 8 expands the
temporal context through kernel size k and dilation spacing d.

3.3. Multi-layer feature aggregation and summation

The original x-vector system only uses the feature map of the
last frame-layer for calculating the pooled statistics. Given the
hierarchical nature of a TDNN, these deeper level features are
the most complex ones and should be strongly correlated with
the speaker identities. However, due to evidence in [17, 18] we
argue that the more shallow feature maps can also contribute
towards more robust speaker embeddings. For each frame, our
proposed system concatenates the output feature maps of all
the SE-Res2Blocks. After this Multi-layer Feature Aggregation
(MFA), a dense layer processes the concatenated information to
generate the features for the attentive statistics pooling.

Another, complementary way to exploit multi-layer infor-
mation is to use the output of all preceding SE-Res2Blocks
and initial convolutional layer as input for each frame layer
block [17, 19]. We implement this by defining the residual con-
nection in each SE-Res2Block as the sum of the outputs of all
the previous blocks. We opt for a summation of the feature maps
instead of concatenation to restrain the model parameter count.
The final architecture without the summed residual connections
is shown in Figure 2.

4. Experimental setup
4.1. Training the speaker embedding extractors

We apply the fixed-condition VoxSRC 2019 training restric-
tions [12] and only use the development part of the VoxCeleb2
dataset [11] with 5994 speakers as training data. A small subset
of about 2% of the data is reserved as a validation set for hy-
perparameter optimization. It is a well known fact that neural
networks benefit from data augmentation which generates ex-
tra training samples. We generate a total of 6 extra samples for
each utterance. The first set of augmentations follow the Kaldi
recipe [2] in combination with the publicly available MUSAN
dataset (babble, noise) [20] and the RIR dataset (reverb) pro-
vided in [21]. The remaining three augmentations are generated
with the open-source SoX (tempo up, tempo down) and FFm-
peg (alternating opus or aac compression) libraries.

Figure 2: Network topology of the ECAPA-TDNN. We denote k
for kernel size and d for dilation spacing of the Conv1D layers
or SE-Res2Blocks. C and T correspond to the channel and tem-
poral dimension of the intermediate feature-maps respectively.
S is the number of training speakers.

The input features are 80-dimensional MFCCs from a
25 ms window with a 10 ms frame shift. Two second random
crops of the MFCCs feature vectors are normalized through
cepstral mean subtraction and no voice activity detection is
applied. As a final augmentation step, we apply SpecAug-
ment [22] on the log mel spectrogram of the samples. The al-
gorithm randomly masks 0 to 5 frames in the time domain and
0 to 10 channels in the frequency domain.

All models are trained with a cyclical learning rate varying
between 1e-8 and 1e-3 using the triangular2 policy as described
in [23] in conjunction with the Adam optimizer [24]. The du-
ration of one cycle is set to 130k iterations. All systems are
trained using AAM-softmax [6, 25] with a margin of 0.2 and
softmax prescaling of 30 for 4 cycles. To prevent overfitting,
we apply a weight decay on all weights in the model of 2e-5,
except for the AAM-softmax weights, which uses 2e-4. The
mini-batch size for training is 128.

We study two setups of the proposed ECAPA-TDNN archi-
tecture with either 512 or 1024 channels in the convolutional
frame layers. The dimension of the bottleneck in the SE-Block
and the attention module is set to 128. The scale dimension s in
the Res2Block [16] is set to 8. The number of nodes in the final
fully-connected layer is 192. The performance of this system
will be compared to the baselines described in Section 2.

4.2. Speaker verification

Speaker embeddings are extracted from the final fully-
connected layer for all systems. Trial scores are produced us-
ing the cosine distance between embeddings. Subsequently, all
the scores are normalized using adaptive s-norm [26, 27]. The

µ̃c =
∑T

t αt,cht,c σ̃c =
√∑T

t αt,ch2t,c − µ̃2
c

µ̃ = (µ̃1, ..., µ̃c , ..., µ̃C ) σ̃ = (σ̃1, ..., σ̃c , ..., σ̃C )
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Figure 1: The SE-Res2Block of the ECAPA-TDNN architecture.
The standard Conv1D layers have a kernel size of 1. The central
Res2Net [16] Conv1D with scale dimension s = 8 expands the
temporal context through kernel size k and dilation spacing d.

3.3. Multi-layer feature aggregation and summation

The original x-vector system only uses the feature map of the
last frame-layer for calculating the pooled statistics. Given the
hierarchical nature of a TDNN, these deeper level features are
the most complex ones and should be strongly correlated with
the speaker identities. However, due to evidence in [17, 18] we
argue that the more shallow feature maps can also contribute
towards more robust speaker embeddings. For each frame, our
proposed system concatenates the output feature maps of all
the SE-Res2Blocks. After this Multi-layer Feature Aggregation
(MFA), a dense layer processes the concatenated information to
generate the features for the attentive statistics pooling.

Another, complementary way to exploit multi-layer infor-
mation is to use the output of all preceding SE-Res2Blocks
and initial convolutional layer as input for each frame layer
block [17, 19]. We implement this by defining the residual con-
nection in each SE-Res2Block as the sum of the outputs of all
the previous blocks. We opt for a summation of the feature maps
instead of concatenation to restrain the model parameter count.
The final architecture without the summed residual connections
is shown in Figure 2.
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4.1. Training the speaker embedding extractors

We apply the fixed-condition VoxSRC 2019 training restric-
tions [12] and only use the development part of the VoxCeleb2
dataset [11] with 5994 speakers as training data. A small subset
of about 2% of the data is reserved as a validation set for hy-
perparameter optimization. It is a well known fact that neural
networks benefit from data augmentation which generates ex-
tra training samples. We generate a total of 6 extra samples for
each utterance. The first set of augmentations follow the Kaldi
recipe [2] in combination with the publicly available MUSAN
dataset (babble, noise) [20] and the RIR dataset (reverb) pro-
vided in [21]. The remaining three augmentations are generated
with the open-source SoX (tempo up, tempo down) and FFm-
peg (alternating opus or aac compression) libraries.
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for kernel size and d for dilation spacing of the Conv1D layers
or SE-Res2Blocks. C and T correspond to the channel and tem-
poral dimension of the intermediate feature-maps respectively.
S is the number of training speakers.

The input features are 80-dimensional MFCCs from a
25 ms window with a 10 ms frame shift. Two second random
crops of the MFCCs feature vectors are normalized through
cepstral mean subtraction and no voice activity detection is
applied. As a final augmentation step, we apply SpecAug-
ment [22] on the log mel spectrogram of the samples. The al-
gorithm randomly masks 0 to 5 frames in the time domain and
0 to 10 channels in the frequency domain.

All models are trained with a cyclical learning rate varying
between 1e-8 and 1e-3 using the triangular2 policy as described
in [23] in conjunction with the Adam optimizer [24]. The du-
ration of one cycle is set to 130k iterations. All systems are
trained using AAM-softmax [6, 25] with a margin of 0.2 and
softmax prescaling of 30 for 4 cycles. To prevent overfitting,
we apply a weight decay on all weights in the model of 2e-5,
except for the AAM-softmax weights, which uses 2e-4. The
mini-batch size for training is 128.

We study two setups of the proposed ECAPA-TDNN archi-
tecture with either 512 or 1024 channels in the convolutional
frame layers. The dimension of the bottleneck in the SE-Block
and the attention module is set to 128. The scale dimension s in
the Res2Block [16] is set to 8. The number of nodes in the final
fully-connected layer is 192. The performance of this system
will be compared to the baselines described in Section 2.

4.2. Speaker verification

Speaker embeddings are extracted from the final fully-
connected layer for all systems. Trial scores are produced us-
ing the cosine distance between embeddings. Subsequently, all
the scores are normalized using adaptive s-norm [26, 27]. The

[Desplanques20] B. Desplanques et
al., “ECAPA-TDNN: Emphasized

Channel Attention, Propagation and
Aggregation in TDNN Based Speaker
Verification,” in Proc. of Interspeech

2020

SE (Squeeze-and-Excitation)-
Block

Squeeze: z =
1

T

T∑
t

ht

Excitation:
s = σ(W2f (W1z+ b1) + b2)
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Figure 1: The SE-Res2Block of the ECAPA-TDNN architecture.
The standard Conv1D layers have a kernel size of 1. The central
Res2Net [16] Conv1D with scale dimension s = 8 expands the
temporal context through kernel size k and dilation spacing d.

3.3. Multi-layer feature aggregation and summation

The original x-vector system only uses the feature map of the
last frame-layer for calculating the pooled statistics. Given the
hierarchical nature of a TDNN, these deeper level features are
the most complex ones and should be strongly correlated with
the speaker identities. However, due to evidence in [17, 18] we
argue that the more shallow feature maps can also contribute
towards more robust speaker embeddings. For each frame, our
proposed system concatenates the output feature maps of all
the SE-Res2Blocks. After this Multi-layer Feature Aggregation
(MFA), a dense layer processes the concatenated information to
generate the features for the attentive statistics pooling.

Another, complementary way to exploit multi-layer infor-
mation is to use the output of all preceding SE-Res2Blocks
and initial convolutional layer as input for each frame layer
block [17, 19]. We implement this by defining the residual con-
nection in each SE-Res2Block as the sum of the outputs of all
the previous blocks. We opt for a summation of the feature maps
instead of concatenation to restrain the model parameter count.
The final architecture without the summed residual connections
is shown in Figure 2.

