

Forensic Acoustics: An Introduction to Voice Identification

Iván López-Espejo, PhD

EAA SUMMER SCHOOL

Applications of Sound Signal Processing in Society and Digital Industry

iloes@ugr.es

Saturday 21st June, 2025

FORUM ACUSTICUM
EURONOISE 2025

UNIVERSIDAD
DE GRANADA

- 1 Introduction to Speaker Verification
- 2 Implementation of a Speaker Verification System

Overview

1 Introduction to Speaker Verification

2 Implementation of a Speaker Verification System

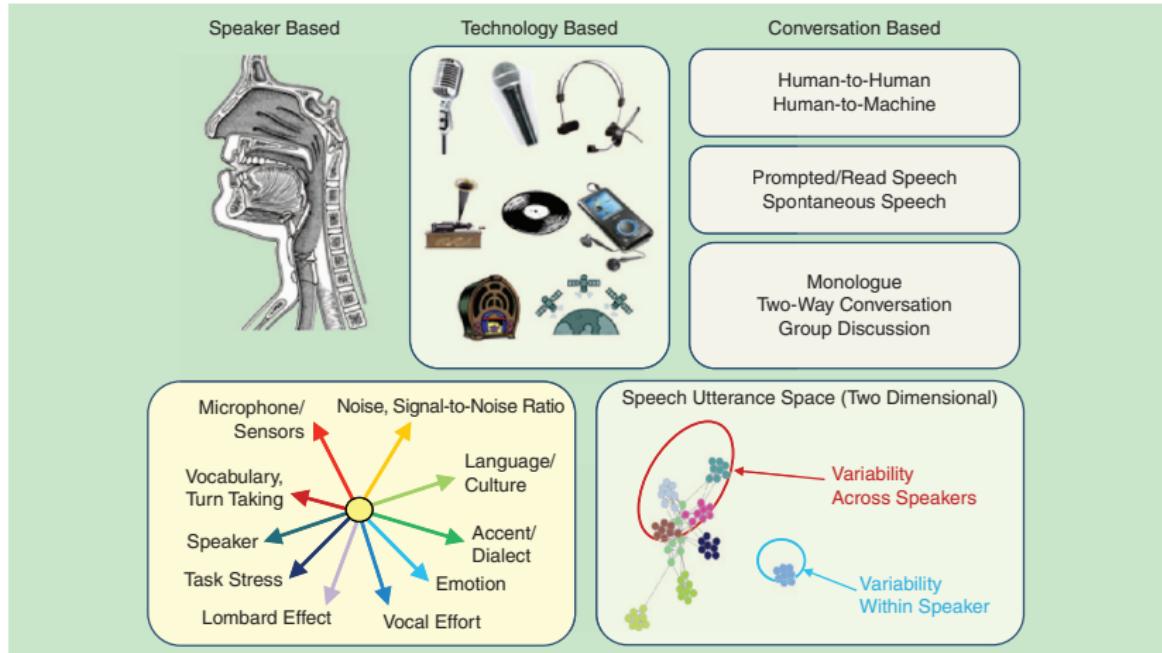
Introduction to Speaker Verification

- **Speaker recognition** systems have become an important means of verifying identity in e-commerce applications, forensic science, law enforcement, etc.
- Two main approaches in **voice biometrics**:
 - ① **Identification/Recognition** (1 : N): **Closed** scenario *vs.* **open** scenario
 - ② **Verification** (1 : 1)
- **Text-independence** *vs.* **text-dependence**

[SoftReport] The Software Report, "Voice Recognition Technology Holds A Wealth Of Benefits For SaaS,"
<https://www.thesoftwarereport.com/voice-recognition-technology-holds-a-wealth-of-benefits-for-saas/>

Introduction to Speaker Verification

- Sources of **variability** in the context of speaker recognition:



[Hansen15] J. H. L. Hansen and T. Hasan, "Speaker Recognition by Machines and Humans: A tutorial review," IEEE Signal Processing Magazine, 2015

Introduction to Speaker Verification

- **Recursive enrollment:** We update a speaker's reference sample after a successful verification to strengthen the system against **intra-speaker variability**

- 1 Aging
- 2 Disease
- 3 Mood
- 4 ...

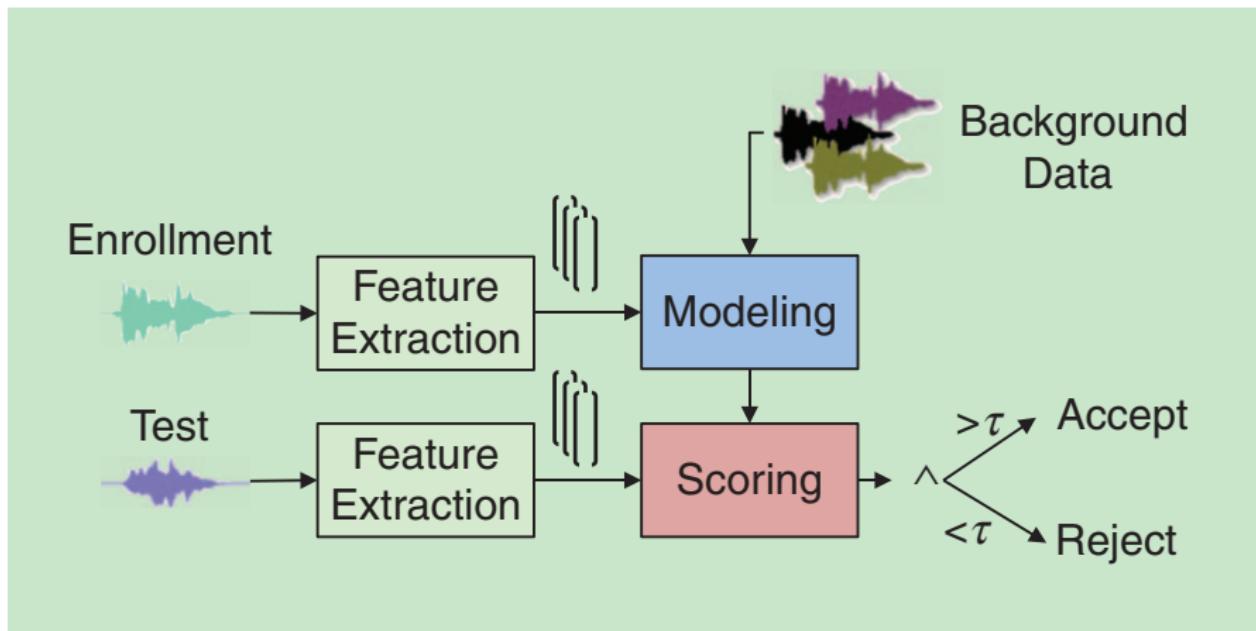
- **If and only if the verification was successful!** (i.e., $s' = s$):

$$\mathbf{e}_t^{(s)} = \lambda(\sigma(x), \Psi, \gamma) \mathbf{e}_{t-1}^{(s)} + (1 - \lambda(\sigma(x), \Psi, \gamma)) \mathbf{v}_t^{(s')}$$

- $\mathbf{v}_t^{(s')}$: New verification sample from speaker s'
- $\mathbf{e}_{t-1}^{(s)}$: Previous reference sample from speaker s
- $\mathbf{e}_t^{(s)}$: Updated reference sample from speaker s
- $\lambda(\sigma(x), \Psi, \gamma)$: Remembering factor dependent on the calibrated score $\sigma(x)$

