
Introducción a las Tecnoloǵıas del Habla

Dr. Iván López-Espejo

DÍA 1: INTRODUCCIÓN, APLICACIONES, Y ANÁLISIS DE LA SEÑAL DE VOZ

iloes@ugr.es

Monday 2nd June, 2025

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 1 / 59



Tabla de Contenidos

1 Introducción y Breve Recorrido Histórico

2 Aplicaciones de las Tecnoloǵıas del Habla

3 Análisis de la Señal de Voz

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 2 / 59



Introducción y Breve Recorrido Histórico

Tabla de Contenidos

1 Introducción y Breve Recorrido Histórico

2 Aplicaciones de las Tecnoloǵıas del Habla

3 Análisis de la Señal de Voz

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 3 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

Imitar el comportamiento humano en una máquina, sobre todo la capacidad
de hablar y responder al lenguaje oral, ha intrigado a ingenieros y cient́ıficos
durante siglos

El progreso de las tecnoloǵıas de la voz ha estado fuertemente ligado al del
reconocimiento automático del habla (RAH) aśı como al de la śıntesis de voz

2001: Una odisea del espacio

(Stanley Kubrick, 1968)

HAL 9000

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 4 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

El desarrollo de máquinas para imitar la comunicación verbal humana parece
haber empezado en la segunda mitad del siglo XVIII:

1773: El cient́ıfico ruso Christian Kratzenstein produjo sonidos vocales usando
tubos de resonancia conectados a tubos de órgano

1791: Wolfgang von Kempelen construyó una máquina de habla mecanicoacústica

∼1850: Charles Wheatstone fabricó una versión de la máquina de von Kempelen
usando resonadores hechos de cuero

[Flanagan72] J. L. Flanagan, “Speech Analysis, Synthesis and Perception”. Springer-Verlag, 1972

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 5 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

1922: En los laboratorios Bell (Fletcher) se documenta la relación entre el espectro de
voz y las caracteŕısticas del habla (incluyendo inteligibilidad)

1930: Homer Dudley desarrolla un sintetizador de voz llamado VODER −→ Equivalente
eléctrico de la máquina de Wheatstone

[Dudley39] H. Dudley et al., “A synthetic speaker”. Journal of the Franklin Institute, 1939

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 6 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

1952: Se desarrolla en los
laboratorios Bell Audrey, un
sistema monolocutor de
reconocimiento de d́ıgitos aislados
a partir de frecuencias formantes de
vocales (reconocimiento de
patrones)

[Davis52] K. H. Davis et al., “Automatic Recognition of Spoken
Digits”. The Journal of the Acoustical Society of America, 1952

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 7 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

1962: Sakai y Doshita desarrollan un reconocedor
de fonemas[Sakai62]

Implementación del primer segmentador de habla
para el análisis y reconocimiento del habla en
distintas porciones del enunciado de entrada

¡Precursor de un sistema de reconocimiento
continuo de voz!

[Sakai62] J. Sakai and S. Doshita, “The Phonetic Typewriter”. In Proc. of IFIP 1962

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 8 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

Finales de 1960: Atal e Itakura formularon independientemente los
fundamentos de la codificación predictiva lineal (LPC, Linear Predictive
Coding)

Simplificación de la estimación de la respuesta del tracto vocal

Mediados de 1970: Itakura, Rabiner y Levinson, y otros, propusieron
combinar reconocimiento de patrones y LPC

PRÁCTICA 5: PROCESAMIENTO DIGITAL DE VOZ

1. Introducción: Modelo LPC de Producción de Voz

En la figura de abajo se muestra un modelo digital de producción de voz usualmente cono-
cido como modelo LPC (linear prediction coding), empleado en diversas aplicaciones de voz y,
particularmente, en codificación de voz para telefonı́a y videoconferencia. En estas aplicaciones,
el codificador extrae los parámetros del modelo y estos son empleados por el decodificador en
regenerar la señal de voz. En el modelo LPC se supone que la señal de voz x(n) es producida
por un filtro digital todo-polos h(k) (representando al tracto vocal) excitado por una señal u(n), que
puede ser de dos tipos:

x(n)

PITCH

GENERADOR

DE PULSOS

DE RUIDO

GENERADOR

BLANCO

TODO−POLOS

FILTRO

H(z)

u(n)

1. Sonidos sordos (/s/, /f/, ...): excitación tipo rui-
do blanco (imitando el flujo de aire proceden-
te de los pulmones).
Modelo resultante: AR(p).

2. Sonidos sonoros (/a/,/m/,/b/,...): excitación ti-
po tren de impulsos unitarios (imitando la vi-
bración de las cuerdas vocales).
Modelo resultante: todo-polos determinista.

En el caso de sonidos sonoros, el tren de impulsos tendra una frecuencia igual a la de vibración
de las cuerdas vocales, conocida como frecuencia de pitch. Su inversa se denomina periodo de
pitch o, simplemente, pitch.

Como veremos más adelante, ambas modelados, AR(p) y todo-polos determinista, no difieren
en la forma de estimar el filtro (todo-polos) H(z) que representa el tracto vocal, que únicamente
modela las correlaciones cortas. En el caso de sonidos sonoros, existen además correlaciones
largas que quedan modeladas por la excitación.

2. Análisis espectral de un sonido sonoro

Numerosas aplicaciones de procesado de voz se fundamentan en una estimación de la densi-
dad espectral de potencia (PSD). Una forma sencilla, no paramétrica, de obtener esta estimación
es mediante el periodograma, que se obtiene a partir de la transformada de Fourier F de un
segmento de señal x(n) de N muestras (o, equivalentemente, a partir de las estimas sesgadas de
la autocorrelación) de la siguiente forma:

PPER(ω) = F [r̂x(k)] =
1
N

F [x(n)∗ x(−n)] =
1
N
|X(ω)|2. (1)

1

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 9 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

Tangora: Sistema de
reconocimiento dependiente del
locutor (dictado)

Foco en conseguir un gran tamaño
de vocabulario

Modelo de lenguaje: Conjunto de
reglas sintácticas o gramáticas
estad́ısticas (1980: N-grama)

“Every time I fire a linguist, the performance
of the speech recognizer goes up”

Frederick Jelinek (1932 – 2010)

Foco en el diseño de un sistema
independiente del locutor
(marcación por voz)

Precursor del uso de modelos
ocultos de Márkov (HMMs) para la
representación de unidades
lingǘısticas (fonemas, śılabas,
palabras...)

Mayor énfasis en modelado acústico
y detección de palabras clave

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 10 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

A principios de 1980, en Bell Labs, la teoŕıa de los HMMs se extendió al
uso de densidades de mezcla

   

  10/08/2004 09:56:44 AM 14 

ensuring satisfactory recognition accuracy, particularly for speaker independent, large vocabulary 

speech recognition tasks. 

The HMM, being a probability measure, was amenable for incorporation in a larger speech 

decoding framework which included a language model. The use of a finite-state grammar in large 

vocabulary continuous speech recognition represented a consistent extension of the Markov chain 

that the HMM utilized to account for the structure of the language, albeit at a level that accounted 

for the interaction between articulation and pronunciation. Although these structures (for various 

levels of the language constraints) were at best crude approximations to the real speech 

phenomenon, they were computationally efficient and often sufficient to yield reasonable (first-

order) performance results. The merger of the hidden Markov model (with its advantage in 

statistical consistency, particularly in handling acoustic variability) and the finite state network 

(with its search and computational efficiency, particularly in handling word sequence hypotheses) 

was an important, although not unexpected, technological development in the mid-1980’s.  

 

 

Figure 7   A composite finite-state network for the utterance “show all alerts.” 

Figure 7 shows a finite state composite model for the utterance ‘show all alerts‘, constructed 

from several context-dependent subword models that represent the corresponding phoneme-like 

speech units (including a unit for silence that can occur at the beginning and end of the sentence, 

as well as at the end of any word in the sentence, as might occur during a pause in speaking). The 

finite state graph is realized as a Markov chain for calculation of the likelihood, based on the 

observation sequence (the spectral representation over time) of an unknown utterance. Note that 

each node in the graph is associated with a probability distribution which accounts for the 

sil             sh                 ow             sil           aw                   l              sil

       ax                    l                     er                   t                     s            

Beginning state 

Final state 

“Show all alerts” modeled as phones:  φ-sh-ow,     φ-ax-l,     ax-l-er,     l-er-t 
[Juang04] B. H. Juang and L. R. Rabiner, “Automatic Speech Recognition – A Brief History of the Technology Development”

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 11 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

Reintroducción a finales de 1980 de las redes neuronales artificiales
Procesamiento distribuido en paralelo
Invención del algoritmo de retropropagación (Geoffrey Hinton)

   

  10/08/2004 09:56:44 AM 16 

required estimation of distributions for the data, was transformed into an optimization problem 

involving minimization of the empirical recognition error [44]. This fundamental change of 

paradigm was caused by the recognition of the fact that the distribution functions for the speech 

signal could not be accurately chosen or defined, and that Bayes’ decision theory would become 

inapplicable under these circumstances. After all, the objective of a recognizer design should be 

to achieve the least recognition error rather than the best fitting of a distribution function to the 

given (known) data set as advocated by the Bayes criterion. The concept of minimum 

classification or empirical error subsequently spawned a number of techniques, among which 

discriminative training and kernel-based methods such as the support vector machines (SVM) 

have become popular subjects of study [44-46]. 