4. Experimental setup
4.1. Training the speaker embedding extractors

We apply the fixed-condition VoxSRC 2019 training restric-
tions [12] and only use the development part of the VoxCeleb2
dataset [11] with 5994 speakers as training data. A small subset
of about 2% of the data is reserved as a validation set for hy-
perparameter optimization. It is a well known fact that neural
networks benefit from data augmentation which generates ex-
tra training samples. We generate a total of 6 extra samples for
each utterance. The first set of augmentations follow the Kaldi
recipe [2] in combination with the publicly available MUSAN
dataset (babble, noise) [20] and the RIR dataset (reverb) pro-
vided in [21]. The remaining three augmentations are generated
with the open-source SoX (tempo up, tempo down) and FFm-
peg (alternating opus or aac compression) libraries.

Figure 2: Network topology of the ECAPA-TDNN. We denote k
for kernel size and d for dilation spacing of the Conv1D layers
or SE-Res2Blocks. C and T correspond to the channel and tem-
poral dimension of the intermediate feature-maps respectively.
S is the number of training speakers.

The input features are 80-dimensional MFCCs from a
25 ms window with a 10 ms frame shift. Two second random
crops of the MFCCs feature vectors are normalized through
cepstral mean subtraction and no voice activity detection is
applied. As a final augmentation step, we apply SpecAug-
ment [22] on the log mel spectrogram of the samples. The al-
gorithm randomly masks 0 to 5 frames in the time domain and
0 to 10 channels in the frequency domain.

All models are trained with a cyclical learning rate varying
between 1e-8 and 1e-3 using the triangular2 policy as described
in [23] in conjunction with the Adam optimizer [24]. The du-
ration of one cycle is set to 130k iterations. All systems are
trained using AAM-softmax [6, 25] with a margin of 0.2 and
softmax prescaling of 30 for 4 cycles. To prevent overfitting,
we apply a weight decay on all weights in the model of 2e-5,
except for the AAM-softmax weights, which uses 2e-4. The
mini-batch size for training is 128.

We study two setups of the proposed ECAPA-TDNN archi-
tecture with either 512 or 1024 channels in the convolutional
frame layers. The dimension of the bottleneck in the SE-Block
and the attention module is set to 128. The scale dimension s in
the Res2Block [16] is set to 8. The number of nodes in the final
fully-connected layer is 192. The performance of this system
will be compared to the baselines described in Section 2.

4.2. Speaker verification

Speaker embeddings are extracted from the final fully-
connected layer for all systems. Trial scores are produced us-
ing the cosine distance between embeddings. Subsequently, all
the scores are normalized using adaptive s-norm [26, 27]. The

Multi-layer feature aggregation
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The comparison of speaker embeddings is carried out by means of
cosine similarity:

Table 1: EER and MinDCF performance of all systems on the standard VoxCeleb1 and VoxSRC 2019 test sets.

Architecture # Params VoxCeleb1 VoxCeleb1-E VoxCeleb1-H VoxSRC19

EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF EER(%)

E-TDNN 6.8M 1.49 0.1604 1.61 0.1712 2.69 0.2419 1.81
E-TDNN (large) 20.4M 1.26 0.1399 1.37 0.1487 2.35 0.2153 1.61

ResNet18 13.8M 1.47 0.1772 1.60 0.1789 2.88 0.2672 1.97
ResNet34 23.9M 1.19 0.1592 1.33 0.1560 2.46 0.2288 1.57

ECAPA-TDNN (C=512) 6.2M 1.01 0.1274 1.24 0.1418 2.32 0.2181 1.32
ECAPA-TDNN (C=1024) 14.7M 0.87 0.1066 1.12 0.1318 2.12 0.2101 1.22

imposter cohort consists of the speaker-wise averages of the
length-normalized embeddings of all training utterances. The
size of the imposter cohort was set to 1000 for the VoxCeleb
test sets and to a more robust value of 50 for the cross-dataset
VoxSRC 2019 evaluation.

4.3. Evaluation protocol

The system is evaluated on the popular VoxCeleb1 test sets [10]
and VoxSRC 2019 evaluation set [12]. Performance will be
measured by providing the Equal Error Rate (EER) and the min-
imum normalized detection cost MinDCF with Ptarget = 10−2

and CFA = CMiss = 1. A concise ablation study is used to
gain a deeper understanding how each of the proposed improve-
ments affects the performance.

5. Results
A performance overview of the baseline systems described in
Section 2 and our proposed ECAPA-TDNN system is given in
Table 1, together with the number of model parameters in the
embedding extractor. We implement two setups with the num-
ber of filters C in the convolutional layers either set to 512
or 1024. Our proposed architecture significantly outperforms
all baselines while using fewer model parameters. The larger
ECAPA-TDNN system gives an average relative improvement
of 18.7% in EER and 12.5% in MinDCF over the best scor-
ing baseline for each test set. We note that the performance
of the baselines supersedes the numbers reported in [3, 4] in
most cases. We continue with an ablation study of the individ-
ual components introduced in Section 3. An overview of these
results is given in Table 2.

Table 2: Ablation study of the ECAPA-TDNN architecture.

Systems EER(%) MinDCF

ECAPA-TDNN (C=512) 1.01 0.1274

A.1 Attentive Statistics [8] 1.12 0.1316
A.2 Channel Att. w/o Context 1.03 0.1288

B.1 No SE-Block 1.27 0.1446
B.2 No Res2Net-Block 1.07 0.1316

C.1 No MFA 1.10 0.1311
C.2 No Res. Connections 1.08 0.1310
C.3 No Sum Res. Connections 1.08 0.1217

To measure the impact of our proposed attention mod-
ule, we run an experiment A.1, that uses the attention module

from [8]. We also run a separate experiment A.2 that does
not supply the context vector to the proposed attention. The
channel- and context-dependent statistics pooling system im-
proves the EER and MinDCF metric with 9.8% and 3.2%, re-
spectively. This confirms the benefits of applying different tem-
poral attention to each channel. Addition of the context vector
results in very small performance gains with the system rel-
atively improving about 1.9% in EER and 1.1% in MinDCF.
Nonetheless, this strengthens our belief that a TDNN-based ar-
chitecture should try to exploit global context information.

This intuition is confirmed with experiment B.1 that clearly
shows the importance of the SE-blocks described in Section 3.2.
Incorporating the SE-modules in the Res2Blocks results in rela-
tive improvements of 20.5% in EER and 11.9% in the MinDCF
metric. This indicates that the limited temporal context of the
frame-level features is insufficient and should be complemented
with global utterance-based information. In experiment B.2 we
replaced the multi-scale features of the Res2Blocks with the
standard central dilated 1D convolutional of the ResNet coun-
terpart. Aside from a substantial 30% relative reduction in
model parameters, the multi-scale Res2Net approach also leads
towards a relative improvement of 5.6% in EER and 3.2% in
MinDCF.

In experiment C.1, we only use the output of the final SE-
Res2Block instead of aggregating the information of all SE-
Res2Blocks. Aggregation of the outputs leads to relative im-
provements of 8.2% in EER and 2.8% in the MinDCF value.
Removing all residual connections (experiment C.2) shows a
similar rate of degradation. Replacing a standard ResNet skip
connection in the SE-Res2Blocks by the sum of the outputs
of all previous SE-Res2Blocks improves the EER with 6.5%,
while slightly degrading the MinDCF score in experiment C.3.
However, experiments during the recently held Short-duration
Speaker Verification (SdSV) Challenge 2020 [28] convinced us
to incorporate summed residuals in the final ECAPA-TDNN ar-
chitecture. The strong results in this challenge show the archi-
tecture generalizes well to other domains [29].

6. Conclusion
In this paper we presented ECAPA-TDNN, a novel TDNN-
based speaker embedding extractor for speaker verification. We
built further upon the original x-vector architecture and put
more Emphasis on Channel Attention, Propagation and Aggre-
gation. The incorporation of Squeeze-Excitation blocks, multi-
scale Res2Net features, extra skip connections and channel-
dependent attentive statistics pooling, led to significant relative
improvements of 19% in EER on average over strong baseline
systems on the VoxCeleb and VoxSRC 2019 evaluation sets.