Introduction to Speaker Verification

- Block diagram of a **basic speaker verification system**:



[Hansen15] J. H. L. Hansen and T. Hasan, "Speaker Recognition by Machines and Humans: A tutorial review," IEEE Signal Processing Magazine, 2015

Databases

- **VoxCeleb1**: More than 100k utterances from 1,251 celebrities scraped from YouTube
- **VoxCeleb2**: More than 1M utterances from 6,112 celebrities scraped from YouTube

[Nagrani17] A. Nagrani *et al.*, "VoxCeleb: a large-scale speaker identification dataset," in Proc. of Interspeech 2017

[Chung18] J. S. Chung *et al.*, "VoxCeleb2: Deep Speaker Recognition," in Proc. of Interspeech 2018

- **NIST SRE (Speaker Recognition Evaluation)**: From 1996 to date
- **NIST SRE 2018**

<https://sre.nist.gov/>

ROC and DET Curves

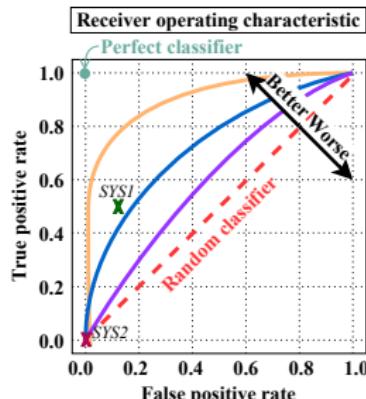
- Probability that a positive sample is correctly detected as such:

$$\text{True Positive Rate (TPR)} = \text{Recall} \equiv \frac{TP}{TP + FN}$$

- Probability that a negative sample is incorrectly classified as positive:

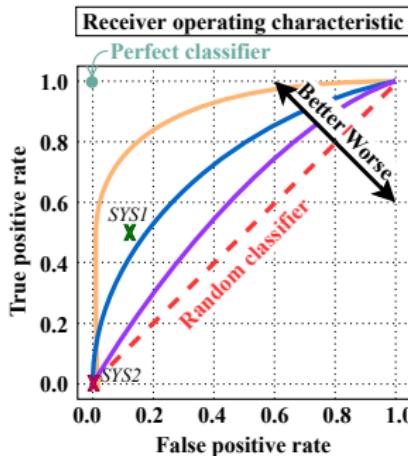
$$\text{False Positive Rate (FPR)} \equiv \frac{FP}{FP + TN}$$

- The **receiver operating characteristic (ROC)** curve is obtained by sweeping the sensitivity/decision threshold:



ROC and DET Curves

- **Area under the ROC curve ($AUC_{ROC} \in [0, 1]$):** Probability that a classifier will rank a randomly chosen positive sample higher than a randomly chosen negative sample



Ground truth NK NK KW NK NK KW NK NK NK NK NK

SYS1	NK	NK	KW	NK	NK	NK	KW	NK	NK	NK	NK
------	----	----	----	----	----	----	----	----	----	----	----

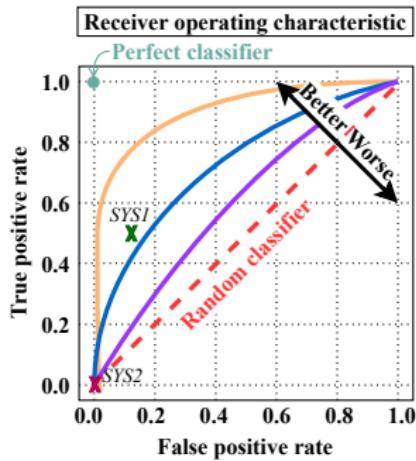
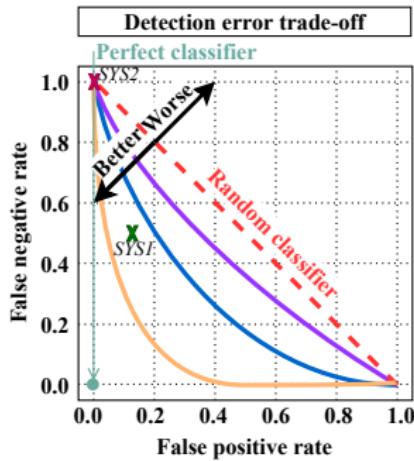
SYS2	NK										
------	----	----	----	----	----	----	----	----	----	----	----

ROC and DET Curves

- Given that

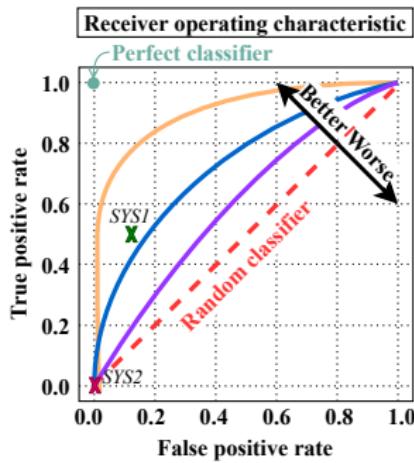
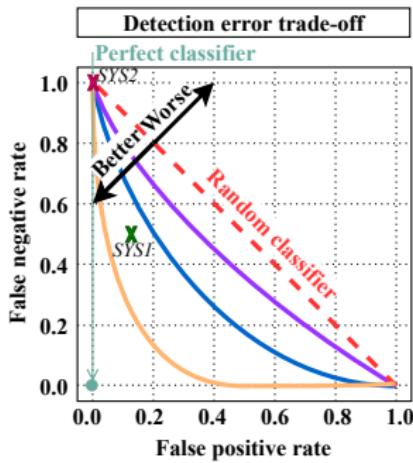
$$\text{False Negative Rate (FNR)} \equiv \frac{FN}{FN + TP} = 1 - \text{TPR},$$

the **detection error trade-off (DET)** curve is simply a vertically-flipped version of the ROC curve:

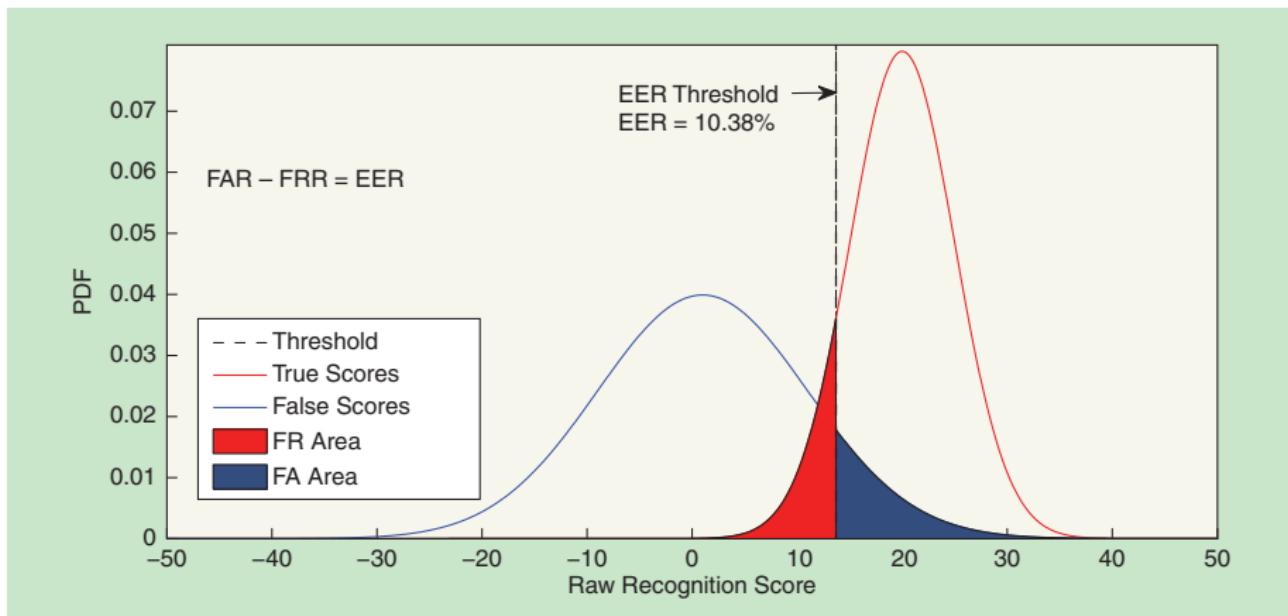


ROC and DET Curves

- **Area under the DET curve ($AUC_{DET} \in [0, 1]$):** The smaller, the better
- **Equal error rate (EER):** Intersection point between the identity function and the DET curve (i.e., the point where $FNR = FPR$)



Setting the Decision Threshold



[Hansen15] J. H. L. Hansen and T. Hasan, "Speaker Recognition by Machines and Humans: A tutorial review," IEEE Signal Processing Magazine, 2015

Detection Cost Function

- The **detection cost function (DCF)** was proposed by **NIST (National Institute of Standards and Technology)**

$$\text{DCF}(\tau) = C_{\text{miss}} P_{\text{miss}}(\tau) P_{\text{target}} + C_{\text{FA}} P_{\text{FA}}(\tau) (1 - P_{\text{target}})$$

- ➊ C_{miss} : Cost of a false negative (e.g., 10)
- ➋ C_{FA} : Cost of a false positive (e.g., 1)
- ➌ P_{target} : Prior probability of target speaker (e.g., 0.01)
- ➍ $P_{\text{miss}}(\tau)$: Probability of a false negative given a threshold τ
- ➎ $P_{\text{FA}}(\tau)$: Probability of a false positive given a threshold τ

- The goal would be to find the **value of τ that minimizes $\text{DCF}(\tau)$**

Introduction to Speaker Verification

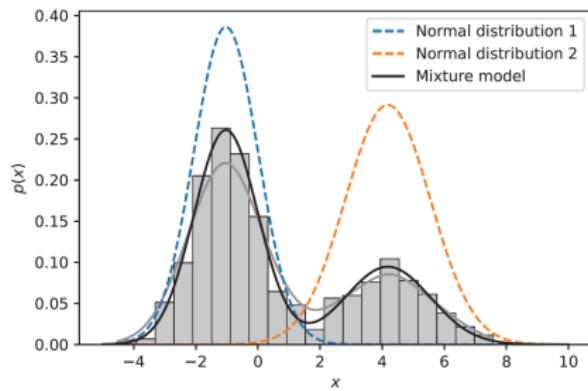
FIVE MAIN GENERATIONS

- ① **GMM-UBM (Gaussian Mixture Models-Universal Background Model)**: Technology based on Gaussian mixture models
- ② **GMM-SVM (Gaussian Mixture Models-Support Vector Machines)**: GMM supervectors classified by SVMs
- ③ **JFA (Joint Factor Analysis)**: Decomposition of total variability into speaker and channel/session components
- ④ **i-vectors (identity vectors)**: Modeling of total variability
- ⑤ **Neural networks**: Technology based on deep learning

1st Generation: GMM-UBM (2000)

$$\mu_1 = -1, \sigma_1 = 1 \quad \mu_2 = 4, \sigma_2 = 1.5$$

$$w_1 = 0.7 \quad w_2 = 0.3$$



[Yehoshua23] R. Yehoshua, "Gaussian Mixture Models (GMMs): from Theory to Implementation," <https://towardsdatascience.com/gaussian-mixture-models-gmms-from-theory-to-implementation/>

$$\theta = \{w_k, \mu_k, \Sigma_k; 1 \leq k \leq \mathcal{K}\}$$

Given a training dataset $\mathbf{X} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\}$,

$$\theta^* = \arg \max_{\theta} p(\mathbf{X}|\theta) = \arg \max_{\theta} \prod_{i=1}^N p(\mathbf{x}^{(i)}|\theta) \quad (\text{Expectation-maximization!})$$

Gaussian mixture models:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}}$$

$$p(\mathbf{x}) = \sum_{k=1}^{\mathcal{K}} w_k \mathcal{N}_k(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$\sum_{k=1}^{\mathcal{K}} w_k = 1$$

$$0 \leq w_k \leq 1 \quad \forall k = 1, \dots, \mathcal{K}$$

1st Generation: GMM-UBM (2000)

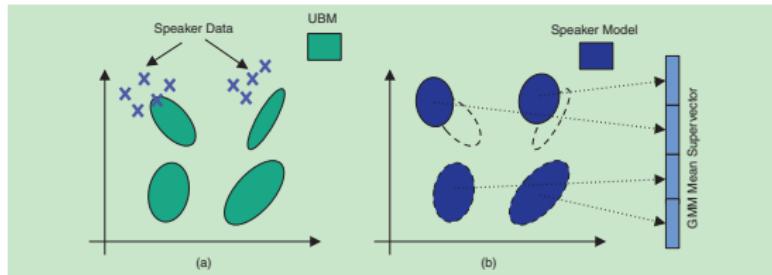
- λ_s : GMM for speaker s ([MAP adaptation of a UBM](#))
- λ_0 : UBM
- $\mathbf{X} = \{x_n; n = 1, \dots, T\}$ are feature vectors from an observation O

Hypothesis contrast:

- 1 $H_0: O$ comes from speaker s
- 2 $H_1: O$ does not come from speaker s

We calculate $\Lambda(\mathbf{X}) = \log \left(\frac{p(\mathbf{X}|\lambda_s)}{p(\mathbf{X}|\lambda_0)} \right) = \log p(\mathbf{X}|\lambda_s) - \log p(\mathbf{X}|\lambda_0)$

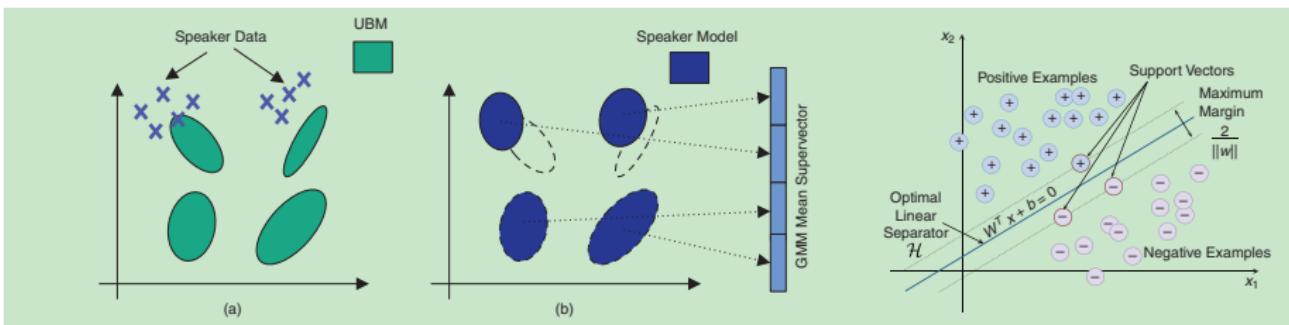
If $\Lambda(\mathbf{X}) \geq \tau$, we then accept the hypothesis H_0