 

Figure 8     Multi-layer Perceptron 

The success of statistical methods revived the interest from DARPA at the juncture of the 

1980’s and the 1990’s, leading to several new speech recognition systems including the Sphinx 

system from CMU [47], the BYBLOS system from BBN [48] and the DECIPHER system from 

SRI [49]. CMU’s Sphinx system successfully integrated the statistical method of hidden Markov 

models with the network search strength of the earlier Harpy system.  Hence, it was able to train 

and embed context-dependent phone models in a sophisticated lexical decoding network, 

achieving remarkable results for large-vocabulary continuous speech recognition.  

With the support of DARPA, evaluation of speech recognition technology for a wide range of 

tasks and task vocabularies was diligently pursued throughout the 1990’s and into the twenty-first 

century. Such evaluations were mostly based on the measurement of word (and sentence) error 

rate as the performance figure of merit of the recognition system. Furthermore, these evaluations 

x1 x2 xM 

Output 

Input 

weights

Decision Policy, e.g. max{.} 

[Juang04] B. H. Juang and L. R. Rabiner, “Automatic Speech Recognition – A Brief History of the Technology Development”

¡Un perceptrón multicapa es un aproximador universal!

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 12 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

Con el apoyo de DARPA (Defense Advanced Research Projects Agency), se
impulsó el testeo de tecnoloǵıa de RAH para diversas tareas y vocabularios

review articles

96    communications of the acm    |   january 2014  |   vol.  57  |   no.  1

Here, we highlight major speech 
recognition technologies that worked 
well in practice and summarize six 
challenging areas that are critical to 
move speech recognition to the next 
level from the current showcase ser-
vices on mobile devices. More com-
prehensive technical discussions may 
be found in the numerous technical 
papers published over the last de-
cade, including IEEE Transactions on 
Audio, Speech and Language Processing 
and Computer Speech and Language, 
as well as proceedings from ICASSP, 
Interspeech, and IEEE workshops on 
ASRU. There are also numerous arti-

cles and books that cover systems and 
technologies developed over the last 
four decades.9,14,15,19,25,33,36,43 

Basic Speech Recognition
In 1971, a speech recognition study 
group chaired by Allen Newell recom-
mended that many more sources of 
knowledge be brought to bear on the 
problem. The report discussed six lev-
els of knowledge: acoustic, paramet-
ric, phonemic, lexical, sentence, and 
semantic. Klatt23 provides a review of 
performance of various ARPA-funded 
speech understanding systems initiat-
ed to achieve the goals of Newell report. 

By 1976, Reddy was leading a group 
at Carnegie Mellon University that 
was one of a small number of research 
groups funded to explore the ideas in 
the Newell report under a multiyear De-
fense Advanced Research Project Agen-
cy (DARPA)-sponsored Speech Under-
standing Research (SUR) project. This 
group developed a sequence of speech 
recognition systems: Hearsay, Dragon, 
Harpy, and Sphinx I/II. Over a span of 
four decades, Reddy and his colleagues 
created several historic demonstra-
tions of spoken language systems, 
for example, voice control of a robot, 
large-vocabulary connected-speech 
recognition, speaker-independent 
speech recognition, and unrestricted 
vocabulary dictation. Hearsay-I was one 
of the first systems capable of continu-
ous speech recognition. The Dragon 
system was one of the first systems to 
model speech as a hidden stochastic 
process. The Harpy system introduced 
the concept of Beam Search, which for 
decades has been the most widely used 
technique for efficient searching and 
matching. Sphinx-I, developed in 1987, 
was the first system to demonstrate 
speaker-independent speech recog-
nition. Sphinx-II, developed in 1992, 
benefited largely from tied parameters 
to balance trainability and efficiency 
at both Gaussian mixture and Markov 
state level, which achieved the highest 
recognition accuracy in DARPA-funded 
speech benchmark evaluation in 1992.

As per the DARPA-funded speech 
evaluations, the speech recognition 
word error rate has been used as the 
main metric to evaluate the progress. 
The historical progress also directed 
the community to work on more diffi-
cult speech recognition tasks as shown 
in Figure 1. On the latest switchboard 
task, the word error rate is approach-
ing an impressive new milestone by 
both Microsoft and IBM researchers 
respectively,4,22,37 following the deep 
learning framework pioneered by re-
searchers at the University of Toronto 
and Microsoft.5,14 

It was anticipated in the early 1970s 
that to bring to bear the higher-level 
sources of knowledge might require 
significant breakthroughs in artifi-
cial intelligence. The architecture of 
the Hearsay system was designed so 
that many semiautonomous modules 
can communicate and cooperate in 

What we did not know how to do in 1976.v

Statistical modeling and machine learning: Elaboration of HMM, context-dependent phoneme 
modeling, statistical smoothing and back-off strategies, DNN, semi-supervised learning, discriminative 
training such as Maximum Mutual Information Estimation (MMIE) and MPE

Training data and computing resources: Several orders of magnitude increase in the size of 
speech (thousands of hours) and text data (trillions of words) accompanied by the steadily increased 
distributed CPU and RAM resources 

Signal processing dealing with noisy environments: DNN-learned features, MFCC appropriate  
for Gaussian mixture models, lower-level raw features such as filterbanks appropriate for DNN, 
Cepstral mean subtraction, 1st and 2nd order delta features, online environment adaptation, and 
noise-canceling microphone/microphone array

Vocabulary size and dis-fluent speech: From thousands to millions of words supported by n-grams 
and RNN as the language model, explicit garbage models, and the flexibility to add new words with 
grapheme form 

Speaker independent and adaptive speech recognition: Mixture distributions, speaker training 
data across different dialects and populations, vocal tract normalization, Maximum a Posteriori (MAP), 
Maximum Likelihood Linear Regression (MLLR), and unsupervised speaker-adaptive learning

Efficient decoder: Time-synchronous Viterbi search and A* stack decoder with sophisticated pruning 
techniques, distributed implementation to support large-scale server-based runtime decoder

Spoken language understanding and dialog: Case-frame based robust parser, semi-Markov 
conditional random field (CRF), boosted decision tree, rule-based or Markov decision process-based 
dialog management, and recurrent neural networks for sentence understanding

Figure 1. Historical progress of speech recognition word error rate on more and more  
difficult tasks.10 The latest system for the switchboard task is marked with the green dot.

1%

10%

Read speech (vocabulary: 1K, 5K, 20K) Broadcast speech Conversational speech

Read Speech

1K

5K

20K
Poor Microphones

Broadcast
Speech

Conversational
Speech

Switchboard Cellular

Switchboard

2012 System
20K

Clean

Noisy

100%
19

88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
0

0

20
0

1

20
0

2

20
0

3

20
0

4

20
0

5

20
0

6

Year of Annual Evaluation

W
or

d
 E

rr
or

 R
at

e

[Huang14] X. Huang et al., “A Historical Perspective of Speech Recognition”. Communications of the ACM, 2014

1 Dificultad de reconocer habla conversacional

2 ¡Cuantos más datos de entrenamiento, mejor!

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 13 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

1990: Dragon lanza Dragon Dictate, el primer producto de reconocimiento
de voz para el público general

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 14 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

Hidden Markov Model Toolkit
(HTK)

Chapter 2

An Overview of the HTK Toolkit

Entropic

Darpa TIM IT

NIST

The basic principles of HMM-based recognition were outlined in the previous chapter and a
number of the key HTK tools have already been mentioned. This chapter describes the software
architecture of a HTK tool. It then gives a brief outline of all the HTK tools and the way that
they are used together to construct and test HMM-based recognisers. For the benefit of existing
HTK users, the major changes in recent versions of HTK are listed. The following chapter will then
illustrate the use of the HTK toolkit by working through a practical example of building a simple
continuous speech recognition system.

2.1 HTK Software Architecture

Much of the functionality of HTK is built into the library modules. These modules ensure that
every tool interfaces to the outside world in exactly the same way. They also provide a central
resource of commonly used functions. Fig. 2.1 illustrates the software structure of a typical HTK
tool and shows its input/output interfaces.

User input/output and interaction with the operating system is controlled by the library module
HShell and all memory management is controlled by HMem. Math support is provided by HMath
and the signal processing operations needed for speech analysis are in HSigP. Each of the file types
required by HTK has a dedicated interface module. HLabel provides the interface for label files,
HLM for language model files, HNet for networks and lattices, HDict for dictionaries, HVQ for
VQ codebooks and HModel for HMM definitions.