[Desplanques20] B. Desplanques et al., “ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in
TDNN Based Speaker Verification,” in Proc. of Interspeech 2020

Iván López-Espejo (UGR) An Introduction to Voice Identification Saturday 21st June, 2025 29 / 47



Introduction to Speaker Verification

Embedding Compensation

Need for compensation of embeddings from non-neutral phonation speech
(e.g., shouted and whispered)

Funded by 

the European Union

Improved Vocal Effort Transfer Vector Estimation for
Vocal Effort-Robust Speaker Verification

Iván López-Espejo1,2, Santi Prieto3, Alfonso Ortega4 and Eduardo Lleida4

1Department of Electronic Systems, Aalborg University, Denmark
2Center for Robust Speech Systems (CRSS), The University of Texas at Dallas, USA

3VeriDas | das-Nano, Navarre, Spain
4ViVoLab, Aragón Institute for Engineering Research (I3A), University of Zaragoza, Spain

ivl@es.aau.dk, sprieto@veridas.com, {ortega,lleida}@unizar.es

Introduction

I Speaker verification performance tends to dra-
matically drop in the presence of non-neutrally-
phonated (e.g., shouted and whispered) speech

I Previous work explored a series of minimum
mean square error (MMSE) techniques estimat-
ing normal speaker embeddings from non-
neutrally-phonated ones

I MEMLIN (Multi-Environment Model-based LInear
Normalization) provided the best performance in
terms of equal error rate (EER) when dealing with
both shouted and whispered speech

I In this work we tackle a MEMLIN’s shortcom-
ing, which is explained in the next box

System Overview

I Speaker embedding compensation is applied only
in case that the embedding comes from non-
neutrally-phonated speech

I The ECAPA-TDNN back-end is trained on an aug-
mented version of the VoxCeleb2 dataset

where p(y|k) = N
(
y
∣∣∣µ{k}

y ,Σ{k}
yy

)
. On the other hand,

given that the joint density p(z = (v,y)|k) is Gaussian, the
conditional density p(v|y, k) is also Gaussian, and, therefore,
E (v |y, k) , i.e., the partial estimates in Eq. (7), can be ex-
pressed, ∀k ∈ {1, ...,K}, as [10]

E (v |y, k) = µ{k}
v +Σ{k}

vy

(
Σ{k}

yy

)−1 (
y − µ{k}

y

)
. (9)

Finally, an estimate of the normal embedding x̃ is achieved
by means of Eq. (2) along with the application of the inverse
PCA transform to the result of Eq. (7), namely,

ˆ̃x = ỹ −WLv̂︸ ︷︷ ︸
ˆ̃v

. (10)

Note that, in order to apply this method in Section 4, both
the PCA transform matrix WL and the GMM p(z) are calcu-
lated from a training set comprising paired normal and non-
neutrally-phonated embeddings (see Subsection 3.1).

For the sake of reproducibility, a Python implementation
of this speaker embedding compensation methodology has
been made publicly available3.

3. SYSTEM OVERVIEW

Figure 1 depicts a block diagram of the proposed vocal effort-
robust speaker verification system. First, the powerful self-
supervised pre-trained model WavLM [3] is used to compute
a high-level representation of the input speech signal. Based
on a Transformer structure, WavLM extends HuBERT [11]
to masked speech prediction and de-noising to allow the
pre-trained model to perform well in a variety of speech
processing tasks including speaker verification. Second, an
ECAPA-TDNN [1] back-end extracts a speaker embedding
from the representation outputted by WavLM. Then, the
speaker embedding compensation methodology of Section 2
is applied only in the case that the embedding comes from
non-neutrally-phonated speech. To detect this case, a simple,
yet virtually flawless logistic regression-based detector [4, 5]
can be used. That being said, note that the results reported
in Section 4 are obtained by oracle non-neutrally-phonated
speech detection for the sake of simplicity. Finally, the result-
ing embedding is compared with a reference embedding x̃ref
by cosine similarity to produce a score sc.

3.1. Shouted and Whispered Speech Corpora

For experimental purposes, we consider the vocal effort
modes shouted and whispered in addition to normal. To
this end, we employ two different (i.e., disjoint) corpora:
the speech corpus informed in [12], which comprises paired

3https://ilopezes.files.wordpress.com/2023/06/
mmsev.zip

ECAPA-TDNN
Frame Encoder

Attentive Statistics Pooling

Fully-Connected Layer

WavLM-Based Feature
Extractor

E
C

A
P

A
-T

D
N

N
 B

ac
k-

E
n

d
F

ro
n

t-
E

n
d

PCA

MMSE
Estimation

Inverse
PCA

Cosine
Similarity

+ -
ỹ
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Fig. 1. Block diagram of the proposed vocal effort-robust
speaker verification system. See the text for further details.

shouted-normal speech utterances in Finnish from 22 speak-
ers, and CHAINS (CHAracterizing INdividual Speakers)
[13], which contains paired whispered-normal speech ut-
terances in English from 36 speakers. Due to speech data
scarcity, all the embedding compensation experiments in
Section 4 are performed —as in [5]— by following a leave-
one-speaker-out cross-validation strategy, which serves to
split the corpora into training and test sets.

We consider the following 4 test conditions (trial lists)
under the shouted-normal scenario: As-As (all shouted
and normal utterances vs. all shouted and normal utter-
ances; 557,040 trials), Ns-Ns (normal utterances vs. nor-
mal utterances; 139,128 trials), S-S (shouted utterances vs.
shouted utterances; 139,128 trials) and Ns-S (normal utter-
ances vs. shouted utterances; 278,784 trials). Furthermore,
we similarly examine 4 equivalent test conditions under the
whispered-normal scenario, namely, Aw-Aw (2,821,498 tri-
als), Nw-Nw (705,078 trials), W-W (704,950 trials) and
Nw-W (1,411,344 trials).

For further details about these corpora, the reader is re-
ferred to [12, 13] and [5].

3.2. System Implementation Details

The used ECAPA-TDNN back-end was trained, employing
the additive angular margin (AAM) loss [14], on an aug-

I Shouted-normal speech corpus: Paired utter-
ances in Finnish from 22 speakers

I Whispered-normal speech corpus: Paired ut-
terances in English from 36 speakers (CHAINS)

I Due to speech data scarcity, experiments are
performed by following a leave-one-speaker-out
cross-validation strategy

Normal Speaker Embedding Estimation
x̃ ∈ RD : Normal embedding | ỹ ∈ RD : Non-neutrally-phonated embedding | ṽ ∈ RD : Vocal effort transfer vector

Introduction
Motivation

MMSE Estimation

ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1

P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k|y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v
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I Limitation of MEMLIN: The set of partial estimates
{

ˆ̃v{k}; k = 1, ..., K
}

is pre-computed (during an offline
training stage) and fixed

I To overcome MEMLIN’s shortcoming, we propose MMSEv:
1. We jointly model ṽ and ỹ by a K -component GMM p(z̃ = (ṽ, ỹ))
2. Estimation is carried out in a principal component analysis (PCA) domain to face data scarcity

Let WL be a D × L PCA transform matrix, where L� D = 256

v = W>L ṽ, y = W>L ỹ

p
(
z = (v, y) ∈ R2L) =

K∑
k=1

P(k )N
(

z
∣∣∣µ{k}z ,Σ{k}z

)
, µ{k}z =
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{k}
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y

)
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ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑
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P(k|ỹ)ˆ̃v{k}
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ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k |y)E(v|y, k)︸ ︷︷ ︸
v̂{k}
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1. Combination weights: P(k |y) =
p(y|k )P(k )

K∑
k′=1

p(y|k ′)P(k ′)

2. Partial estimates: E(v|y, k ) = µ
{k}
v + Σ{k}vy

(
Σ{k}yy

)−1 (
y− µ

{k}
y

)
I Both WL and p(z) are calculated from paired normal and non-neutrally-phonated embeddings

Experimental Results and Discussion
I EER (%) is the chosen speaker verification metric | Use of K = 8-component GMMs
I Embedding compensation experiments are carried out by employing E-T+WavLM as the baseline system
I MMSEx: MMSE estimator equivalent to MMSEv that directly estimates x̃ from E(x|y)
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Fig. 2. Speaker verification results in terms of EER, in percentages, as a function of the dimensionality, after PCA application,
of the embeddings processed by MEMLIN, MMSEx and MMSEv. Bar plots are shown for shouted and normal speech (top
row), as well as for whispered and normal speech (bottom row).

Table 1. Speaker verification results in terms of EER, in percentages, when considering both shouted and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
As-As 19.96 17.11 15.62 31.50 28.72 15.22
Ns-Ns 9.73 7.25 7.25 7.25 7.25 7.25

S-S 11.58 9.94 10.44 27.46 25.53 5.91
Ns-S 25.28 21.76 20.74 41.00 35.56 17.74

mented version of the VoxCeleb2 [15] dataset to extract
D = 256-dimensional speaker embeddings. Considering an
AAM loss margin of 0.2, first, WavLM —which was pre-
trained on 94k hours of unlabeled speech data— was fixed
and the ECAPA-TDNN parameters were trained for a total of
20 epochs. Second, WavLM and the ECAPA-TDNN back-
end were jointly fine tuned for 5 epochs. Finally, by following
the large margin fine-tuning strategy reported in [16], WavLM
and the ECAPA-TDNN back-end were jointly trained for 2
more epochs by considering an AAM loss margin of 0.4.
Notice that, for the sake of reproducibility, the model cor-
responding to this speaker verification system is publicly
available4. The reader is referred to [3] for further informa-
tion on this speaker verification system.

4. EXPERIMENTAL RESULTS

In this section, EER is chosen as the speaker verification per-
formance metric. Besides, as in previous work [4, 5], all the

4https://github.com/microsoft/unilm/tree/master/
wavlm

embedding compensation techniques evaluated make use of
K = 8-component GMMs.