[Hansen15] J. H. L. Hansen and T. Hasan, "Speaker Recognition by Machines and Humans: A tutorial review," IEEE Signal Processing Magazine, 2015

2nd Generation: GMM-SVM (2006)

- **GMM supervectors** provide speaker representations of a **fixed dimensionality**
- **GMM-SVM**: GMM supervector classification by means of SVMs (*Support Vector Machines*)



[Hansen15] J. H. L. Hansen and T. Hasan, "Speaker Recognition by Machines and Humans: A tutorial review," IEEE Signal Processing Magazine, 2015

3rd Generation: JFA (2004)

- **FA (Factor Analysis)**: Method for explaining speaker and channel variability in the **supervector** space

$\mathbf{m}_{s,h}$: GMM supervector for speaker s (and for session h):

$$\mathbf{m}_{s,h} = \mathbf{m}_0 + \mathbf{m}_{spk} + \mathbf{m}_{chn} + \mathbf{m}_{res}$$

- ➊ \mathbf{m}_0 : Environment-, channel-, and speaker-independent component (constant, from the UBM)
- ➋ \mathbf{m}_{spk} : Speaker-dependent component
- ➌ \mathbf{m}_{chn} : Environment- and channel-dependent component
- ➍ \mathbf{m}_{res} : Residue

3rd Generation: JFA (2004)

- **Joint Factor Analysis – JFA** (*in the GMM supervector domain*):

$$\mathbf{m}_{s,h} = \mathbf{m}_0 + \underbrace{\mathbf{Ux}_h}_{\mathbf{m}_{chn}} + \underbrace{\mathbf{Vy}_s}_{\mathbf{m}_{spk}} + \underbrace{\mathbf{Dz}_{s,h}}_{\mathbf{m}_{res}}$$

- **U** and **V** are **low-rank matrices** estimated during a **training** phase by a PCA-like dimensionality reduction algorithm
- **D** is a **diagonal matrix** estimated along with **U** and **V** by an EM-like algorithm
- Given a supervector $\mathbf{m}_{s,h}$, \mathbf{x}_h , \mathbf{y}_s and $\mathbf{z}_{s,h}$ (the **channel, speaker, and residual factors**) are obtained by MAP or Bayesian estimation taking into consideration that $(\mathbf{x}_h, \mathbf{y}_s, \mathbf{z}_{s,h}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- \mathbf{y}_s is the speaker **feature vector** used **for comparison/verification**

4th Generation: i-vectors (2009)

Najim Dehak, PhD



- Dr. Najim Dehak researched the use of **JFA as a feature extractor (\mathbf{y}_s) and SVMs for classification**
- He realized that \mathbf{x}_h *also comprised speaker-dependent information*
- Total variability space:** He decided to combine speaker and channel factors into a single space:

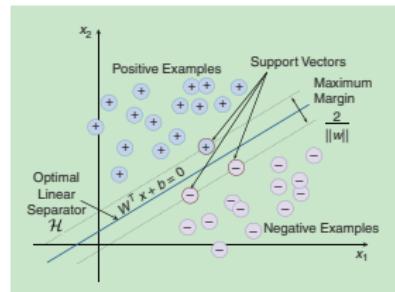
$$\mathbf{m}_{s,h} = \mathbf{m}_0 + \mathbf{T}\mathbf{w}_{s,h}$$

\mathbf{T} is the total variability low-rank matrix and $\mathbf{w}_{s,h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

i-vector: $\mathbf{w}_{s,h}^* = E[\mathbf{w}_{s,h} | \mathbf{F}]$

$$\mathbf{F} = \sum_n \gamma_k(n) (\mathbf{x}_n - \boldsymbol{\mu}_k^{UBM})$$

$$\gamma_k(n) = P(k|\mathbf{x}_n) = \frac{p(\mathbf{x}_n|k)P(k)}{p(\mathbf{x}_n)} = \frac{\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)w_k}{\sum_k w_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

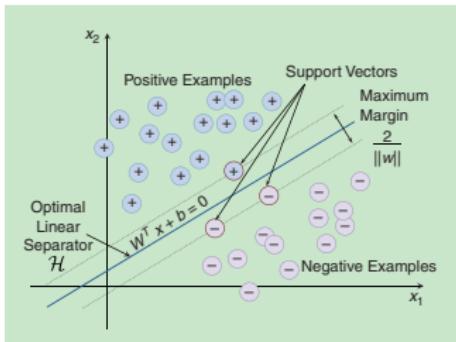


[Hansen15] J. H. L. Hansen and T. Hasan, "Speaker Recognition by Machines and Humans: A tutorial review," IEEE Signal Processing Magazine, 2015

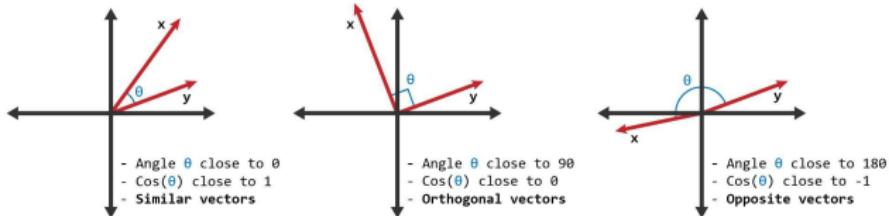
But... How do we Use \mathbf{y}_s and $\mathbf{w}_{s,h}$ for Verification?

- We extract \mathbf{w}_{test} from a sample for verification and claim the identity associated with \mathbf{w}_{target}

• SVMs (Support Vector Machines)



[Hansen15] J. H. L. Hansen and T. Hasan, "Speaker Recognition by Machines and Humans: A tutorial review," IEEE Signal Processing Magazine, 2015



[Karabiber24] F. Karabiber, "Cosine Similarity,"
<https://www.learndatasci.com/glossary/cosine-similarity/>

• Cosine similarity:

$$S_c(\mathbf{w}_{test}, \mathbf{w}_{target}) = \cos(\theta) =$$

$$\frac{\mathbf{w}_{test} \cdot \mathbf{w}_{target}}{\|\mathbf{w}_{test}\| \|\mathbf{w}_{target}\|} \in [-1, 1]$$

PLDA

- **PLDA (Probabilistic Linear Discriminant Analysis)**: It follows modeling assumptions similar to JFA

An i-vector $\mathbf{w}_{s,h}$ can be decomposed as:

$$\mathbf{w}_{s,h} = \mathbf{w}_0 + \Phi \boldsymbol{\beta}_s + \Gamma \boldsymbol{\alpha}_h + \boldsymbol{\varepsilon}_{s,h}$$