14

[Young02] S. Young et al., “The HTK Book”

Steve Young
Gunnar Evermann

Dan Kershaw
Gareth Moore
Julian Odell
Dave Ollason
Dan Povey

Valtcho Valtchev
Phil Woodland

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 15 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

   

  10/08/2004 09:56:44 AM 21 

of rigorous statistical methods based on hidden Markov models. All of this came about because of 

significant research contributions from academia, private industry and the government. As the 

technology continues to mature, it is clear that many new applications will emerge and become 

part of our way of life – thereby taking full advantage of machines that are partially able to mimic 

human speech capabilities.  

The challenge of designing a machine that truly functions like an intelligent human is still a 

major one going forward. Our accomplishments, to date, are only the beginning and it will take 

many years before a machine can pass the Turing test, namely achieving performance that rivals 

that of a human. 

 

Figure 10    Milestones in Speech Recognition and Understanding Technology over the Past   

40 Years. 

References 

1. H. Dudley, The Vocoder, Bell Labs Record, Vol. 17, pp. 122-126, 1939. 

2. H. Dudley, R. R. Riesz, and S. A. Watkins, A Synthetic Speaker, J. Franklin Institute, Vol. 
227, pp. 739-764, 1939. 

3. J. G. Wilpon and D. B. Roe, AT&T Telephone Network Applications of Speech Recognition, 
Proc. COST232 Workshop, Rome, Italy, Nov. 1992. 

Milestones in Speech and Multimodal Technology Research 

                 1962   1967          1972       1977            1982             1987           1992           1997           2002

Year

Isolated 
Words 

Filter-bank 
analysis; 

Time-
normalization; 

Dynamic 
programming 

Isolated Words; 
Connected 

Digits; 
Continuous 

Speech

Pattern 
recognition; LPC 

analysis; 
Clustering 

algorithms; Level 
building;

Continuous 
Speech; 
Speech 

Stochastic language 
understanding; 

Finite-state 
machines;  

Statistical learning; 

Small 
Vocabulary, 

Acoustic 
Phonetics-

based 

Medium 
Vocabulary, 
Template-

based 

Large 
Vocabulary; 

Syntax, 
Semantics,  

Connected 
Words; 

Continuous 
Speech

Large 
Vocabulary, 
Statistical-

based 

Hidden Markov   
models;         

Stochastic 
Language 
modeling;

Spoken dialog; 
Multiple 

modalities

Very Large 
Vocabulary; 
Semantics, 
Multimodal 
Dialog, TTS 

Concatenative 
synthesis; Machine 

learning;  Mixed-
initiative dialog;

[Juang04] B. H. Juang and L. R. Rabiner, “Automatic Speech Recognition – A Brief History of the Technology Development”

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 16 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

Cambio de paradigma a partir de 2010: aprendizaje profundo

Datos, datos y más datos

Recursos computacionales

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 17 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

review articles

100    communications of the acm    |   january 2014  |   vol.  57  |   no.  1

wide range of different ways of express-
ing the same concept. 

A number of techniques are used 
to fill frame slots of the application 
domain from the training data.30,35,41 
Like acoustic and language model-
ing, deep learning based on recurrent 
neural networks can also significantly 
improve filling slots for language un-
derstanding.38

Six Major Challenges
Speech recognition technology is 
far from perfect. Indeed, technical  
challenges abound. Based on what we 
have learned over the past 40 years, we 
now discuss six of the most challenging 
areas to be addressed before we can real-
ize the dream of speech recognition. 

There is no data like more data. 
Today we have some very exciting op-
portunities to collect large amounts 
of data, thus giving rise to “data del-
uge.” Thanks in large part to the Inter-
net, there are now readily accessible 
large quantities of everyday speech, 
reflecting a variety of materials and 
environments previously unavailable. 
Recently emerging voice search in mo-
bile phones has provided a rich source 
of speech data, which, because of the 
recording of mobile phone users’ ac-
tions, can be considered as partially 
“labeled.” Apple Siri (powered by Nu-
ance), Google, and Microsoft all have 
accumulated a massive amount of user 
data in using voice systems on their 
products.

New Web-based tools could be 
made available to collect, annotate, 
and process substantial quantities of 
speech in a cost-effective manner in 
many languages. Mustering the assis-
tance of interested individuals on the 
Web could generate substantial quan-
tities of language resources very effi-
ciently and cost effectively. This could 
be especially valuable for creating sig-
nificant new capabilities for resource 
“impoverished” languages.

The ever-increasing amount of data 
presents both an opportunity and a 
challenge for advancing the state of the 
art in speech recognition as illustrated 
in Figure 3, in which our Microsoft col-
leagues Li Deng and Eric Horvitz used 
the data from a number of published 
papers to illustrate the key point. The 
numbers in Figure 3 are not precise 
even with our best effort to derive a co-

hesive chart from data scattered over a 
period of approximately 10 years. 

We have barely scratched the sur-
face in sampling the many kinds of 
speech, environments, and channels 
that people routinely experience. In 
fact, we currently provide to our auto-
matic systems only a very small frac-
tion of the amount of materials that hu-
mans utilize to acquire language. If we 
want our systems to be more powerful 
and to understand the nature of speech 
itself, we need to make more use of 
it and label more of it. Well-labeled 
speech corpora have been the corner-
stone on which today’s systems have 
been developed and evolved. However, 
most of the large quantities of data are 
not labeled or poorly “labeled,” and la-
beling them accurately is costly. 

Computing infrastructure. The use 
of GPUs5,14 is a significant advancement 
in recent years that makes the training 
of modestly sized deep networks prac-
tical. A known limitation of the GPU 
approach is the training speed-up is 
small when the model does not fit in 
GPU memory (typically less than six 
gigabytes). It is recently reported that 
distributed optimization approach can 
greatly accelerate deep learning as well 
as enabling training larger models.7 
A cluster of massive distributed ma-
chines has been used to train a mod-
estly sized speech DNN leading to over 
10x acceleration in comparison to the 
GPU implementation. 

Moore’s Law has been a depend-
able indicator of the increased capabil-
ity for computation and storage in our 
computational systems for decades. 
The resulting effects on systems for 
speech recognition and understanding 

have been enormous, permitting the 
use of larger and larger training data-
bases and recognition systems, and the 
incorporation of more detailed models 
of spoken language. Many of the future 
research directions and applications 
implicitly depend upon continued ad-
vances in computational capabilities, 
which seems justified given the recent 
progress of using distributed comput-
er systems to train large-scale DNNs. 
With the ever-increased amount of 
training data as illustrated in Figure 3, 
it is expected to take weeks or months 
to train a modern speech system even 
with a massively distributed comput-
ing cluster. 

As Intel and others have recently 
noted, the power density on micro-
processors has increased to the point 
that higher clock rates would begin 
to melt the silicon. Consequently, 
industry development is currently fo-
cused on implementing microproces-
sors on multiple cores. The new road 
maps for the semiconductor industry 
reflect this trend, and future speed-
ups will come more from parallelism 
than from having faster individual 
computing elements. 

For the most part, algorithm de-
signers for speech systems have ig-
nored investigation of such parallel-
ism, partly because the advancement 
of scalability has been so reliable. Fu-
ture research directions and applica-
tions will require significantly more 
computation resources for creating 
models, and consequently research-
ers will need to consider massive dis-
tributed parallelism in their designs. 
This will be a significant change from 
the status quo. In particular, tasks 

Figure 3. There is no data like more data. Recognition word error rate vs. the amount  
of training hours for illustrative purposes only. This figure illustrates how modern speech 
recognition systems can benefit from increased training data.

12

14

16

18

20

22

24

0 500 1,000 1,500 2,000 2,500

Training Data (hours)

Technology since 2010 (DNN)

Technology of 1970s–2010 (GMM-HMM)

W
or

d
 E

rr
or

 R
at

e 
(%

)

[Huang14] X. Huang et al., “A Historical Perspective of Speech Recognition”. Communications of the ACM, 2014

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 18 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

2008: Google
lanza la app
Voice Search
para iPhone

2011: Apple
anuncia Siri (no
sólo reconoce
voz, sino que la
entiende y actúa
en consecuencia)

2014: Microsoft
anuncia
Cortana, un
asistente
personal similar
a Siri

2014: Amazon
anuncia Echo,
un altavoz
controlado por
voz donde corre
el asistente
Alexa

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 19 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

2010 2020

Deep 

Speech 

Google

Home
Google

Home

LibriSpeech Human-level

Switchboard

Hybrid

HMM/DNNKaldi

Deep Speech 2 Google streaming

on-device transducer

Encoder-decoder 

models for ASR

Amazon

Echo

Apple Siri

Figure 1: A timeline of some of the major developments in speech recognition from the years 2010 to
2020. The decade saw the launch of voice-based devices and voice assistants, open-source and widely
used speech recognition software like Kaldi [23], and larger benchmarks like LibriSpeech [22]. We
also saw speech recognition models improve starting from hybrid neural network architectures [15] to
more end-to-end models including Deep Speech [11], Deep Speech 2 [2], encoder-decoder models with
attention [5], and transducer-based speech recognition [14].