4.1. WavLM Performance

Tables 1 and 2 show speaker verification results in terms of
EER under the shouted-normal and whispered-normal scenar-
ios, respectively. The left part of these tables compare, when
no embedding compensation is considered, the use of WavLM
speech representations (as in Section 3), E-T+WavLM, with
the use of traditional speech features, E-T+MFCC (note that
E-T stands for ECAPA-TDNN). Specifically, the speaker
verification system E-T+MFCC, which is publicly avail-
able5, employs 80-dimensional Mel-frequency cepstral coef-
ficients [17]. In line with [3], we can see from these tables
that E-T+WavLM generally outperforms E-T+MFCC. That
being said, we can also observe that there is still a large room
for improvement in the presence of vocal effort mismatch (all
conditions except Ns-Ns and Nw-Nw) that will be addressed
by embedding compensation in the next subsections. Bear

5https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb

Whispered and normal speech:
Table 2. Speaker verification results in terms of EER, in percentages, when considering both whispered and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
Aw-Aw 16.54 11.24 8.25 31.87 23.95 8.27
Nw-Nw 1.21 0.62 0.62 0.62 0.62 0.62

W-W 4.38 5.26 4.00 19.31 19.77 2.87
Nw-W 12.81 9.81 11.47 44.38 30.59 8.86

in mind that all the embedding compensation experiments in
this section are carried out by employing E-T+WavLM as the
baseline system.

4.2. Effect of PCA Dimension

Figure 2 plots the EER performance of the estimation method-
ology proposed in Section 2, MMSEv, as a function of the
PCA dimension L. For comparison, these bar plots also show
results from MEMLIN (applied in the PCA domain) as well
as from an MMSE estimator equivalent to that of Section 2
that directly estimates the normal embedding x̃ from E[x|y],
MMSEx. From this figure, we can see that MEMLIN’s per-
formance tends to drop when decreasing L as a result of the
information loss caused by PCA compression, which can be
particularly harmful when the estimation relies on a small set
of pre-computed and fixed partial estimates.

On the other hand, MMSEv involves the computation of
2L × 2L covariance matrices, Σ{k}

z , under a data scarcity
scenario. Given our small sample size, reducing L helps to
achieve better-conditioned covariance matrices to be used in
Eqs. (8) and (9). This, together with the fact that MMSEv ex-
ploits the observed non-neutrally-phonated embedding ỹ for
partial estimate calculation, can explain why EER decreases
up to L = 16 for MMSEv (see Figure 2). Keeping decreasing
L beyond this point harms speaker verification performance
due to the information loss entailed by PCA compression.

In relation to MMSEx, an internal analysis revealed that
estimating the normal embedding x̃ from E[x|y] yields target
and non-target score probability masses that are poorly sep-
arated as a result of compensated embeddings ˆ̃x where the
specific-speaker information is significantly distorted. Inter-
estingly, we also observed that the vocal effort transfer vec-
tor ṽ has a weak speaker-dependence. Therefore, estimat-
ing x̃ as ỹ − ˆ̃v according to MMSEv better preserves the
specific-speaker information contained in ỹ, which, in turn,
leads to better-separated target and non-target score probabil-
ity masses.

4.3. Embedding Compensation Performance Summary

The right part of Tables 1 and 2 compare standard MEMLIN
(i.e., without PCA) with MMSEv, MMSEx and MEMLIN

applied in the PCA domain (MEMLIN+PCA). Note that, in
these tables, the three latter techniques process, after PCA
application, L = 16-dimensional embeddings. Under the
shouted-normal scenario (Table 1), MMSEv outperforms
MEMLIN in the presence of vocal effort mismatch (i.e., in
As-As, S-S and Ns-S). Furthermore, while MEMLIN is on
par with MMSEv in Aw-Aw under the whispered-normal
scenario (Table 2), MMSEv achieves in Nw-W a 22.7% EER
relative improvement with respect to MEMLIN which actu-
ally worsens the baseline system E-T+WavLM (as in the S-S
condition).

5. CONCLUDING REMARKS

In this work, we have shown that embedding compensation
can significantly mitigate the speaker verification perfor-
mance drop caused by vocal effort mismatch when a state-of-
the-art speaker verification system integrating a cutting-edge
self-supervised pre-trained model for speech representation
is used. With the aim of improving a reference embedding
compensation method —i.e., MEMLIN—, we have proposed
an MMSE estimator of the vocal effort transfer vector that,
unlike MEMLIN, exploits the non-neutrally-phonated em-
beddings observed at test time for partial estimate calculation
and performs in a PCA domain to cope with non-neutrally-
phonated speech data scarcity. Compared with MEMLIN, the
proposed MMSE estimator has shown superior and compet-
itive EER performance when processing shouted and whis-
pered speech, respectively.
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x̃ ∈ RD : Normal embedding
ỹ ∈ RD : Non-neutral phonation embedding
ṽ ∈ RD : Vocal effort transfer vector

ỹ = x̃+ ṽ ⇒ ˆ̃x = ỹ − ˆ̃v

v = W⊤
L ṽ and y = W⊤

L ỹ, where WL ∈ RD×L, L ≪ D, is
a PCA transform matrix

p(z = (v, y) ∈ R2L) is modeled by a GMM

ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v

v̂ = E[v|y] (MMSE estimation)
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Introduction

I Speaker verification performance tends to dra-
matically drop in the presence of non-neutrally-
phonated (e.g., shouted and whispered) speech

I Previous work explored a series of minimum
mean square error (MMSE) techniques estimat-
ing normal speaker embeddings from non-
neutrally-phonated ones

I MEMLIN (Multi-Environment Model-based LInear
Normalization) provided the best performance in
terms of equal error rate (EER) when dealing with
both shouted and whispered speech

I In this work we tackle a MEMLIN’s shortcom-
ing, which is explained in the next box

System Overview

I Speaker embedding compensation is applied only
in case that the embedding comes from non-
neutrally-phonated speech

I The ECAPA-TDNN back-end is trained on an aug-
mented version of the VoxCeleb2 dataset

where p(y|k) = N
(
y
∣∣∣µ{k}

y ,Σ{k}
yy

)
. On the other hand,

given that the joint density p(z = (v,y)|k) is Gaussian, the
conditional density p(v|y, k) is also Gaussian, and, therefore,
E (v |y, k) , i.e., the partial estimates in Eq. (7), can be ex-
pressed, ∀k ∈ {1, ...,K}, as [10]

E (v |y, k) = µ{k}
v +Σ{k}

vy

(
Σ{k}

yy

)−1 (
y − µ{k}

y

)
. (9)

Finally, an estimate of the normal embedding x̃ is achieved
by means of Eq. (2) along with the application of the inverse
PCA transform to the result of Eq. (7), namely,

ˆ̃x = ỹ −WLv̂︸ ︷︷ ︸
ˆ̃v

. (10)

Note that, in order to apply this method in Section 4, both
the PCA transform matrix WL and the GMM p(z) are calcu-
lated from a training set comprising paired normal and non-
neutrally-phonated embeddings (see Subsection 3.1).

For the sake of reproducibility, a Python implementation
of this speaker embedding compensation methodology has
been made publicly available3.

3. SYSTEM OVERVIEW

Figure 1 depicts a block diagram of the proposed vocal effort-
robust speaker verification system. First, the powerful self-
supervised pre-trained model WavLM [3] is used to compute
a high-level representation of the input speech signal. Based
on a Transformer structure, WavLM extends HuBERT [11]
to masked speech prediction and de-noising to allow the
pre-trained model to perform well in a variety of speech
processing tasks including speaker verification. Second, an
ECAPA-TDNN [1] back-end extracts a speaker embedding
from the representation outputted by WavLM. Then, the
speaker embedding compensation methodology of Section 2
is applied only in the case that the embedding comes from
non-neutrally-phonated speech. To detect this case, a simple,
yet virtually flawless logistic regression-based detector [4, 5]
can be used. That being said, note that the results reported
in Section 4 are obtained by oracle non-neutrally-phonated
speech detection for the sake of simplicity. Finally, the result-
ing embedding is compared with a reference embedding x̃ref
by cosine similarity to produce a score sc.

3.1. Shouted and Whispered Speech Corpora

For experimental purposes, we consider the vocal effort
modes shouted and whispered in addition to normal. To
this end, we employ two different (i.e., disjoint) corpora:
the speech corpus informed in [12], which comprises paired

3https://ilopezes.files.wordpress.com/2023/06/
mmsev.zip
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ỹ

ˆ̃x

x̃ref

sc

Fig. 1. Block diagram of the proposed vocal effort-robust
speaker verification system. See the text for further details.

shouted-normal speech utterances in Finnish from 22 speak-
ers, and CHAINS (CHAracterizing INdividual Speakers)
[13], which contains paired whispered-normal speech ut-
terances in English from 36 speakers. Due to speech data
scarcity, all the embedding compensation experiments in
Section 4 are performed —as in [5]— by following a leave-
one-speaker-out cross-validation strategy, which serves to
split the corpora into training and test sets.

We consider the following 4 test conditions (trial lists)
under the shouted-normal scenario: As-As (all shouted
and normal utterances vs. all shouted and normal utter-
ances; 557,040 trials), Ns-Ns (normal utterances vs. nor-
mal utterances; 139,128 trials), S-S (shouted utterances vs.
shouted utterances; 139,128 trials) and Ns-S (normal utter-
ances vs. shouted utterances; 278,784 trials). Furthermore,
we similarly examine 4 equivalent test conditions under the
whispered-normal scenario, namely, Aw-Aw (2,821,498 tri-
als), Nw-Nw (705,078 trials), W-W (704,950 trials) and
Nw-W (1,411,344 trials).

For further details about these corpora, the reader is re-
ferred to [12, 13] and [5].