- ➊ \mathbf{w}_0 is an average, *speaker-independent* i-vector
- ➋ Φ and Γ are **low-rank matrices** that characterize speaker and channel subspaces
- ➌ $(\boldsymbol{\beta}_s, \boldsymbol{\alpha}_h) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ are speaker and channel factors
- ➍ $\boldsymbol{\varepsilon}_{s,h}$ is a residual vector

- If $\mathbf{w}_{s,h} \leftarrow \mathbf{w}_{s,h} / \|\mathbf{w}_{s,h}\|_2$, $\mathbf{w}_{s,h} \sim \mathcal{N}$ (**Gaussian PLDA model**)
- Using a full-covariance model for $\boldsymbol{\varepsilon}_{s,h} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_\varepsilon)$ allows us to simplify the PLDA model:

$$\mathbf{w}_{s,h} = \mathbf{w}_0 + \Phi \boldsymbol{\beta}_s + \boldsymbol{\varepsilon}_{s,h}$$

PLDA

- We extract \mathbf{w}_{test} from a sample for verification and claim the identity associated with \mathbf{w}_{target}

Hypothesis contrast:

- ① H_0 : \mathbf{w}_{test} and \mathbf{w}_{target} come from the same speaker
- ② H_1 : \mathbf{w}_{test} and \mathbf{w}_{target} come from different speakers

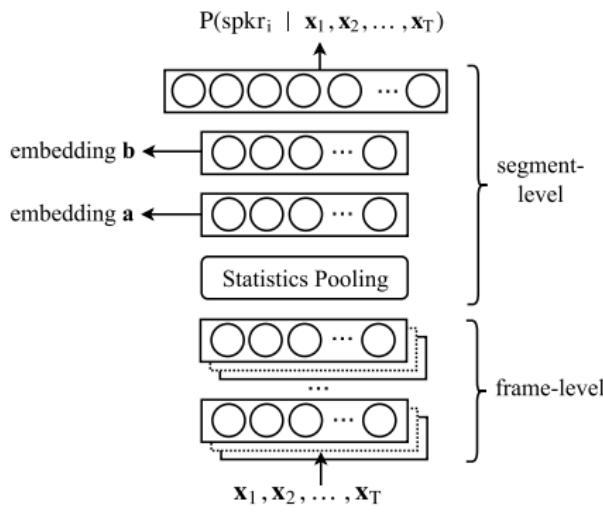
$$\text{LLR}(\mathbf{w}_{test}, \mathbf{w}_{target}) = \log \left(\frac{P(\mathbf{w}_{test}, \mathbf{w}_{target} | H_0)}{P(\mathbf{w}_{test} | H_1)P(\mathbf{w}_{target} | H_1)} \right)$$

- $\text{LLR}(\mathbf{w}_{test}, \mathbf{w}_{target})$ can be approximated as a function of Φ and Σ_ε
- If $\text{LLR}(\mathbf{w}_{test}, \mathbf{w}_{target}) \geq \tau$, we accept that \mathbf{w}_{test} and \mathbf{w}_{target} come from the same speaker

5th Generation: Neural Networks (2018)

- While there were multiple neural network-based proposals, it was the **x-vectors** that broke the mold

TDNN (Time-Delay Neural Network)



[Snyder17] D. Snyder *et al.*, "Deep Neural Network Embeddings for Text-Independent Speaker Verification," in Proc. of Interspeech 2017

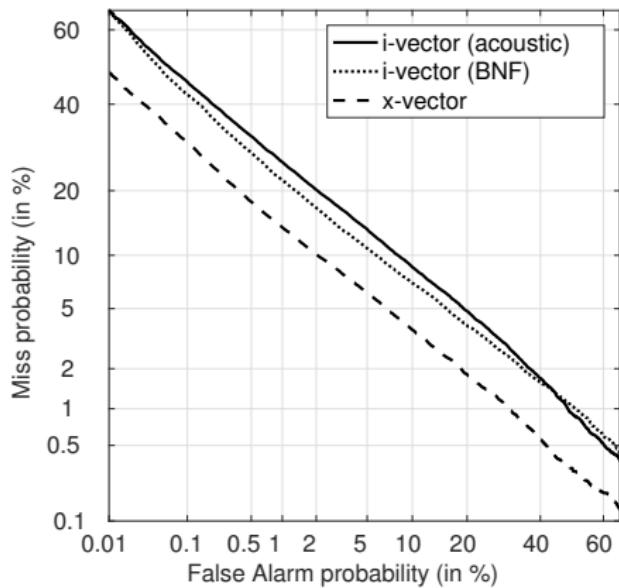
Layer	Layer context	Total context	Input x output
frame1	$[t-2, t+2]$	5	120x512
frame2	$\{t-2, t, t+2\}$	9	1536x512
frame3	$\{t-3, t, t+3\}$	15	1536x512
frame4	$\{t\}$	15	512x512
frame5	$\{t\}$	15	512x1500
stats pooling	$[0, T)$	T	$1500T \times 3000$
segment6	$\{0\}$	T	3000x512
segment7	$\{0\}$	T	512x512
softmax	$\{0\}$	T	512x N

[Snyder18] D. Snyder *et al.*, "X-Vectors: Robust DNN Embeddings for Speaker Recognition," in Proc. of ICASSP 2018

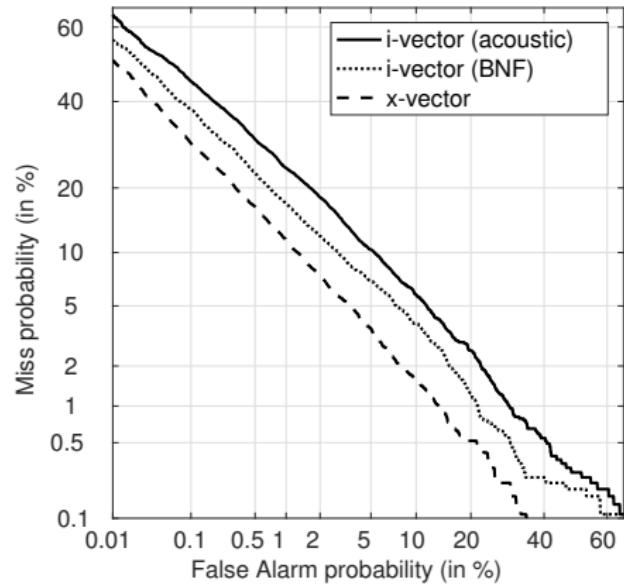
- x-vectors:** Output of the *segment6* layer (from the Mel spectrogram)
- The comparison of x-vectors is performed using **PLDA**
- Training data augmentation** is key!