• He predicted that neural networks “represent
a solution to the programming problem,” and
that “they will probably play a large part in
the future of computers.”

• He predicted the prevalence of general-
purpose rather than special-purpose hard-
ware, digital over analog, and high-level pro-
gramming languages all long before the field
had decided one way or another.

• He anticipated the use of fiber-optic cables in
place of copper wire for communication well
before the switch actually took place.

These are just a few examples of Hamming’s ex-
traordinary prescience. Why was he so good at
predicting the future? Here are a few observations
which I think were key to his ability:

Practice: One doesn’t get good at predicting the
future without actually practicing at it. Ham-
ming practiced. He reserved every Friday after-
noon “great thoughts” in which he mused on the
future. But he didn’t just predict in isolation. He
made his predictions public, which forced him to
put them in a communicable form and held him
accountable. For example, in 1960 Hamming gave
a talk titled “The History of Computing to the
Year 2000” (you may recognize the title) in which
he predicted how computing would evolve over the

next several decades.

Focus on fundamentals: In some ways, fore-
casting the future development of technology is
just about understanding the present state of tech-
nology more than those around you. This re-
quires both depth in one field as well as non-trivial
breadth. This also requires the ability to rapidly
assimilate new knowledge. Mastering the funda-
mentals builds a strong foundation for both.

Open mind: Probably the most important trait
Hamming exhibited, and in my opinion the most
difficult to learn, was his ability to keep an open
mind. Keeping an open mind requires constant
self-vigilance. Having an open mind one day does
not guarantee having it the next. Having an open
mind with respect to one scientific field does not
guarantee having it with respect to another. Ham-
ming recognized for example that one may be more
productive in an office with the door closed, but he
kept his office door open as he believed an “open
mind leads to the open door, and the open door
tends to lead to the open mind” [10, chp. 30].

I’ll add to these a few more thoughts. First, the
rate of change of progress in computing and ma-
chine learning is increasing. This makes it harder
to predict the distant future today than it was 50 or
100 years ago. These days predicting the evolution

2

2015 2016 2017 2018 2019 2020 2021
Year

2.5

5.0

7.5

10.0

12.5

W
or

d
er

ro
r

ra
te

Clean

Other

(a) LibriSpeech

2014 2015 2016 2017 2018 2019 2020
Year

5

10

15

W
or

d
er

ro
r

ra
te

Switchboard

CallHome

(b) Switchboard Hub5’00

Figure 3: The improvement in word error rate over time on the LibriSpeech [22] and Switchboard
Hub5’00 benchmarks. The data for these figures is from https://github.com/syhw/wer_are_we. The
dashed lines indicate human-level performance. The human-level results on LibriSpeech are reported in
Amodei et al. [2], and those on Switchboard are reported in Xiong et al. [31].

have a lot to learn about the role of sparsity in deep
learning. In theory, the computational gains from
sparsity could be substantial. Realizing these gains
will require developments in the software, and pos-
sibly hardware, used to evaluate sparse models.

Weak supervision will be an important research
direction for on-device training for applications
which typically require labeled data. For example,
a users interaction with the output of a speech rec-
ognizer or the actions they take immediately after-
ward could be useful signal from which the model
can learn in a weakly-supervised manner.

3.3 Word Error Rate

Prediction: By the end of the decade, possibly
much sooner, researchers will no longer be publish-
ing papers which amount to “improved word error
rate on benchmark X with model architecture Y.”

As you can see in figure 3, word error rates on
the two most commonly studied speech recognition
benchmarks have saturated. Part of the problem is
that we need harder benchmarks for researchers to
study. Two recently released benchmarks may spur
further research in speech recognition [3, 8]. How-

ever, I predict that these benchmarks will quickly
saturate by scaling up models and computation.

Another part of the problem is that we have
reached a regime where word error rate improve-
ments on academic benchmarks no longer correlate
with practical value. Speech recognition word er-
ror rates on both benchmarks in figure 3 surpassed
human word error rates several years ago.4 How-
ever, in most settings humans understand speech
better than machines do. This implies that word
error rate as a measure of the quality our speech
recognition systems does not correlate well with an
ability to understand human speech.

A final issue is research in state-of-the-art speech
recognition is becoming less accessible as models
and data sets are getting larger, and as computing
costs are increasing. A few well-funded industry
labs are rapidly becoming the only places that can
afford this type of research. As the advances be-
come more incremental and further from academia,

4Estimates of human-level word error rates on the Call-
Home portion of Hub5’00 vary considerably. For example
Saon et al. [25] report a best result 6.8 out of three tran-
scribers whose results vary by nearly 2.0 absolute word error
rate.

5

[Hannun21] A. Hannun, “The History of Speech Recognition to the Year 2030”. arXiv, 2021

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 20 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

Hacia una inteligencia artificial general...

1 Arquitectura
Transformer
(mecanismo de
atención)

2 Pre-entrenamiento
predictivo (LLM)

3 Ajuste fino

4 RLHF (Reinforcement
Learning from Human
Feedback)

Procesamiento del lenguaje natural (LLMs) + tecnoloǵıas del habla

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 21 / 59



Introducción y Breve Recorrido Histórico

Introducción y Breve Recorrido Histórico

“¡Es una locura! Estamos hablando de un enorme aumento
de la productividad, lo que debeŕıa significar más bienes y
servicios para todos, y por tanto, que todos estemos mejor.
Pero, en realidad, ¡va a ser todo lo contrario! Y esto es porque
vivimos en una sociedad capitalista. Lo que va a ocurrir es
que este inmenso aumento de la productividad generará mucho
más dinero para las grandes empresas y los ricos, y aumentará
la brecha entre los ricos y los que pierden sus empleos.

Y tan pronto como esa brecha se agranda, se crea un terreno
fértil para el fascismo. Aśı que... es realmente aterrador que
estemos llegando a un punto en el que, en lugar de mejorar las
cosas, las estamos empeorando cada vez más. Es una locura,
porque estamos haciendo algo que debeŕıa beneficiar a
todos. Obviamente, ayudará en la atención sanitaria y en la
educación, pero si los beneficios sólo van a parar a los ricos,
eso va a empeorar la sociedad.”

Geoffrey Hinton
Premio Nobel de F́ısica 2024

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 22 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Tabla de Contenidos

1 Introducción y Breve Recorrido Histórico

2 Aplicaciones de las Tecnoloǵıas del Habla

3 Análisis de la Señal de Voz

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 23 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Reconocimiento Automático del Habla (RAH)

Robust Speech Recognition via Large-Scale Weak Supervision 4

⋯

⋯

2 × Conv1D + GELU

⋮

cr
os

s 
at

te
nt

io
n

Log-Mel Spectrogram

~
SOT EN TRANS-


CRIBE 0.0 The quick

Tokens in Multitask Training Format

Transformer

Encoder Blocks
 Transformer


Decoder Blocks


EN 0.0 The quick brown

⋮ ⋮

next-token

prediction

Sinusoidal

Positional

Encoding

Learned

Positional

Encoding

Multitask training data (680k hours) Sequence-to-sequence learning

Multitask training format

English transcription

Any-to-English speech translation

Non-English transcription

No speech

🗣️  “Ask not what your country can do for ⋯”


📝  Ask not what your country can do for ⋯

🗣️  “El rápido zorro marrón salta sobre ⋯”


📝  The quick brown fox jumps over ⋯

🗣️ “언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯”


📝  언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯

🔊 (background music playing)


📝  ∅

PREV

special
tokens

text

tokens

timestamp
tokens

START OF

TRANSCRIPT

LANGUAGE

TAG

NO

SPEECH

EOT

TRANSCRIBE

TRANSLATE

begin

time

NO

TIMESTAMPS

⋯end

timetext tokens begin


time
end

timetext tokens

text tokens

Voice activity

detection


(VAD)

Custom vocabulary /
prompting

Time-aligned transcription

Text-only transcription

(allows dataset-specific fine-tuning)

X → English

Translation 

previous

text tokens

X → X

Transcription 

Language

identification

MLP

self attention

MLP

self attention

MLP

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

TRANS-

CRIBE

Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.

[Radford23] A. Radford et al., “Robust Speech Recognition via Large-Scale Weak Supervision”. In Proc. of ICML 2023

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 24 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Detección de Palabras Clave

La detección de palabras clave (KWS) se puede definir como la
tarea de identificar palabras clave en flujos de audio que contienen
voz

Aplicaciones de KWS: Mineŕıa de datos de voz, indexación de
audio, direccionamiento de llamadas telefónicas, etc.

KWS
+

ASR
KWS

Client
Server

HEY
ASSISTANT!