3.2. System Implementation Details

The used ECAPA-TDNN back-end was trained, employing
the additive angular margin (AAM) loss [14], on an aug-

I Shouted-normal speech corpus: Paired utter-
ances in Finnish from 22 speakers

I Whispered-normal speech corpus: Paired ut-
terances in English from 36 speakers (CHAINS)

I Due to speech data scarcity, experiments are
performed by following a leave-one-speaker-out
cross-validation strategy

Normal Speaker Embedding Estimation
x̃ ∈ RD : Normal embedding | ỹ ∈ RD : Non-neutrally-phonated embedding | ṽ ∈ RD : Vocal effort transfer vector

Introduction
Motivation

MMSE Estimation

ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1

P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k|y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v
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I Limitation of MEMLIN: The set of partial estimates
{

ˆ̃v{k}; k = 1, ..., K
}

is pre-computed (during an offline
training stage) and fixed

I To overcome MEMLIN’s shortcoming, we propose MMSEv:
1. We jointly model ṽ and ỹ by a K -component GMM p(z̃ = (ṽ, ỹ))
2. Estimation is carried out in a principal component analysis (PCA) domain to face data scarcity

Let WL be a D × L PCA transform matrix, where L� D = 256

v = W>L ṽ, y = W>L ỹ

p
(
z = (v, y) ∈ R2L) =

K∑
k=1

P(k )N
(

z
∣∣∣µ{k}z ,Σ{k}z

)
, µ{k}z =

(
µ
{k}
v

µ
{k}
y

)
, Σ{k}z =

(
Σ{k}vv Σ{k}vy

Σ{k}yv Σ{k}yy

)
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ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1

P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k |y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v
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1. Combination weights: P(k |y) =
p(y|k )P(k )

K∑
k′=1

p(y|k ′)P(k ′)

2. Partial estimates: E(v|y, k ) = µ
{k}
v + Σ{k}vy

(
Σ{k}yy

)−1 (
y− µ

{k}
y

)
I Both WL and p(z) are calculated from paired normal and non-neutrally-phonated embeddings

Experimental Results and Discussion
I EER (%) is the chosen speaker verification metric | Use of K = 8-component GMMs
I Embedding compensation experiments are carried out by employing E-T+WavLM as the baseline system
I MMSEx: MMSE estimator equivalent to MMSEv that directly estimates x̃ from E(x|y)
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Fig. 2. Speaker verification results in terms of EER, in percentages, as a function of the dimensionality, after PCA application,
of the embeddings processed by MEMLIN, MMSEx and MMSEv. Bar plots are shown for shouted and normal speech (top
row), as well as for whispered and normal speech (bottom row).

Table 1. Speaker verification results in terms of EER, in percentages, when considering both shouted and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
As-As 19.96 17.11 15.62 31.50 28.72 15.22
Ns-Ns 9.73 7.25 7.25 7.25 7.25 7.25

S-S 11.58 9.94 10.44 27.46 25.53 5.91
Ns-S 25.28 21.76 20.74 41.00 35.56 17.74

mented version of the VoxCeleb2 [15] dataset to extract
D = 256-dimensional speaker embeddings. Considering an
AAM loss margin of 0.2, first, WavLM —which was pre-
trained on 94k hours of unlabeled speech data— was fixed
and the ECAPA-TDNN parameters were trained for a total of
20 epochs. Second, WavLM and the ECAPA-TDNN back-
end were jointly fine tuned for 5 epochs. Finally, by following
the large margin fine-tuning strategy reported in [16], WavLM
and the ECAPA-TDNN back-end were jointly trained for 2
more epochs by considering an AAM loss margin of 0.4.
Notice that, for the sake of reproducibility, the model cor-
responding to this speaker verification system is publicly
available4. The reader is referred to [3] for further informa-
tion on this speaker verification system.

4. EXPERIMENTAL RESULTS

In this section, EER is chosen as the speaker verification per-
formance metric. Besides, as in previous work [4, 5], all the

4https://github.com/microsoft/unilm/tree/master/
wavlm

embedding compensation techniques evaluated make use of
K = 8-component GMMs.

4.1. WavLM Performance

Tables 1 and 2 show speaker verification results in terms of
EER under the shouted-normal and whispered-normal scenar-
ios, respectively. The left part of these tables compare, when
no embedding compensation is considered, the use of WavLM
speech representations (as in Section 3), E-T+WavLM, with
the use of traditional speech features, E-T+MFCC (note that
E-T stands for ECAPA-TDNN). Specifically, the speaker
verification system E-T+MFCC, which is publicly avail-
able5, employs 80-dimensional Mel-frequency cepstral coef-
ficients [17]. In line with [3], we can see from these tables
that E-T+WavLM generally outperforms E-T+MFCC. That
being said, we can also observe that there is still a large room
for improvement in the presence of vocal effort mismatch (all
conditions except Ns-Ns and Nw-Nw) that will be addressed
by embedding compensation in the next subsections. Bear

5https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb

Whispered and normal speech:
Table 2. Speaker verification results in terms of EER, in percentages, when considering both whispered and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
Aw-Aw 16.54 11.24 8.25 31.87 23.95 8.27
Nw-Nw 1.21 0.62 0.62 0.62 0.62 0.62

W-W 4.38 5.26 4.00 19.31 19.77 2.87
Nw-W 12.81 9.81 11.47 44.38 30.59 8.86

in mind that all the embedding compensation experiments in
this section are carried out by employing E-T+WavLM as the
baseline system.

4.2. Effect of PCA Dimension

Figure 2 plots the EER performance of the estimation method-
ology proposed in Section 2, MMSEv, as a function of the
PCA dimension L. For comparison, these bar plots also show
results from MEMLIN (applied in the PCA domain) as well
as from an MMSE estimator equivalent to that of Section 2
that directly estimates the normal embedding x̃ from E[x|y],
MMSEx. From this figure, we can see that MEMLIN’s per-
formance tends to drop when decreasing L as a result of the
information loss caused by PCA compression, which can be
particularly harmful when the estimation relies on a small set
of pre-computed and fixed partial estimates.

On the other hand, MMSEv involves the computation of
2L × 2L covariance matrices, Σ{k}

z , under a data scarcity
scenario. Given our small sample size, reducing L helps to
achieve better-conditioned covariance matrices to be used in
Eqs. (8) and (9). This, together with the fact that MMSEv ex-
ploits the observed non-neutrally-phonated embedding ỹ for
partial estimate calculation, can explain why EER decreases
up to L = 16 for MMSEv (see Figure 2). Keeping decreasing
L beyond this point harms speaker verification performance
due to the information loss entailed by PCA compression.

In relation to MMSEx, an internal analysis revealed that
estimating the normal embedding x̃ from E[x|y] yields target
and non-target score probability masses that are poorly sep-
arated as a result of compensated embeddings ˆ̃x where the
specific-speaker information is significantly distorted. Inter-
estingly, we also observed that the vocal effort transfer vec-
tor ṽ has a weak speaker-dependence. Therefore, estimat-
ing x̃ as ỹ − ˆ̃v according to MMSEv better preserves the
specific-speaker information contained in ỹ, which, in turn,
leads to better-separated target and non-target score probabil-
ity masses.

4.3. Embedding Compensation Performance Summary

The right part of Tables 1 and 2 compare standard MEMLIN
(i.e., without PCA) with MMSEv, MMSEx and MEMLIN

applied in the PCA domain (MEMLIN+PCA). Note that, in
these tables, the three latter techniques process, after PCA
application, L = 16-dimensional embeddings. Under the
shouted-normal scenario (Table 1), MMSEv outperforms
MEMLIN in the presence of vocal effort mismatch (i.e., in
As-As, S-S and Ns-S). Furthermore, while MEMLIN is on
par with MMSEv in Aw-Aw under the whispered-normal
scenario (Table 2), MMSEv achieves in Nw-W a 22.7% EER
relative improvement with respect to MEMLIN which actu-
ally worsens the baseline system E-T+WavLM (as in the S-S
condition).

5. CONCLUDING REMARKS

In this work, we have shown that embedding compensation
can significantly mitigate the speaker verification perfor-
mance drop caused by vocal effort mismatch when a state-of-
the-art speaker verification system integrating a cutting-edge
self-supervised pre-trained model for speech representation
is used. With the aim of improving a reference embedding
compensation method —i.e., MEMLIN—, we have proposed
an MMSE estimator of the vocal effort transfer vector that,
unlike MEMLIN, exploits the non-neutrally-phonated em-
beddings observed at test time for partial estimate calculation
and performs in a PCA domain to cope with non-neutrally-
phonated speech data scarcity. Compared with MEMLIN, the
proposed MMSE estimator has shown superior and compet-
itive EER performance when processing shouted and whis-
pered speech, respectively.
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Introduction

I Speaker verification performance tends to dra-
matically drop in the presence of non-neutrally-
phonated (e.g., shouted and whispered) speech

I Previous work explored a series of minimum
mean square error (MMSE) techniques estimat-
ing normal speaker embeddings from non-
neutrally-phonated ones

I MEMLIN (Multi-Environment Model-based LInear
Normalization) provided the best performance in
terms of equal error rate (EER) when dealing with
both shouted and whispered speech

I In this work we tackle a MEMLIN’s shortcom-
ing, which is explained in the next box

System Overview

I Speaker embedding compensation is applied only
in case that the embedding comes from non-
neutrally-phonated speech

I The ECAPA-TDNN back-end is trained on an aug-
mented version of the VoxCeleb2 dataset

where p(y|k) = N
(
y
∣∣∣µ{k}

y ,Σ{k}
yy

)
. On the other hand,

given that the joint density p(z = (v,y)|k) is Gaussian, the
conditional density p(v|y, k) is also Gaussian, and, therefore,
E (v |y, k) , i.e., the partial estimates in Eq. (7), can be ex-
pressed, ∀k ∈ {1, ...,K}, as [10]

E (v |y, k) = µ{k}
v +Σ{k}

vy

(
Σ{k}

yy

)−1 (
y − µ{k}

y

)
. (9)

Finally, an estimate of the normal embedding x̃ is achieved
by means of Eq. (2) along with the application of the inverse
PCA transform to the result of Eq. (7), namely,

ˆ̃x = ỹ −WLv̂︸ ︷︷ ︸
ˆ̃v

. (10)

Note that, in order to apply this method in Section 4, both
the PCA transform matrix WL and the GMM p(z) are calcu-
lated from a training set comprising paired normal and non-
neutrally-phonated embeddings (see Subsection 3.1).