5th Generation: Neural Networks (2018)

DET curve for the NIST SRE16 Cantonese set



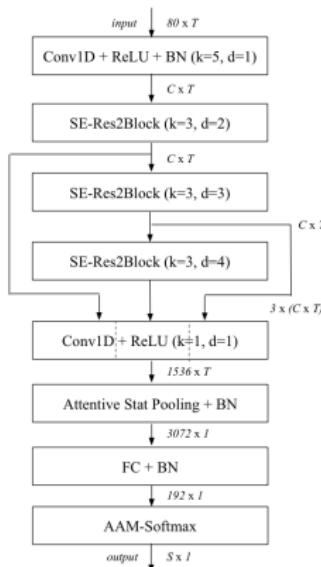
DET curve for “Speakers In The Wild”



[Snyder18] D. Snyder *et al.*, “X-Vectors: Robust DNN Embeddings for Speaker Recognition,” in Proc. of ICASSP 2018

5th Generation: Neural Networks (2018)

- **ECAPA-TDNN**: Enhanced TDNN for speaker embedding extraction



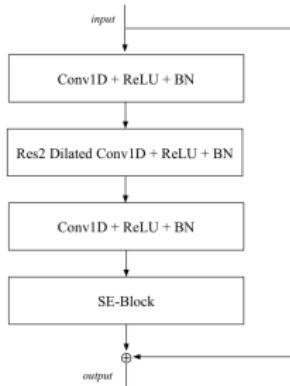
Attentive Stat Pooling

$$e_{t,c} = \mathbf{v}_c^\top f(\mathbf{W}\mathbf{h}_t + \mathbf{b}) + k_c$$

$$\alpha_{t,c} = \frac{\exp(e_{t,c})}{\sum_{\tau}^T \exp(e_{\tau,c})}$$

$$\tilde{\mu}_c = \sum_t^T \alpha_{t,c} h_{t,c} \quad \tilde{\sigma}_c = \sqrt{\sum_t^T \alpha_{t,c} h_{t,c}^2 - \tilde{\mu}_c^2}$$

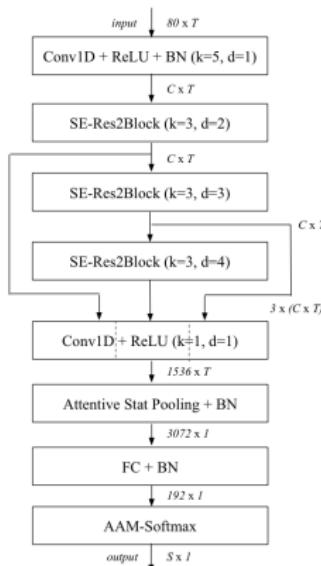
$$\tilde{\mu} = (\tilde{\mu}_1, \dots, \tilde{\mu}_c, \dots, \tilde{\mu}_C) \quad \tilde{\sigma} = (\tilde{\sigma}_1, \dots, \tilde{\sigma}_c, \dots, \tilde{\sigma}_C)$$



[Desplanques20] B. Desplanques et al., "ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification," in Proc. of Interspeech 2020

5th Generation: Neural Networks (2018)

- **ECAPA-TDNN**: Enhanced TDNN for speaker embedding extraction



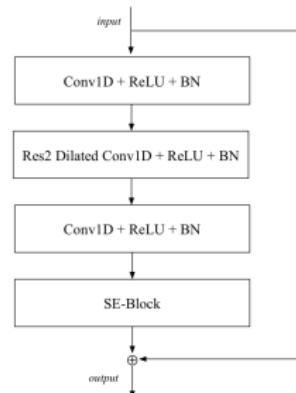
SE (Squeeze-and-Excitation)-Block

$$\text{Squeeze: } \mathbf{z} = \frac{1}{T} \sum_t^T \mathbf{h}_t$$

Excitation:

$$\mathbf{s} = \sigma(\mathbf{W}_2 f(\mathbf{W}_1 \mathbf{z} + \mathbf{b}_1) + \mathbf{b}_2)$$

$$\tilde{\mathbf{h}}_c = s_c \mathbf{h}_c \quad (s_c \in [0, 1])$$



[Desplanques20] B. Desplanques et al., "ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification," in Proc. of Interspeech 2020

- Multi-layer feature aggregation

5th Generation: Neural Networks (2018)

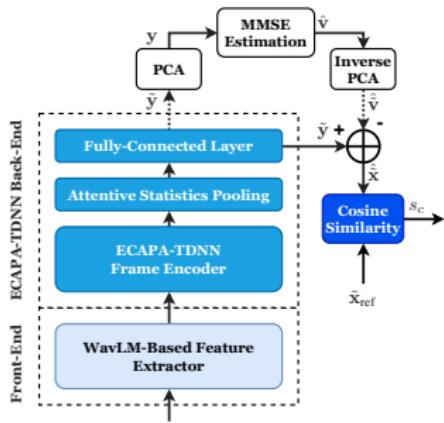
- The comparison of speaker embeddings is carried out by means of cosine similarity:

Architecture	# Params	VoxCeleb1		VoxCeleb1-E		VoxCeleb1-H		VoxSRC19
		EER(%)	MinDCF	EER(%)	MinDCF	EER(%)	MinDCF	EER(%)
E-TDNN	6.8M	1.49	0.1604	1.61	0.1712	2.69	0.2419	1.81
E-TDNN (large)	20.4M	1.26	0.1399	1.37	0.1487	2.35	0.2153	1.61
ResNet18	13.8M	1.47	0.1772	1.60	0.1789	2.88	0.2672	1.97
ResNet34	23.9M	1.19	0.1592	1.33	0.1560	2.46	0.2288	1.57
ECAPA-TDNN (C=512)	6.2M	1.01	0.1274	1.24	0.1418	2.32	0.2181	1.32
ECAPA-TDNN (C=1024)	14.7M	0.87	0.1066	1.12	0.1318	2.12	0.2101	1.22

[Desplanques20] B. Desplanques *et al.*, "ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification," in Proc. of Interspeech 2020

Embedding Compensation

- Need for compensation of embeddings from **non-neutral phonation speech** (e.g., **shouted** and **whispered**)



$\tilde{x} \in \mathbb{R}^D$: Normal embedding
 $\tilde{y} \in \mathbb{R}^D$: Non-neutral phonation embedding
 $\tilde{v} \in \mathbb{R}^D$: Vocal effort transfer vector

$$\tilde{y} = \tilde{x} + \tilde{v} \Rightarrow \hat{x} = \tilde{y} - \hat{v}$$

- $v = W_L^\top \tilde{v}$ and $y = W_L^\top \tilde{y}$, where $W_L \in \mathbb{R}^{D \times L}$, $L \ll D$, is a PCA transform matrix
- $p(z = (v, y) \in \mathbb{R}^{2L})$ is modeled by a GMM

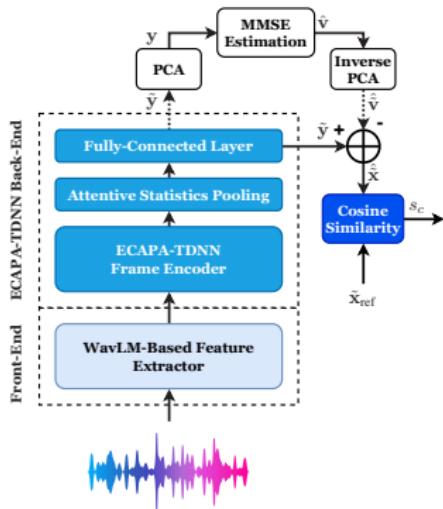
[Espejo23] I. López-Espejo et al., "Improved Vocal Effort Transfer Vector Estimation for Vocal Effort-Robust Speaker Verification," in Proc. of MLSP 2023

$$\hat{x} = \tilde{y} - \underbrace{W_L \hat{v}}$$

$$\hat{v} = \mathbb{E}[v|y] \text{ (MMSE estimation)}$$

Embedding Compensation

- Need for compensation of embeddings from **non-neutral phonation speech** (e.g., **shouted** and **whispered**)