Wake-up word
+ Query

[Espejo21] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE Access, 2021

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 25 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Control por Voz de Aud́ıfonos Robusto al Ruido

0 0.5 1

Time (s)

-1

-0.5

0

0.5

1

A
m

p
lit

u
d
e

Front mic (Yes, Babble - 0 dB)

0 0.5 1

Time (s)

-1

-0.5

0

0.5

1

A
m

p
lit

u
d
e

In-ear mic (Yes, Babble - 0 dB)

0 0.5 1

Time (s)

-1

-0.5

0

0.5

1
A

m
p
lit

u
d
e

Rear mic (Yes, Babble - 0 dB)

6

room acoustics. Furthermore, it is reasonable to expect that,
in general, such a phase difference pattern can be easily
distinguished from those resulting from external speakers,
whose spatial locations with respect to the microphones are
necessarily different from that of a user.

Moreover, in our previous work [15], we found that the
higher the similarities between the own-voice and head-related
transfer functions2 of the user in terms of MFCC Euclidean
distance, the less distinguishable is an external speaker from
the user. In [15], these similarities yielded a reduction in
external speaker detection accuracy and, in turn, a drop in
performance in terms of KWS accuracy. This is because
spotting a keyword uttered by an external speaker as if it were
spoken by the user is considered to be an erroneous keyword
prediction.

Hence, for better discrimination between users’ own-voice
and external speakers, we propose the use of phase difference
information through GCC-PHAT-based features in the CQT
domain.

The GCC-PHAT coefficients, GPHAT (k, t), are defined as
[16]:

GPHAT (k, t) =
X1(k, t)[X2(k, t)]

∗

|X1(k, t)[X2(k, t)]∗|

= ej(φ1(k,t)−φ2(k,t)),

k = 1, ...,K, t = 1, ..., T,

(13)

where | · | denotes magnitude, [·]∗ refers to complex conjuga-
tion, and φ1(k, t) and φ2(k, t) are the phases of the signals
from the front and rear microphones, respectively. Then, a
GCC-PHAT-based matrix A ∈ RT×K is built from the angle
of (13), ]GPHAT (k, t) = φ1(k, t)− φ2(k, t), that is,

A =

 ]GPHAT (1, 1) · · · ]GPHAT (K, 1)
...

. . .
...

]GPHAT (1, T ) · · · ]GPHAT (K,T )

 . (14)

After mean and variance normalization of A, this matrix
is stacked to the T × K × 2 log-spectral magnitude tensor
described above and defined from Xi to create a compact and
coherent T ×K × 3 input feature tensor to the model.

In case of an arbitrary number of microphones, M , a total
of CM2 =

(
M
2

)
=M(M−1)/2 GCC-PHAT-based matrices

can be calculated as in (14) from the different CM2 pairs
of microphones. In this case, the size of the feature tensor
becomes T ×K ×

(
M + CM2

)
.

IV. EXPERIMENTAL FRAMEWORK

A. Multi-user Hearing Aid Speech Corpus

A multi-user hearing aid speech database is constructed in
order to train and test various variants of the proposed system.
This multi-user hearing aid speech database is a generalization
of the single-user hearing aid speech corpus presented in
[15]. Recall that, in this paper, “single-user” and “multi-
user” allude to whether impulse responses are measured, as
described below, on a single person or on multiple persons

2These concepts are carefully defined later in Subsection IV-A.

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

1 m

1.5 m

Fig. 4. Experimental set-up for transfer function measuring. Every external
speaker can be located in one of the 48 equidistantly spaced points (black
dots) on a circumference of 1.9 meter radius. One at a time, actual persons
and mannequins wearing a two-microphone behind-the-ear hearing aid in the
left ear are seated in the center of the circumference. The blue and red dots
refer to the front and rear microphones, respectively, of the hearing aid. The
brown circles symbolize the position of the sixteen loudspeakers.

Rear microphone
Front

microphone
1 cm

Fig. 5. Hearing aid shell mounted on the left ear of a head and torso simulator
with the front and rear microphone locations annotated [41].

wearing a hearing aid. Although the two databases have a
number of features in common, the multi-user hearing aid
speech database is described here in detail for the sake of
completeness. The database is created from the Google Speech
Commands Dataset (GSCD) [13], which is a speech corpus
that contains a total of 105,829 one-second long utterances,
each comprising one word among a set of 35 words. These
utterances were produced by 2,618 different speakers.

Figure 4 shows the experimental set-up used to generate
the multi-user hearing aid speech database from the GSCD.
Sixteen loudspeakers are arranged in a circular array, placed
equidistantly spaced around actual female and male subjects,
as well as mannequins, at eye-height in a low-reverberation lis-
tening room. Subjects and mannequins wear a two-microphone
behind-the-ear hearing aid prototype in the left ear similar
to the one in Figure 5 with an inter-microphone distance
of 10 mm. Own-voice transfer functions (OVTFs) and head-
related transfer functions (HRTFs) are measured on subjects
and mannequins one at a time. An OVTF is defined as the
pair of acoustic transfer functions between the mouth of the
subject and the front and rear microphones of her/his left ear
hearing aid. For this purpose, a close-talk microphone is placed
2 cm in front of the person’s mouth and speech sentences

[Espejo24] I. López-Espejo et al., “Noise-Robust Hearing Aid Voice Control”. IEEE Signal Processing Letters, 2024

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 26 / 59



Aplicaciones de las Tecnoloǵıas del Habla

RAH Audiovisual

Aplicaciones de la lectura labial: Hablar a un teléfono inteligente en
entornos altamente ruidosos, transcribir y doblar cintas mudas de archivo,
mejorar el rendimiento del RAH en general...

Cadena de procesamiento del RAH audiovisual:

[Afouras18] T. Afouras et al., “Deep Audio-Visual Speech Recognition”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2018

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 27 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Identificación de Temas en Grabaciones de la NASA

[Joglekar23] A. Joglekar et al., “Fearless Steps APOLLO: Challenges in keyword spotting and
topic detection for naturalistic audio streams”. The Journal of the Acoustical Society of America,
2023

AGILE-KWS: A Giant Leap for Keyword Spotting
Comisión Europea, Becas Globales Marie Curie (HORIZON-MSCA-2021-PF-01)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 28 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Decodificación del Habla Imaginada

TRENDS IN DS-BCI

The development of a ‘‘silent’’ interface has long been an active area of research to enable users to commu-

nicate without audible articulation of their speech. Several modalities have been developed to facilitate

such communication through movement-independent BCI, including BCI-spellers (e.g., D’albis et al.,

2012), BCIs based on steady-state visually evoked potential (e.g., Bin et al., 2009), and BCIs based on motor

imagery (e.g., Tabar and Halici, 2017a) (see AlSaleh et al., 2016; Tabar and Halici, 2017b for reviews). There

are numerous forms that these silent interfaces have taken to provide a more naturalistic, language-based

mode of communication, including ultrasound imaging of lip profiles (Denby et al., 2006) and word recog-

nition usingmagnetic implants and sensors (Gilbert et al., 2010). However, approaches such as these require

active motor skills that can be readily utilized as the communicative modality and are therefore not move-

ment-independent BCIs. The utility of BCI as amode for language-based communication has been notedby

researchers for many years (Denby et al., 2006; Donchin et al., 2000), with the concept for a DS-BCI being a

movement-independent BCI based on neural activity corresponding directly to imagined speech produc-

tion processes. However, the possibility of developing a BCI predicated purely on imagined speech has only

recently begun to gather momentum (Ikeda et al., 2014; Yoshimura et al., 2016; Nguyen et al., 2017) as re-

searchers have revealed promising results in attempts to classify units of imagined speech (González-Cas-

tañeda et al., 2017;Martin et al., 2014; Pei et al., 2011a; Yoshimura et al., 2016; Zhao andRudzicz, 2015). There

have been several incarnations of DS-BCIs, including awireless BCI for real-time speech synthesis (Guenther

et al., 2009) and a concept for continuous speech recognition (Herff et al., 2017). The current stream of

DS-BCI research indicates a trend toward improved classification of imagined speech units for decoded

brain activity (González-Castañeda et al., 2017; Martin et al., 2014) and the development of methodologies

for continuous decoding of imagined speech (Brumberg et al., 2016). There have also been recent

Figure 1. Seeking a Naturalistic Form of Communication through Direct-Speech BCI

(A) DS-BCI is a system that decodes neural signals (e.g., electroencephalography [EEG] or electrocorticography [ECoG])

(B) corresponding to imagined speech (A). Recorded signals are processed to facilitate maximal information extraction

and improvement of signal-to-noise ratio (C). The feature extraction (D) and classification (E) stages compute the most

discriminative information in the recorded signals and classify them as a part of speech. The output of a DS-BCI system is a

textual representation of the imagined speech (F) and auditory representation, which can be used for both

communication and feedback (G). In this example, the user actively produces the words ‘‘I am thirsty!’’ with imagined

speech. The signals acquired are temporally aligned with each word to facilitate feature extraction and classification. The

system produces two outputs: a text printout of the imagined speech words being produced and a synthesized audio

output, i.e., ‘‘I am thirsty!’’

iScience 8, 103–125, October 26, 2018 105

[Cooney18] C. Cooney et al., “Neurolinguistics Research Advancing Development of a Direct-Speech Brain-Computer Interface”.
Elsevier iScience, 2018

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 29 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Realce de la Voz

El realce de la voz persigue optimizar la calidad e inteligibilidad del habla
eliminando ruido e interferencias no deseadas

Importante procedimiento para mejorar el rendimiento de la comunicación
hablada y la calidad de los contenidos multimedia

[DSPAILab] DSP & AI Lab, http://dsp.yonsei.ac.kr/research/speech-enhancement/

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 30 / 59

http://dsp.yonsei.ac.kr/research/speech-enhancement/


Aplicaciones de las Tecnoloǵıas del Habla

Realce de la Voz

Aproximaciones
discriminativas (p. ej.,
FullSubNet+) vs.
generativas (p. ej.,
SGMSE+)

3

increase the performance significantly. Moreover, we include
an extended theoretical discussion and investigate different
sampler configurations. Finally, we expand the evaluation by
means of a cross-dataset evaluation, an instrumental evaluation
with real-world noisy recordings, and a listening experiment.