For the sake of reproducibility, a Python implementation
of this speaker embedding compensation methodology has
been made publicly available3.

3. SYSTEM OVERVIEW

Figure 1 depicts a block diagram of the proposed vocal effort-
robust speaker verification system. First, the powerful self-
supervised pre-trained model WavLM [3] is used to compute
a high-level representation of the input speech signal. Based
on a Transformer structure, WavLM extends HuBERT [11]
to masked speech prediction and de-noising to allow the
pre-trained model to perform well in a variety of speech
processing tasks including speaker verification. Second, an
ECAPA-TDNN [1] back-end extracts a speaker embedding
from the representation outputted by WavLM. Then, the
speaker embedding compensation methodology of Section 2
is applied only in the case that the embedding comes from
non-neutrally-phonated speech. To detect this case, a simple,
yet virtually flawless logistic regression-based detector [4, 5]
can be used. That being said, note that the results reported
in Section 4 are obtained by oracle non-neutrally-phonated
speech detection for the sake of simplicity. Finally, the result-
ing embedding is compared with a reference embedding x̃ref
by cosine similarity to produce a score sc.

3.1. Shouted and Whispered Speech Corpora

For experimental purposes, we consider the vocal effort
modes shouted and whispered in addition to normal. To
this end, we employ two different (i.e., disjoint) corpora:
the speech corpus informed in [12], which comprises paired

3https://ilopezes.files.wordpress.com/2023/06/
mmsev.zip
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Fig. 1. Block diagram of the proposed vocal effort-robust
speaker verification system. See the text for further details.

shouted-normal speech utterances in Finnish from 22 speak-
ers, and CHAINS (CHAracterizing INdividual Speakers)
[13], which contains paired whispered-normal speech ut-
terances in English from 36 speakers. Due to speech data
scarcity, all the embedding compensation experiments in
Section 4 are performed —as in [5]— by following a leave-
one-speaker-out cross-validation strategy, which serves to
split the corpora into training and test sets.

We consider the following 4 test conditions (trial lists)
under the shouted-normal scenario: As-As (all shouted
and normal utterances vs. all shouted and normal utter-
ances; 557,040 trials), Ns-Ns (normal utterances vs. nor-
mal utterances; 139,128 trials), S-S (shouted utterances vs.
shouted utterances; 139,128 trials) and Ns-S (normal utter-
ances vs. shouted utterances; 278,784 trials). Furthermore,
we similarly examine 4 equivalent test conditions under the
whispered-normal scenario, namely, Aw-Aw (2,821,498 tri-
als), Nw-Nw (705,078 trials), W-W (704,950 trials) and
Nw-W (1,411,344 trials).

For further details about these corpora, the reader is re-
ferred to [12, 13] and [5].

3.2. System Implementation Details

The used ECAPA-TDNN back-end was trained, employing
the additive angular margin (AAM) loss [14], on an aug-

I Shouted-normal speech corpus: Paired utter-
ances in Finnish from 22 speakers

I Whispered-normal speech corpus: Paired ut-
terances in English from 36 speakers (CHAINS)

I Due to speech data scarcity, experiments are
performed by following a leave-one-speaker-out
cross-validation strategy
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x̃ ∈ RD : Normal embedding | ỹ ∈ RD : Non-neutrally-phonated embedding | ṽ ∈ RD : Vocal effort transfer vector
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K∑

k=1
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I Limitation of MEMLIN: The set of partial estimates
{

ˆ̃v{k}; k = 1, ..., K
}

is pre-computed (during an offline
training stage) and fixed

I To overcome MEMLIN’s shortcoming, we propose MMSEv:
1. We jointly model ṽ and ỹ by a K -component GMM p(z̃ = (ṽ, ỹ))
2. Estimation is carried out in a principal component analysis (PCA) domain to face data scarcity

Let WL be a D × L PCA transform matrix, where L� D = 256

v = W>L ṽ, y = W>L ỹ

p
(
z = (v, y) ∈ R2L) =

K∑
k=1

P(k )N
(

z
∣∣∣µ{k}z ,Σ{k}z

)
, µ{k}z =

(
µ
{k}
v

µ
{k}
y

)
, Σ{k}z =

(
Σ{k}vv Σ{k}vy

Σ{k}yv Σ{k}yy

)

Introduction
Motivation

MMSE Estimation

ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1

P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k |y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v
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1. Combination weights: P(k |y) =
p(y|k )P(k )

K∑
k′=1

p(y|k ′)P(k ′)

2. Partial estimates: E(v|y, k ) = µ
{k}
v + Σ{k}vy

(
Σ{k}yy

)−1 (
y− µ

{k}
y

)
I Both WL and p(z) are calculated from paired normal and non-neutrally-phonated embeddings

Experimental Results and Discussion
I EER (%) is the chosen speaker verification metric | Use of K = 8-component GMMs
I Embedding compensation experiments are carried out by employing E-T+WavLM as the baseline system
I MMSEx: MMSE estimator equivalent to MMSEv that directly estimates x̃ from E(x|y)
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Fig. 2. Speaker verification results in terms of EER, in percentages, as a function of the dimensionality, after PCA application,
of the embeddings processed by MEMLIN, MMSEx and MMSEv. Bar plots are shown for shouted and normal speech (top
row), as well as for whispered and normal speech (bottom row).

Table 1. Speaker verification results in terms of EER, in percentages, when considering both shouted and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
As-As 19.96 17.11 15.62 31.50 28.72 15.22
Ns-Ns 9.73 7.25 7.25 7.25 7.25 7.25

S-S 11.58 9.94 10.44 27.46 25.53 5.91
Ns-S 25.28 21.76 20.74 41.00 35.56 17.74

mented version of the VoxCeleb2 [15] dataset to extract
D = 256-dimensional speaker embeddings. Considering an
AAM loss margin of 0.2, first, WavLM —which was pre-
trained on 94k hours of unlabeled speech data— was fixed
and the ECAPA-TDNN parameters were trained for a total of
20 epochs. Second, WavLM and the ECAPA-TDNN back-
end were jointly fine tuned for 5 epochs. Finally, by following
the large margin fine-tuning strategy reported in [16], WavLM
and the ECAPA-TDNN back-end were jointly trained for 2
more epochs by considering an AAM loss margin of 0.4.
Notice that, for the sake of reproducibility, the model cor-
responding to this speaker verification system is publicly
available4. The reader is referred to [3] for further informa-
tion on this speaker verification system.

4. EXPERIMENTAL RESULTS

In this section, EER is chosen as the speaker verification per-
formance metric. Besides, as in previous work [4, 5], all the

4https://github.com/microsoft/unilm/tree/master/
wavlm

embedding compensation techniques evaluated make use of
K = 8-component GMMs.

4.1. WavLM Performance

Tables 1 and 2 show speaker verification results in terms of
EER under the shouted-normal and whispered-normal scenar-
ios, respectively. The left part of these tables compare, when
no embedding compensation is considered, the use of WavLM
speech representations (as in Section 3), E-T+WavLM, with
the use of traditional speech features, E-T+MFCC (note that
E-T stands for ECAPA-TDNN). Specifically, the speaker
verification system E-T+MFCC, which is publicly avail-
able5, employs 80-dimensional Mel-frequency cepstral coef-
ficients [17]. In line with [3], we can see from these tables
that E-T+WavLM generally outperforms E-T+MFCC. That
being said, we can also observe that there is still a large room
for improvement in the presence of vocal effort mismatch (all
conditions except Ns-Ns and Nw-Nw) that will be addressed
by embedding compensation in the next subsections. Bear

5https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb

Whispered and normal speech:
Table 2. Speaker verification results in terms of EER, in percentages, when considering both whispered and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
Aw-Aw 16.54 11.24 8.25 31.87 23.95 8.27
Nw-Nw 1.21 0.62 0.62 0.62 0.62 0.62

W-W 4.38 5.26 4.00 19.31 19.77 2.87
Nw-W 12.81 9.81 11.47 44.38 30.59 8.86

in mind that all the embedding compensation experiments in
this section are carried out by employing E-T+WavLM as the
baseline system.