[Espejo23] I. López-Espejo et al., "Improved Vocal Effort Transfer Vector Estimation for Vocal Effort-Robust Speaker Verification," in Proc. of MLSP 2023

- The ECAPA-TDNN is trained on an augmented version of **VoxCeleb2**
- The evaluation metric is **EER (%)** (*the lower, the better*)

Shouted and normal speech:

Condition	E-T+MFCC	E-T+WavLM	MEMLIN	MEMLIN+PCA	MMSE _X	MMSE _V
As-As	19.96	17.11	15.62	31.50	28.72	15.22
Ns-Ns	9.73	7.25	7.25	7.25	7.25	7.25
S-S	11.58	9.94	10.44	27.46	25.53	5.91
N _S -S	25.28	21.76	20.74	41.00	35.56	17.74

Whispered and normal speech:

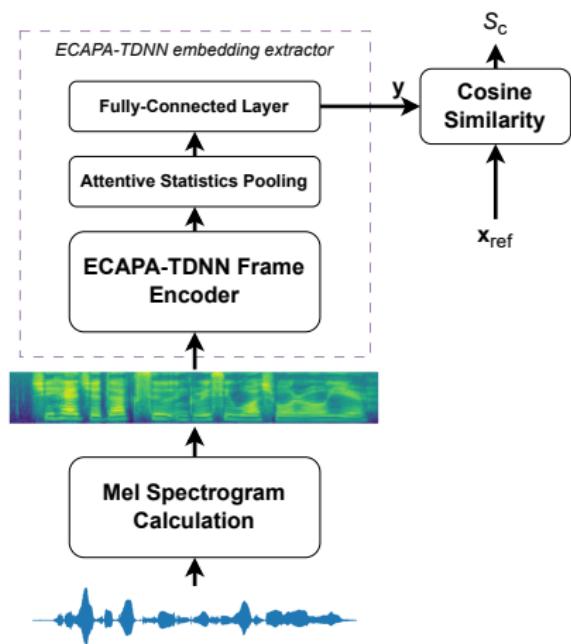
Condition	E-T+MFCC	E-T+WavLM	MEMLIN	MEMLIN+PCA	MMSE _X	MMSE _V
Aw-Aw	16.54	11.24	8.25	31.87	23.95	8.27
Nw-Nw	1.21	0.62	0.62	0.62	0.62	0.62
W-W	4.38	5.26	4.00	19.31	19.77	2.87
Nw-W	12.81	9.81	11.47	44.38	30.59	8.86

Overview

1 Introduction to Speaker Verification

2 Implementation of a Speaker Verification System

Implementation of a Speaker Verification System



Implementation of a speaker verification system:

- Mel spectrogram computation
- Extraction of embeddings $\mathbf{y}, \mathbf{x}_{ref} \in \mathbb{R}^{192}$ based on an ECAPA-TDNN
- Comparison of embeddings by means of cosine similarity (if $S_c \geq \tau$, \mathbf{y} and \mathbf{x}_{ref} come from the same speaker)

<https://huggingface.co/yangwang825/ecapa-tdnn-vox2>

Implementation of a Speaker Verification System

Installing Anaconda and Spyder:

python™

ANACONDA

spyder

- 1 Go to <https://www.anaconda.com/download>, download, and install Anaconda Distribution
- 2 Run anaconda-navigator
- 3 In *Environments*, create the work environment spkVerif
- 4 Select the new environment, see the *Not Installed* packages, and tick off and install Spyder
- 5 In *Home*, select the environment spkVerif and launch Spyder
- 6 In Spyder, go to *Tools*→*Preferences*→*iPython Console*→*Graphics*→*Backend* and choose *Automatic* as the display mode for the graphics

Implementation of a Speaker Verification System

PyTorch

- **We need to install some work libraries:**

- [PyTorch](#): Deep learning model construction
- [SpeechBrain](#): Development of speech technology, audio technology, etc.
- [NumPy](#): Scientific computing
- [Sounddevice](#): Sound recording and playback
- [Matplotlib](#): Generation of visualizations

- ① Run Anaconda Prompt and activate your work environment by the command `conda activate spkVerif`
- ② Install the above modules by means of pip: `pip install torch speechbrain numpy sounddevice matplotlib`

Implementation of a Speaker Verification System

- We create a Python script named `spkverif_lib.py`
- We **import the modules** we will need:

```
import torch
from speechbrain.pretrained.interfaces import Pretrained
import numpy as np
```

Implementation of a Speaker Verification System

- We create the **class that defines our embedding extractor based on Mel spectra**:

```
class EmbeddingExtractor(Pretrained):  
    # Modules needed.  
    MODULES_NEEDED = [  
        "compute_features",  
        "mean_var_norm",  
        "embedding_model"  
    ]  
  
    def __init__(self, *args, **kwargs):  
        super().__init__(*args, **kwargs)  
  
        # Method that performs the embedding extraction itself.  
        # wav: Audio samples.  
    def embedding_extractor(self, wav):  
  
        wav = torch.tensor(wav) # We convert the NumPy array into a tensor.  
  
        wav = wav.unsqueeze(0) # We add a dimension to the left of the sound segment.  
  
        # Mel feature extraction.  
        feats = self.mods.compute_features(wav)  
        feats = self.mods.mean_var_norm(feats, torch.ones(1)) # Mean and variance normalization.  
  
        # Embedding extraction from Mel features.  
        embedding = self.mods.embedding_model(feats, torch.ones(1))  
  
        # We convert the embedding into a NumPy array.  
        embedding = embedding.numpy()  
        embedding = embedding[0,0,:]  
  
    return embedding
```

Implementation of a Speaker Verification System

- We include a method to **calculate the cosine similarity** to determine whether or not two given embeddings come from the same speaker:

```
def cosineDist(x, y):  
  
    # We calculate the vector norms.  
    nx = np.sqrt(np.sum(x**2))  
    ny = np.sqrt(np.sum(y**2))  
  
    # We normalize the vectors.  
    x /= nx  
    y /= ny  
  
    # We calculate cosine similarity.  
    Sc = np.dot(x,y)  
  
    return Sc
```

Implementation of a Speaker Verification System

- We will implement a very basic code with which **we can record two voice samples and determine whether or not they come from the same speaker**
- We create a new Python script named `Demo_Live.py` and import the modules we will require:

```
import spkverif_lib
import sounddevice as sd
import matplotlib.pyplot as plt
import numpy as np
```