II. METHOD: SCORE-BASED GENERATIVE MODEL FOR
SPEECH ENHANCEMENT (SGMSE)

In this section, we motivate and describe in detail the
approach of using score-based generative models for speech
enhancement, as proposed in our previous publication [22].

A. Data representation

We represent our data in the complex-valued STFT domain,
as it has been observed that both real and imaginary parts
of clean speech spectrograms exhibit clear structure and are
therefore amenable to deep learning models [4]. Following
the approach of complex spectral mapping [5], we use our
conditional generative model to estimate the clean real and
imaginary spectrograms from the noisy ones.

The use of complex coefficients as data representation allows
the definition of the diffusion process in the complex spectral
domain, in which additive Gaussian noise corresponds to
the signal model used for the denoising task. This relates
to traditional STFT-based methods, where spectral coefficients
are usually assumed to be complex Gaussian distributed and
mutually independent [1], [2]. Statistical approaches often
consider an additive signal model assuming that the speech
process and the noise process are realizations of stochastic
processes that are statistically independent. Observing that the
overall noise process is a sum of several independent sources,
the central limit theorem ensures that the observed noise process
tends to be Gaussian [1].

Although it would be theoretically possible to define the
diffusion process in the magnitude domain, additive Gaussian
noise would not relate to the signal model anymore. This
becomes evident considering that in the magnitude domain,
additive Gaussian noise could result in negative amplitudes
which are physically not defined.

Thus, we operate on complex spectrograms that are elements
of CT×F , where T denotes the number of time frames
dependent on the audio length, and F represents the number
of frequency bins. To compensate for the typically heavy-tailed
distribution of STFT speech amplitudes [33], we apply an
amplitude transformation

c̃ = β|c|αei∠(c) (1)

to all complex STFT coefficients c, where ∠(·) represents
the angle of a complex number, α ∈ (0, 1] is a compression
exponent which brings out frequency components with lower
energy (e.g. fricative sounds of unvoiced speech) [34], and β ∈
R+ is a simple scaling factor to normalize amplitudes roughly
to within [0, 1]. Such a compression has been argued to be
perceptually more meaningful in speech enhancement [35], [36],
and the transformation ensures that the neural network operates
on consistently scaled inputs with respect to the Gaussian
diffusion noise [25].

x0 xTForward process

xTReverse processx0

Fig. 1: Diffusion process on a spectrogram: In the forward pro-
cess noise is gradually added to the clean speech spectrogram
x0, while the reverse process learns to generate clean speech
in an iterative fashion starting from the corrupted signal xT .

B. Stochastic Process

The tasks at hand, speech enhancement and dereverberation,
can be considered as conditional generation tasks: Given the
corrupted noisy/reverberant speech, generate clean speech
by using a conditional generative model. Most previously
published diffusion-based generative models are adapted to
such conditional tasks either through explicit conditining
channels added to the DNN [37], [38], or through combining
an unconditionally trained score model with a separate model
(such as a classifier) that provides conditioning in the form
of a gradient [28], [39]. With our method, we explore a third
possibility, which is to incorporate the particular task directly
into the forward and reverse processes of a diffusion-based
generative model.

a) Forward Process: Following Song et al. [28], we
design a stochastic diffusion process {xt}Tt=0 that is modeled
as the solution to a linear SDE of the general form,

dxt = f(xt,y)dt+ g(t)dw , (2)

where xt is the current process state, t ∈ [0, T ] a continuous
time-step variable describing the progress of the process (not
to be confused with the time index of any signal in the time or
T-F domain), y the noisy or reverberant speech, and w denotes
a standard Wiener process. The vector-valued function f(xt,y)
is referred to as the drift coefficient, while g(t) is called the
diffusion coefficient and controls the amount of Gaussian white
noise injected at each time-step. Note that different to Song et
al. [28], our drift term is now a function of y, by which we
tailor the proposed SDE to reconstruction tasks. The process is
defined for each T-F bin independently. Thus, the variables in
bold are assumed to be vectors in Cd with d = TF containing
the coefficients of a flattened complex spectrogram.

The forward process in Eq. (2) turns a clean speech sample
x0 into a corrupted sample xT by gradually adding noise
from the Wiener process, as illustrated in Fig. 1. To account
for the intended task adaptation of speech enhancement
or dereverberation, we propose a drift term that ensures
the mean of the process moving from clean speech x0 to
noisy/reverberant speech y. In particular, we define the drift
coefficient f and the diffusion coefficient g as

f(xt,y) := γ(y − xt) , (3)

[Richter23] J. Richter et al., “Speech Enhancement and Dereverberation
With Diffusion-Based Generative Models”. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 2023

Encoder Decoder

C
on
v 5

C
on
v 4

C
on
v 3

C
on
v 2

C
on
v 1

D
ec
on
v 5

D
ec
on
v 4

D
ec
on
v 3

D
ec
on
v 2

D
ec
on
v 1

L
S
T
M
1

L
S
T
M
2

log Rec.
Norm.

Y M̂ X̂

f (·|θ)

Fig. 1. Block diagram of the speech enhancement system employed in this paper. “Rec. Norm.” stands for time-recursive mean normalization [13]. See the
text for further details.

x(m) (for experimental purposes, we will consider in this work
an additive noise distortion model, y(m) = x(m) + ν(m),
where ν(m) is a background noise signal). This noisy signal
can be expressed in the short-time Fourier transform (STFT)
domain as Y (k, t), where k = 0, ...,K−1 and t = 0, ..., T −1
denote the frequency bin and time frame indices, respectively.
Besides, let

Y =

 |Y (0, 0)| · · · |Y (0, T − 1)|
...

. . .
...

|Y (K − 1, 0)| · · · |Y (K − 1, T − 1)|

 (1)

be a K × T matrix with the magnitude spectrum of y(m).
Following the spectral masking approach illustrated by Fig.

1, our goal is to estimate the clean speech magnitude spectrum
X (defined similarly to Y) by means of a time-frequency mask
M̂ ∈ [0, 1]K×T . This mask is applied to Y via point-wise
multiplication, specifically,

X̂ = M̂⊙Y, (2)

where the ⊙ operator denotes the Hadamard product, and ·̂
means an estimate. To realize Eq. (2), we aim at learning
a mapping function f (·|θ) : RK×T → [0, 1]K×T estimating
M̂ from the noisy speech log-magnitude spectrum, after
application of time-recursive mean normalization [13], as in

M̂ = f
(
logY|θ

)
, (3)

where θ is the set of learnable parameters of the mapping
function, the log operator is applied element-wise, and ·
denotes time-recursive mean normalization.

The mapping function f(·|θ) is deployed by the CRNN
depicted in Fig. 1 [10]. This architecture is comprised of an
encoder with 5 convolutional layers followed by 2 long short-
term memory (LSTM) layers and a decoder with 5 deconvolu-
tional layers. All the convolutional and deconvolutional layers
employ 3×1 kernels, a stride of (2, 1), and exponential linear
unit (ELU) activations (except for the output layer, which uses
a sigmoid activation function). The i-th convolutional layer,
Convi, has 2i+2 feature maps. Similarly, the i-th deconvo-
lutional layer, Deconvi, has 2i+1 feature maps (except for
Deconv1, which has 1 only). A skip connection serves to
concatenate the output of Convi to the input of Deconvi.
The LSTM hidden state dimension is set to 1,024.

Once X̂ has been obtained from Eq. (2), the enhanced
speech waveform x̂(m) is synthesized by calculating the

inverse STFT of X̂(k, t) =
∣∣∣X̂(k, t)

∣∣∣ · ej∡Y (k,t), where the
symbol ∡ denotes the phase value of the STFT coefficient.