4.2. Effect of PCA Dimension

Figure 2 plots the EER performance of the estimation method-
ology proposed in Section 2, MMSEv, as a function of the
PCA dimension L. For comparison, these bar plots also show
results from MEMLIN (applied in the PCA domain) as well
as from an MMSE estimator equivalent to that of Section 2
that directly estimates the normal embedding x̃ from E[x|y],
MMSEx. From this figure, we can see that MEMLIN’s per-
formance tends to drop when decreasing L as a result of the
information loss caused by PCA compression, which can be
particularly harmful when the estimation relies on a small set
of pre-computed and fixed partial estimates.

On the other hand, MMSEv involves the computation of
2L × 2L covariance matrices, Σ{k}

z , under a data scarcity
scenario. Given our small sample size, reducing L helps to
achieve better-conditioned covariance matrices to be used in
Eqs. (8) and (9). This, together with the fact that MMSEv ex-
ploits the observed non-neutrally-phonated embedding ỹ for
partial estimate calculation, can explain why EER decreases
up to L = 16 for MMSEv (see Figure 2). Keeping decreasing
L beyond this point harms speaker verification performance
due to the information loss entailed by PCA compression.

In relation to MMSEx, an internal analysis revealed that
estimating the normal embedding x̃ from E[x|y] yields target
and non-target score probability masses that are poorly sep-
arated as a result of compensated embeddings ˆ̃x where the
specific-speaker information is significantly distorted. Inter-
estingly, we also observed that the vocal effort transfer vec-
tor ṽ has a weak speaker-dependence. Therefore, estimat-
ing x̃ as ỹ − ˆ̃v according to MMSEv better preserves the
specific-speaker information contained in ỹ, which, in turn,
leads to better-separated target and non-target score probabil-
ity masses.

4.3. Embedding Compensation Performance Summary

The right part of Tables 1 and 2 compare standard MEMLIN
(i.e., without PCA) with MMSEv, MMSEx and MEMLIN

applied in the PCA domain (MEMLIN+PCA). Note that, in
these tables, the three latter techniques process, after PCA
application, L = 16-dimensional embeddings. Under the
shouted-normal scenario (Table 1), MMSEv outperforms
MEMLIN in the presence of vocal effort mismatch (i.e., in
As-As, S-S and Ns-S). Furthermore, while MEMLIN is on
par with MMSEv in Aw-Aw under the whispered-normal
scenario (Table 2), MMSEv achieves in Nw-W a 22.7% EER
relative improvement with respect to MEMLIN which actu-
ally worsens the baseline system E-T+WavLM (as in the S-S
condition).

5. CONCLUDING REMARKS

In this work, we have shown that embedding compensation
can significantly mitigate the speaker verification perfor-
mance drop caused by vocal effort mismatch when a state-of-
the-art speaker verification system integrating a cutting-edge
self-supervised pre-trained model for speech representation
is used. With the aim of improving a reference embedding
compensation method —i.e., MEMLIN—, we have proposed
an MMSE estimator of the vocal effort transfer vector that,
unlike MEMLIN, exploits the non-neutrally-phonated em-
beddings observed at test time for partial estimate calculation
and performs in a PCA domain to cope with non-neutrally-
phonated speech data scarcity. Compared with MEMLIN, the
proposed MMSE estimator has shown superior and compet-
itive EER performance when processing shouted and whis-
pered speech, respectively.
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Overview

1 Introduction to Speaker Verification

2 Implementation of a Speaker Verification System
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Implementation of a Speaker Verification System

Mel Spectrogram
Calculation

ECAPA-TDNN Frame
Encoder

Attentive Statistics Pooling

Fully-Connected Layer Cosine
Similarity

xref

y
ECAPA-TDNN embedding extractor

Sc
Implementation of a speaker
verification system:

Mel spectrogram computation

Extraction of embeddings
y, xref ∈ R192 based on an
ECAPA-TDNN

Comparison of embeddings by
means of cosine similarity (if
Sc ≥ τ , y and xref come from the
same speaker)

https://huggingface.co/yangwang825/

ecapa-tdnn-vox2
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Implementation of a Speaker Verification System

Installing Anaconda and Spyder:

1 Go to https://www.anaconda.com/download,
download, and install Anaconda Distribution

2 Run anaconda-navigator

3 In Environments, create the work environment
spkVerif

4 Select the new environment, see the Not Installed
packages, and tick off and install Spyder

5 In Home, select the environment spkVerif and
launch Spyder

6 In Spyder, go to Tools→Preferences→iPython
Console→Graphics→Backend and choose
Automatic as the display mode for the graphics
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Implementation of a Speaker Verification System

We need to install some work libraries:

PyTorch: Deep learning model construction
SpeechBrain: Development of speech technology,
audio technology, etc.
NumPy: Scientific computing
Sounddevice: Sound recording and playback
Matplotlib: Generation of visualizations

1 Run Anaconda Prompt and activate your work
environment by the command conda activate

spkVerif

2 Install the above modules by means of pip: pip
install torch speechbrain numpy

sounddevice matplotlib
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Implementation of a Speaker Verification System

We create a Python script named spkverif lib.py

We import the modules we will need:

1 

 

PRÁCTICA DÍA 2: INTRODUCCIÓN A LA VERIFICACIÓN DE HA-

BLANTE CON PYTORCH 
 

Iván López Espejo, Dpto. de TSTC, UGR 

Introducción a las Tecnologías del Habla 

 

import torch 
from speechbrain.pretrained.interfaces import Pretrained 
import numpy as np 

 

class EmbeddingExtractor(Pretrained): 
 
    # Módulos necesarios. 
    MODULES_NEEDED = [ 
        "compute_features", 
        "mean_var_norm", 
        "embedding_model" 
    ] 
 
    def __init__(self, *args, **kwargs): 
        super().__init__(*args, **kwargs) 
         
    # Método que realiza la extracción de embeddings en sí. 
    # wav: Muestras de audio. 
    def embedding_extractor(self, wav): 
         
        wav = torch.tensor(wav)  # Convertimos el array de numpy en un tensor. 
         
        wav = wav.unsqueeze(0)  # Añadimos una dimensión por la izquierda al segmento so-
noro. 
 
        # Extracción de características Mel. 
        feats = self.mods.compute_features(wav) 
        feats = self.mods.mean_var_norm(feats, torch.ones(1))  # Normalización de media y va-
rianza. 
         
        # Extracción del embedding a partir de las características Mel. 
        embedding = self.mods.embedding_model(feats, torch.ones(1)) 
         
        # Convertimos el embedding en un array de numpy. 
        embedding = embedding.numpy() 
        embedding = embedding[0,0,:] 
 
        return embedding 

 

def cosineDist(x, y): 
     
    # Calculamos las normas de los vectores. 
    nx = np.sqrt(np.sum(x**2)) 
    ny = np.sqrt(np.sum(y**2)) 
     
    # Normalizamos los vectores. 
    x /= nx 
    y /= ny 
     
    # Calculamos la similitud coseno. 
    Sc = np.dot(x,y) 
     
    return Sc 
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Implementation of a Speaker Verification System

We create the class that defines our embedding extractor based on
Mel spectra:

1 

 

INTRODUCTION TO SPEAKER VERIFICATION WITH PYTORCH 
 

Iván López Espejo, Dept. of STTC, UGR 

Introduction to Voice Identification 

 

import torch 
from speechbrain.pretrained.interfaces import Pretrained 
import numpy as np 

 

class EmbeddingExtractor(Pretrained): 
 
    # Modules needed. 
    MODULES_NEEDED = [ 
        "compute_features", 
        "mean_var_norm", 
        "embedding_model" 
    ] 
 
    def __init__(self, *args, **kwargs): 
        super().__init__(*args, **kwargs) 
         
    # Method that performs the embedding extraction itself. 
    # wav: Audio samples. 
    def embedding_extractor(self, wav): 
         
        wav = torch.tensor(wav)  # We convert the NumPy array into a tensor. 
         
        wav = wav.unsqueeze(0)  # We add a dimension to the left of the sound segment. 
 
        # Mel feature extraction. 
        feats = self.mods.compute_features(wav) 
        feats = self.mods.mean_var_norm(feats, torch.ones(1))  # Mean and variance normaliza-
tion. 
         
        # Embedding extraction from Mel features. 
        embedding = self.mods.embedding_model(feats, torch.ones(1)) 
         
        # We convert the embedding into a NumPy array. 
        embedding = embedding.numpy() 
        embedding = embedding[0,0,:] 
 
        return embedding 

 

def cosineDist(x, y): 
     
    # We calculate de vector norms. 
    nx = np.sqrt(np.sum(x**2)) 
    ny = np.sqrt(np.sum(y**2)) 
     
    # We normalize the vectors. 
    x /= nx 
    y /= ny 
     
    # We calculate cosine similarity. 
    Sc = np.dot(x,y) 
     
    return Sc 
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Implementation of a Speaker Verification System

We include a method to calculate the cosine similarity to determine
whether or not two given embeddings come from the same speaker:

1 

 

INTRODUCTION TO SPEAKER VERIFICATION WITH PYTORCH 
 

Iván López Espejo, Dept. of STTC, UGR 

Introduction to Voice Identification 

 

import torch 
from speechbrain.pretrained.interfaces import Pretrained 
import numpy as np 

 

class EmbeddingExtractor(Pretrained): 
 
    # Modules needed. 
    MODULES_NEEDED = [ 
        "compute_features", 
        "mean_var_norm", 
        "embedding_model" 
    ] 
 
    def __init__(self, *args, **kwargs): 
        super().__init__(*args, **kwargs) 
         
    # Method that performs the embedding extraction itself. 
    # wav: Audio samples. 
    def embedding_extractor(self, wav): 
         
        wav = torch.tensor(wav)  # We convert the NumPy array into a tensor. 
         
        wav = wav.unsqueeze(0)  # We add a dimension to the left of the sound segment. 
 