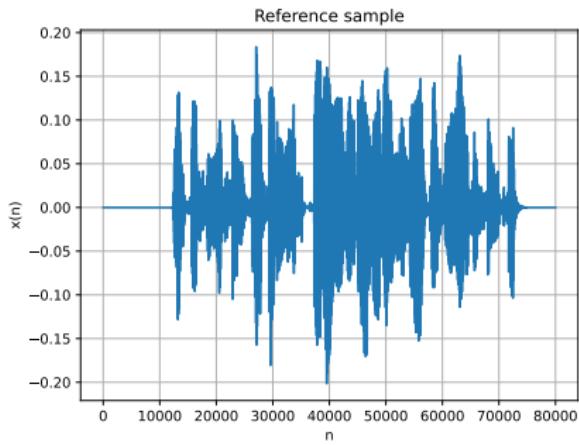
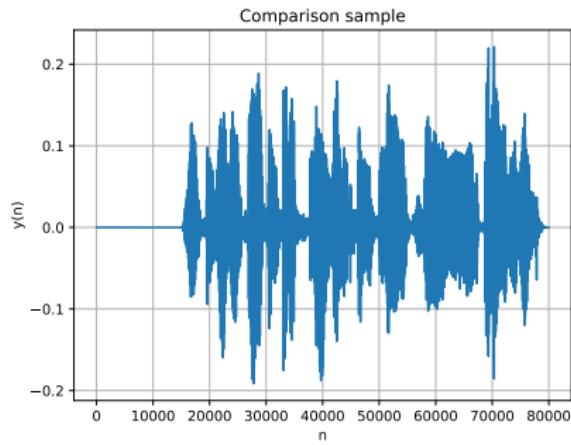
Implementation of a Speaker Verification System

- We record two voice samples with a duration of 5 seconds each at a 16 kHz sampling rate and plot them:

```
fs = 16000 # Working sample rate in Hz: 16 kHz.
seconds = 5 # Duration of sound samples in seconds.
# -----
#input('Press any key to start recording the reference sample...')
print('Recording...')
samp1 = sd.rec(int(seconds * fs), samplerate=fs, channels=1)
sd.wait()
print('Reference sample recording complete!')
# -----
#input('Press any key to start recording the comparison sample...')
print('Recording...')
samp2 = sd.rec(int(seconds * fs), samplerate=fs, channels=1)
sd.wait()
print('Comparison sample recording complete!')
# -----
plt.figure()
plt.plot(samp1)
plt.grid(True)
plt.xlabel('n')
plt.ylabel('x(n)')
plt.title('Reference sample')
plt.figure()
plt.plot(samp2)
plt.grid(True)
plt.xlabel('n')
plt.ylabel('y(n)')
plt.title('Comparison sample')
```

Implementation of a Speaker Verification System

- Example of two voice samples recorded by me using the present implementation
- From the left sample we will extract x_{ref} , and, from the right one, y :



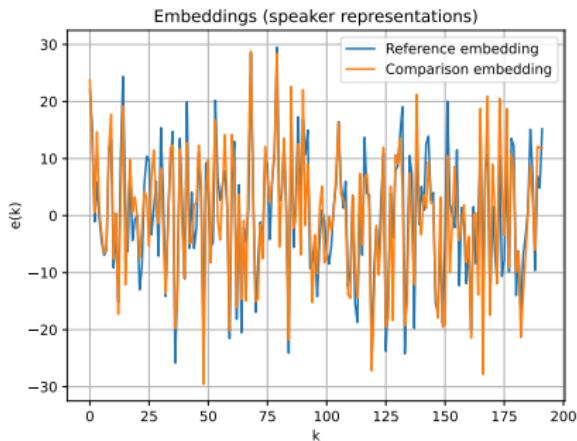
Implementation of a Speaker Verification System

- We instantiate, from a repository, our embedding extractor based on an ECAPA-TDNN model pre-trained using [SpeechBrain](#)
- We extract the embeddings x_{ref} and y , and plot them:

```
# We instantiate the embedding extractor.
emb_extractor = spkverif_lib.EmbeddingExtractor.from_hparams(
    source='yangwang825/eca-pa-tdnn-vox2'
)
embedding_1 = emb_extractor.embedding_extractor(samp1[:,0]) # Reference embedding.
embedding_2 = emb_extractor.embedding_extractor(samp2[:,0]) # Comparison embedding.
plt.figure()
plt.plot(embedding_1)
plt.plot(embedding_2)
plt.legend(['Reference embedding', 'Comparison embedding'])
plt.xlabel('k')
plt.ylabel('e(k)')
plt.grid(True)
plt.title('Embeddings (speaker representations)')
```

Implementation of a Speaker Verification System

- Next, we see the **reference** embedding, x_{ref} , and **comparison** embedding, y , corresponding to our previous example:



- Their **similarity** is evident, **consistent with** the fact **that they come** from voice samples **from the same person**

Implementation of a Speaker Verification System

- We calculate the cosine similarity S_c between \mathbf{x}_{ref} and \mathbf{y} ; if $S_c \geq \tau = 0.5$, we state that the two voice samples come from the same speaker
- We plot the two embeddings in the polar coordinate space

```

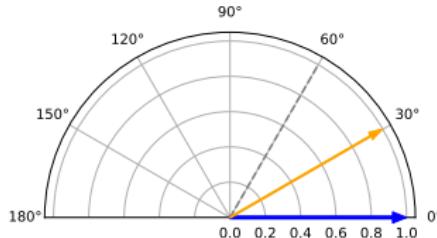
sc = spkverif.lib.cosineDist(embedding_1, embedding_2) # Cosine similarity.
thr = 0.5 # Decision threshold.
if sc >= thr:
    print('The two samples come from the same speaker')
else:
    print('The samples come from different speakers')
print('Cosine similarity: ' + str(sc))
# We represent the result in terms of the angle between the reference and
# comparison embeddings.
angle_ref = 0 # Reference.
angle_com = np.acos(sc) # Comparison (arc-cosine of the cosine similarity).
arrow_length = 1.0 # Embedding length.
fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
# We only show the semicircle of interest.
ax.set_theta_min(0)
ax.set_theta_max(180)
# Reference embedding.
ax.annotate("", # No-text annotation.
            xy=(angle_ref, arrow_length), # Tip of the embedding.
            xytext=(0, 0), # Origin of the embedding.
            arrowprops=dict(facecolor='blue', edgecolor='blue', width=2, headwidth=8, headlength=10, shrink=0),
            annotation_clip=False) # Prevent the arrow from being clipped.
# Comparison embedding.
ax.annotate("", # No-text annotation.
            xy=(angle_com, arrow_length),
            xytext=(0, 0),
            arrowprops=dict(facecolor='orange', edgecolor='orange', width=1, headwidth=6,
            headlength=10, shrink=0),
            annotation_clip=False)
ax.plot([0, np.acos(thr)], [0, arrow_length], linestyle='--', color='gray') # We also represent
# the decision threshold.
ax.set_title('Embedding comparison')
ax.grid(True)
plt.show()

```

Implementation of a Speaker Verification System

- Embeddings that form an angle $\theta \leq \theta_\tau = \arccos(\tau = 0.5) = 60^\circ$ (**decision threshold** \equiv dashed line) come from the same speaker
- The **comparison embedding y** forms an angle $\theta = \arccos(\mathcal{S}_c)$ with the **reference embedding x_{ref}**

Embedding comparison



- It is correctly determined that **the two voice samples in the example come from the same speaker**

Acknowledgment: This Topic in the Summer School has been funded by the
**“Thematic Network on Applications of sound signal processing in society
and digital industry”** with reference RED2022-134742-T funded by
MCIN/AEI/10.13039/501100011033

Forensic Acoustics: An Introduction to Voice Identification

Iván López-Espejo, PhD

EAA SUMMER SCHOOL

Applications of Sound Signal Processing in Society and Digital Industry

iloes@ugr.es

Saturday 21st June, 2025

FORUM ACUSTICUM
EURONOISE 2025

UNIVERSIDAD
DE GRANADA