It should be noted that recent speech enhancement efforts
(e.g., [14], [15]) employ spectral masking schemes similar to
the one described in this section.

A. Implementation Details

For STFT computation, we make use of a Hann window
with a length of 32 ms and a shift of 16 ms. Moreover, the
total number of frequency bins is K = 257.

Using Adam [16] with default parameters, the deep neural
network parameter set θ is optimized towards minimizing
the MSE between estimated and actual training clean speech
magnitude spectra:

LMSE =
1

KT

K−1∑
k=0

T−1∑
t=0

(∣∣∣X̂(k, t)
∣∣∣− |X(k, t)|

)2

. (4)

In addition, the mini-batch size is 8 training utterances, early-
stopping [17] with a patience of 15 epochs is employed, and
training runs for a maximum of 200 epochs.

III. SPEECH PRE-EMPHASIS INTEGRATION

We explore methods for pre-emphasizing the estimated
and actual training clean speech during deep neural network
training so that speech is perceptually balanced prior to loss
calculation [6], [8]. By doing this, our expectation is that
the contribution of distinct speech frequency components to
the total loss better reflects their perceptual importance, thus
boosting speech enhancement performance.

We consider two pre-emphasis variants that can be easily
integrated into the speech enhancement loss function: standard
pre-emphasis consisting of a first-order high-pass FIR filtering
(Subsec. III-A), and equal-loudness pre-emphasis (Subsec.
III-B). Besides, cubic-root amplitude compression is option-
ally considered to leverage pre-emphasis by further reducing
the speech spectral magnitude variation (Subsec. III-C).

Although the formulae below are particularized to the MSE
loss function of Eq. (4), it is important to note that the
pre-emphasis-based methodology under consideration can, in
principle, be adapted to any speech enhancement loss function.
Hence, this simple and cheap methodology may potentially
become a default add-on for training deep neural network-
based speech enhancement systems.

[Espejo24b] I. López-Espejo et al., “On Speech Pre-emphasis as a Simple and Inexpensive Method to Boost Speech
Enhancement”. In Proc. of IberSPEECH 2024

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 31 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Predicción de la Inteligibilidad de la Voz

Transformer Block 1

Transformer Block 2

CNN CNN CNN CNN

Transformer Block L

Feature Encoder

Wav2vec 2.0
Feature Extraction

(Subsec. 2.2)

SI Score

Embeddings

Bi-LSTM Layer

Fully-connected
Layer

SI Predictor

(Subsec. 2.1.1)

(Subsec. 2.1.3)

(Subsec. 2.3)

Input Hidden States

Attention

LoRA Block

ASR-FT SIP-FT
LoRA
Block

LoRA
Block

Output Hidden States

Multi-Head
Attention

Transformer Block
(Subsec. 2.1.2)

LoRA Block

Figure 1: The pipeline of our proposed method.

We apply LoRA to the original weight matrices in each atten-
tion head (WQ,WK ,WV ) and output weight matrix (WO) in
each transformer block. The general form of LoRA used in this
work is given by the following equation:

W = Wp+∆WA+∆WS = Wp+AA ·BA+AS ·BS, (1)

where Wp ∈ Rd1×d2 denotes the original weight matrix in
the pre-trained model, (AA ∈ Rd1×ra ,BA ∈ Rra×d2) and
(AS ∈ Rd1×rs ,BS ∈ Rrs×d2) represent the low-rank matrices
that are trained during noisy-speech ASR adaptation and SIP
fine-tuning, respectively, and W is the adapted weight matrix.
Note that ra, rs ≪ min(d1, d2).

2.1.3. Adapted backbones

Feature extraction was performed on three adapted wav2vec 2.0
backbone models, with each model pre-trained for a different
task:

• SSL [21]: This model only underwent self-supervised pre-
training on three multilingual datasets.

• ASR (clean) [22]: This model fine-tuned wav2vec 2.0 (SSL)
for English ASR on the Common Voice dataset [23].

• ASR (noisy): We adapted the clean-speech ASR model
above for noisy-speech ASR.

2.1.4. Noisy-speech ASR adaptation

When wav2vec 2.0 is used for ASR, a fully-connected layer is
added on top of it, which maps the contextual representations at
the last transformer layer h1

L, · · · ,hT
L to posterior probability

distributions over tokens.
In noisy-speech ASR adaptation, the pre-trained weight

matrix Wp from a clean-speech ASR model [22] is frozen and
AS and BS are dropped from Eq. (1). AA and BA are trained
with rank set to ra = 16, reducing the number of trainable pa-
rameters in the wav2vec 2.0 backbone from 300M to 3M.

2.2. Feature extraction

2.2.1. Weighted-sum model

Utilizing the embeddings from different layers of pre-trained
models has been shown to be beneficial for speech-related
downstream tasks [14, 24]. The weighted-sum features at the

t-th frame are defined as

xt
WS =

L∑
l=0

αlh
t
l , (2)

where αl is the learnable weight for the l-th layer.
To avoid overfitting, the parameters in the pre-trained mod-

els are usually frozen when there are limited training data avail-
able for the downstream task [14]. Following this same practice,
we freeze the parameters of the wav2vec 2.0 backbones in the
weighted-sum model (frozen), and train the weights αl as well
as the SI predictor. Additionally, the frozen backbones enable
us to compare the quality of the representations from the differ-
ent wav2vec 2.0 backbones in Subsec. 2.1.3.

Furthermore, to alleviate the aforementioned overfitting is-
sue, we explore the application of LoRA to the weighted-sum
model (LoRA). In Eq. (1), during the SIP fine-tuning stage, af-
ter adding the product of the previously trained AA, BA to Wp,
only AS and BS are trained, while the other matrices are frozen.
We set the rank of the LoRA matrices to rs = 8, effectively
decreasing the number of trainable parameters in the wav2vec
2.0 backbone from 300M to 1.5M. For comparison, we also
train another variant updating all the parameters in the wav2vec
2.0 backbone (i.e., without LoRA), named weighted-sum model
(full).

2.2.2. Projection model

When the pre-trained model is frozen, a linear combination of
the layer-wise embeddings may not sufficiently empower fea-
ture extraction for the downstream task. To tackle this problem,
we propose an affine mapping to project the embeddings from
different layers into a unified space. We take the mean of the
projected embeddings to calculate the feature vector that is in-
put to the predictor. The corresponding features at the t-th frame
can be defined as:

xt
P =

1

L+ 1

L∑
l=0

(
Al · ht

l + bl
)
, (3)

where Al ∈ Rdp×dw is the learnable weight matrix, bl ∈ Rdp

is the learnable bias vector, and dp = 256 is the projection
size. Only the parameters in the linear layers and predictor are
trained during SIP fine-tuning, while the wav2vec 2.0 backbone
is frozen.

[Wang24] H. Wang et al., “No-Reference Speech Intelligibility Prediction Leveraging a Noisy-Speech ASR Pre-Trained Model”.
In Proc. of Interspeech 2024

Aprendizaje auto-supervisado de representaciones del habla
1 Wav2vec 2.0 ( https://huggingface.co/docs/transformers/model doc/wav2vec2)

2 HuBERT ( https://huggingface.co/docs/transformers/model doc/hubert)

3 WavLM ( https://huggingface.co/docs/transformers/model doc/wavlm)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 32 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Śıntesis de Voz

TTS

Text Analysis Char→Linguistic

TN [316, 229, 437], G2P [410, 326, 327]
Prosody Prediction [318, 140, 283, 257]
Unified Model [258, 444]
DeepVoice 1/2 [8, 87]

Acoustic Model

Linguistic→Acoustic
HMM-based [416, 356, 415, 357]
DNN based [426, 284]
RNN based [78, 422], Emphasis [191]

Char/Phone→Acoustic

ARST [375], DeepVoice 3 [270]
Tacotron 1/2 [382, 303], DurIAN [418]
FastSpeech 1/2 [290, 292], DCTTS [332]
TransformerTTS [192], VoiceLoop [333]
ParaNet [268], Glow-TTS [159]
Grad-TTS [276], PriorGrad [185]

Vocoder

Vocoder in SPSS STRAIGHT [155], WORLD [238]

Linguistic→Wav WaveNet [254], Par.WaveNet [255]
WaveRNN [150], GAN-TTS [23]

Acoustic→Wav

LPCNet [363], WaveGlow [279]
FloWaveNet [163], MelGAN [178]
Par.WaveGAN [255], HiFi-GAN [174]
DiffWave [176], WaveGrad [41]

Fully E2E Model Char/Phone→Wav
Char2Wav [315], FastSpeech 2s [292]
ClariNet [269], EATS [69], VITS [160]
Wave-Tacotron [385], EfficientTTS [235]

(a) A taxonomy of neural TTS.