        # Mel feature extraction. 
        feats = self.mods.compute_features(wav) 
        feats = self.mods.mean_var_norm(feats, torch.ones(1))  # Mean and variance normaliza-
tion. 
         
        # Embedding extraction from Mel features. 
        embedding = self.mods.embedding_model(feats, torch.ones(1)) 
         
        # We convert the embedding into a NumPy array. 
        embedding = embedding.numpy() 
        embedding = embedding[0,0,:] 
 
        return embedding 

 

def cosineDist(x, y): 
     
    # We calculate the vector norms. 
    nx = np.sqrt(np.sum(x**2)) 
    ny = np.sqrt(np.sum(y**2)) 
     
    # We normalize the vectors. 
    x /= nx 
    y /= ny 
     
    # We calculate cosine similarity. 
    Sc = np.dot(x,y) 
     
    return Sc 
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Implementation of a Speaker Verification System

We will implement a very basic code with which we can record two
voice samples and determine whether or not they come from
the same speaker

We create a new Python script named Demo Live.py and import the
modules we will require:

2 

 

import spkverif_lib 
import sounddevice as sd 
import matplotlib.pyplot as plt 
import numpy as np 

 

fs = 16000  # Frecuencia de muestreo de trabajo en Hz: 16 kHz. 
seconds = 5  # Duración en segundos de las muestras sonoras. 
# --------------------------------------------------------------------------- # 
input('Presiona una tecla para comenzar a grabar la muestra de referencia...') 
print('Grabando...') 
samp1 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Grabación de la muestra de referencia concluida!') 
# --------------------------------------------------------------------------- # 
input('Presiona una tecla para comenzar a grabar la muestra de comparación...') 
print('Grabando...') 
samp2 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Grabación de la muestra de comparación concluida!') 
# --------------------------------------------------------------------------- # 
plt.figure() 
plt.plot(samp1) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('x(n)') 
plt.title('Muestra de referencia') 
plt.figure() 
plt.plot(samp2) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('y(n)') 
plt.title('Muestra de comparación') 

 

# Instanciamos el extractor de embeddings. 
emb_extractor = spkverif_lib.EmbeddingExtractor.from_hparams( 
    source='yangwang825/ecapa-tdnn-vox2' 
) 
embedding_1 = emb_extractor.embedding_extractor(samp1[:,0])  # Embedding de referencia. 
embedding_2 = emb_extractor.embedding_extractor(samp2[:,0])  # Embedding de compara-
ción. 
plt.figure() 
plt.plot(embedding_1) 
plt.plot(embedding_2) 
plt.legend(['Embedding de referencia', 'Embedding de comparación']) 
plt.xlabel('k') 
plt.ylabel('e(k)') 
plt.grid(True) 
plt.title('Embeddings (representaciones de hablante)') 
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Implementation of a Speaker Verification System

We record two voice samples with a duration of 5 seconds each at
a 16 kHz sampling rate and plot them:

2 

 

import spkverif_lib 
import sounddevice as sd 
import matplotlib.pyplot as plt 
import numpy as np 

 

fs = 16000  # Working sample rate in Hz: 16 kHz. 
seconds = 5  # Duration of sound samples in seconds. 
# --------------------------------------------------------------------------- # 
input('Press any key to start recording the reference sample...') 
print('Recording...') 
samp1 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('Reference sample recording complete!') 
# --------------------------------------------------------------------------- # 
input('Press any key to start recording the comparison sample...') 
print('Recording...') 
samp2 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('Comparison sample recording complete!') 
# --------------------------------------------------------------------------- # 
plt.figure() 
plt.plot(samp1) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('x(n)') 
plt.title('Reference sample') 
plt.figure() 
plt.plot(samp2) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('y(n)') 
plt.title('Comparison sample') 

 

# We instantiate the embedding extractor. 
emb_extractor = spkverif_lib.EmbeddingExtractor.from_hparams( 
    source='yangwang825/ecapa-tdnn-vox2' 
) 
embedding_1 = emb_extractor.embedding_extractor(samp1[:,0])  # Reference embedding. 
embedding_2 = emb_extractor.embedding_extractor(samp2[:,0])  # Comparison embedding. 
plt.figure() 
plt.plot(embedding_1) 
plt.plot(embedding_2) 
plt.legend(['Reference embedding', 'Comparison embedding']) 
plt.xlabel('k') 
plt.ylabel('e(k)') 
plt.grid(True) 
plt.title('Embeddings (speaker representations)') 
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Implementation of a Speaker Verification System

Example of two voice samples recorded by me using the present
implementation

From the left sample we will extract xref , and, from the right one, y:
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n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

x(
n)

Reference sample
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Implementation of a Speaker Verification System

We instantiate, from a repository, our embedding extractor based on an
ECAPA-TDNN model pre-trained using SpeechBrain

We extract the embeddings xref and y, and plot them:

2 

 

import spkverif_lib 
import sounddevice as sd 
import matplotlib.pyplot as plt 
import numpy as np 

 

fs = 16000  # Working sample rate in Hz: 16 kHz. 
seconds = 5  # Duration of sound samples in seconds. 
# --------------------------------------------------------------------------- # 
input('Press any key to start recording the reference sample...') 
print('Recording...') 
samp1 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('Reference sample recording complete!') 
# --------------------------------------------------------------------------- # 
input('Press any key to start recording the comparison sample...') 
print('Recording...') 
samp2 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('Comparison sample recording complete!') 
# --------------------------------------------------------------------------- # 
plt.figure() 
plt.plot(samp1) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('x(n)') 
plt.title('Reference sample') 
plt.figure() 
plt.plot(samp2) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('y(n)') 
plt.title('Comparison sample') 

 

# We instantiate the embedding extractor. 
emb_extractor = spkverif_lib.EmbeddingExtractor.from_hparams( 
    source='yangwang825/ecapa-tdnn-vox2' 
) 
embedding_1 = emb_extractor.embedding_extractor(samp1[:,0])  # Reference embedding. 
embedding_2 = emb_extractor.embedding_extractor(samp2[:,0])  # Comparison embedding. 
plt.figure() 
plt.plot(embedding_1) 
plt.plot(embedding_2) 
plt.legend(['Reference embedding', 'Comparison embedding']) 
plt.xlabel('k') 
plt.ylabel('e(k)') 
plt.grid(True) 
plt.title('Embeddings (speaker representations)') 
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Implementation of a Speaker Verification System

Next, we see the reference embedding, xref , and comparison
embedding, y, corresponding to our previous example:

0 25 50 75 100 125 150 175 200
k

30

20

10

0
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30
e(

k)
Embeddings (speaker representations)

Reference embedding
Comparison embedding

Their similarity is evident, consistent with the fact that they come
from voice samples from the same person
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Implementation of a Speaker Verification System

We calculate the cosine similarity Sc between xref and y; if Sc ≥ τ = 0.5,
we state that the two voice samples come from the same speaker

We plot the two embeddings in the polar coordinate space

3 

 

 

sc = spkverif_lib.cosineDist(embedding_1, embedding_2)  # Cosine similarity. 
thr = 0.5  # Decision threshold. 
if sc >= thr: 
    print('The two samples come from the same speaker') 
else: 
    print('The samples come from different speakers') 
print('Cosine similarity: ' + str(sc)) 
# We represent the result in terms of the angle between the reference and 
# comparison embeddings. 
angle_ref = 0  # Reference. 
angle_com = np.acos(sc)  # Comparison (arc-cosine of the cosine similarity). 
arrow_length = 1.0  # Embedding length. 
fig, ax = plt.subplots(subplot_kw={'projection': 'polar'}) 
# We only show the semicircle of interest. 
ax.set_thetamin(0) 
ax.set_thetamax(180) 
# Reference embedding. 
ax.annotate("",  # No-text annotation. 
            xy=(angle_ref, arrow_length),  # Tip of the embedding. 
            xytext=(0, 0),  # Origin of the embedding. 
            arrowprops=dict(facecolor='blue', edgecolor='blue', width=2, headwidth=8, head-
length=10, shrink=0), 
            annotation_clip=False)  # Prevent the arrow from being clipped. 
# Comparison embedding. 
ax.annotate("", 
            xy=(angle_com, arrow_length), 
            xytext=(0, 0), 
            arrowprops=dict(facecolor='orange', edgecolor='orange', width=1, headwidth=6, 
headlength=10, shrink=0), 
            annotation_clip=False) 
ax.plot([0, np.acos(thr)], [0, arrow_length], linestyle='--', color='gray')  # We also represent 
the decision threshold. 
ax.set_title('Embedding comparison') 
ax.grid(True) 
plt.show() 
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Embeddings that form an angle θ ≤ θτ = arccos(τ = 0.5) = 60◦ (decision
threshold≡dashed line) come from the same speaker

The comparison embedding y forms an angle θ = arccos(Sc) with the
reference embedding xref
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Embedding comparison

It is correctly determined that the two voice samples in the example
come from the same speaker
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