Character

Phoneme

Linguistic Features

Waveform

LSP/MCC/MGC+F0+BAP

BFCC

MelSLinS

TN + G2PTN + WordSeg + POS + Prosody+ G2P

Tacotron 2
DeepVoice 3
TransformerTTS 
FastSpeech 1/2

Tacotron

HMM/DNN based SPSS

ARST 

LPCNet Griffin-Lim

Char2Wav  
ClariNet 
FastSpeech 2s
EATS
Wave-Tacotron
EfficientTTS
VITS

WaveNet
Par.WaveNet
WaveRNN
GAN-TTS

STRAIGHT
WORLD

WaveGlow
FloWaveNet
MelGAN
Par.WaveGAN
HiFi-GAN
DiffWave
WaveGrad

Text

Linguistic
Features

Acoustic
Features

Waveform

(b) The data flows from text to waveform.

Figure 3: A taxonomy of neural TTS from the perspectives of key components and data flows.

5

[Tan21] X. Tan et al., “A Survey on Neural Speech Synthesis”. arXiv, 2021

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 33 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Traducción Automática de Voz Cantada a Voz Cantada

Vocal Performance

Block 1
Automatic Lyrics Transcription

Subsection 3.1

Block 2
Phoneme-Level Lyrics Alignment

Subsection 3.2

Block 5
Autmomatic Lyrics Translation

Subsection 3.5

Block 7
Singing-Voice Synthesis

Section 3.7

は な す

0 <L 1.23, EH 1.27, T 1.51>
<IH 1.51, T 1.68>

<G 1.68, OW 1.70> 2.03

Let it go 離す

Block 3
Note-Level Lyrics Alignment

Subsection 3.3

<Note 1, onset 1.23, dur 0.28>
<Note 2, onset 1.51, dur 0.17>
<Note 3, onset 1.68, dur 0.35>

Block 6
Pronunciation
Subsection 3.6

<は, onset 1.23, dur 0.28>
<な, onset 1.51, dur 0.17>
<す, onset 1.68, dur 0.35>

Block 4
Frame-Level Vocal Melody Extraction

Subsection 3.4

Pitch: 58, start 1.23, end 1.25
Pitch: 61, start 1.25, end 1.27
Pitch: 62, start 1.27, end 1.28

Character Types
Kanji: 離

Hiragana: は, な, す

Figure 1. Overview of the proposed SV2SVT system. In Block 2, each word is delimited by “<” and “>” and has been
split into phonemes with accompanying starting times. The same applies to Blocks 3 and 4 regarding syllables/mora. Block
7 shows the notes passed to the synthesizer in green with their respective Japanese characters, alongside a white squiggle
which indicates the pitch over time.

3.1 Automatic Lyrics Transcription (ALT)194

Whisper [22] is a transformer-based [10] model pre-trained195

on 680k hours of weakly labeled audio data for multi-196

task learning; there among the main task being multi-197

lingual automatic speech recognition. The most re-198

cent iteration, Whisper-large-V3, is trained on 1M199

hours of weakly labeled audio and 4M hours of au-200

dio which was pseudo-labeled by Whisper-large-V2.201

Whisper-large-V3 is collected from HuggingFace 3202

for ALT. We have not fine-tuned Whisper on singing data203

due to Whisper’s great ability to generalize across several204

domains. To keep the memory usage of Whisper within205

∼8 GB, a chunking algorithm is set up to chunk the input206

recording into 30s segments and process them individually207

with a batch size of 4. as shown on Figure 1 in Block 1,208

the output of Whisper is a string of English text given the209

audio of an English vocal performance as input.210

3.2 Lyrics Alignment211

Phoneme-level lyrics alignment of the English transcrip-212

tion to the input audio is done with the model informed213

in [26]. Each word is deconstructed into a phonetic struc-214

ture according to the CMU pronunciation dictionary 4 . A215

voice activation detection threshold can be set between 0216

and 30 to help mitigate noise during pauses between sung217

word. As shown in Figure 1, both the audio from the vo-218

cal performance and the transcription provided by the ALT219

system in Block 1 are exploited to generate lyrics align-220

ment in Block 2, in which the outputs are each phoneme221

with a starting time of appearance in the input audio.222

3 https://huggingface.co/openai/
whisper-large-v3

4 http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Word BLUEBERRY

Phonemes B L UW1 B EH2 R IY0

Syllables BLUW BEH RIY

Table 1. Example of the word “blueberry” being decon-
structed phonetically according to the CMU pronunciation
dictionary and further reconstructed into syllables. An in-
teger ranging 0-2 is associated with each vowel to indicate
the type of vowel stress.

3.3 Note Creation223

In Western languages, poetry and song lyrics are very rem-224

iniscent of each other. Such a piece of poetry has a rhyth-225

mic structure called meter. This structure can be dissected226

into a syllabic pattern [37]. Therefore, in Figure 1, Block227

3, the boundaries of a note are defined by the alignment of228

a syllable. The phonetics generated by the lyrics aligner in229

Block 2 are concatenated into syllables in accordance with230

the CMU pronunciation dictionary (see an example in Fig-231

ure 1). It is assumed that each vowel makes an individual232

syllable. Consonants are merged with their closest neigh-233

boring vowel, gravitating towards the rightmost vowel in234

case of both neighboring phonemes being vowels. Each235

syllable has an onset and duration which are derived from236

the alignment of each phoneme belonging to that syllable,237

and these temporal alignments of syllables are what defines238

the notes.239

[Antonisen24] S. Antonisen and I. López-Espejo, “PolySinger: Singing-Voice to Singing-Voice Translation from English to
Japanese”. In Proc. of ISMIR 2024

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 34 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Verificación/Reconocimiento de Hablantes

Enrollment
Utterance

Verification 
Model

Test
Utterance

Bob's registration voice.

Is that Bob's voice?

ThresholdScore Score ≥ Threshold

Score <  Threshold

Yes

No

A.  Speaker verification

C.  Speaker diarization

Diarization
Model

Open Set

Closed Set

Identification
Model

Test
Utterance

Registration voice

Who's voice?

Utterance1

Utterance2

Utterance3

Utterance4

Bob's

Roy's

Lee's

Eric's

Threshold

MaxScore 
≥ Threshold
MaxScore 
<  Threshold

Max Spk

New Spk













Score4Score3
Score2Score1

Max

Max speaker's voice?

B.  Speaker identification

1 2 3 4 5 6 7 8

10 4

-0.4

-0.2

0

0.2

0.4

1 2 3 4 5 6 7 8

10 4

Spk3

Spk2

Spk1

Figure 1: The flow chats of speaker verification (Fig. A), speaker identification (Fig. B), and speaker diarization (Fig. C).

trend of the deep learning based speaker recognition. The main
contributions of this paper are summarized as follows:

• We summarize deep learning based speaker feature extrac-
tion techniques from four aspects: inputs, network struc-
tures, temporal pooling strategies, and objective functions,
which are the fundamental components of many speaker
recognition problems.

• We make an overview to the deep learning based speaker
diarization, with an emphasize of recent supervised, online
and end-to-end diarization algorithms.

• We survey robust speaker recognition from the perspec-
tives of speech enhancement and domain adaptation (do-
main adaptation and speech enhancement), which are
two major approaches to deal with noise and domain mis-
match (domain mismatch and noise) problems.

In the last two decades, many excellent speaker recognition
overviews have been published. This paper is fundamentally
different from previous overviews. First, this paper focuses
on the recently development of deep learning based speaker
recognition techniques which achieved the state-of-the-art per-
formance in many situations, while most previous overviews
are based on traditional speaker recognition methods [1, 4, 17–
21]. Although the papers [22, 23] summarized the deep learn-
ing based speaker recognition methods in certain aspects, our
paper summarized different subtasks and topics of speaker
recognition from new perspectives. Specifically, [22] presents
an overview to the potential threats of adversarial attacks to
speaker verification as well as the spoofing countermeasures,
which is not the focus of this overview. We provide a broad
and comprehensive overview to a wide aspects of speaker veri-
fication, speaker diarization and domain adaptation etc, most of
which have not be mentioned in [23].

The rest of the survey is organized as follows. In Section
2, we give a general overview and define some notations. In

Sections 3 to 10, we survey the deep learning based speaker
recognition methods in various aspects. In Section 11, we sum-
marize some speaker recognition challenges, and publicly avail-
able data and software toolkits. Finally, we conclude this article
in Section 12.

2. Overview and scope

This overview summarizes four major research branches of
speaker recognition, which are speaker verification, identifica-
tion, diarization, and robust speaker recognition respectively.
The flow chats of the first three branches are described in Fig.
1, while robust speaker recognition deals with the challenges
of noise and domain mismatch problems. The contents of the
overview are organized in Fig. 2, which are described briefly as
follows.

Speaker verification aims at verifying whether an utterance
is pronounced by a hypothesized speaker based on his/her pre-
recorded utterances. Speaker verification algorithms can be cat-
egorized into stage-wise and end-to-end ones. A stage-wise
speaker verification system usually consists of a front-end for
the extraction of speaker features1 and a back-end for the simi-
larity calculation of speaker features. The front-end transforms
an utterance in time domain or time-frequency domain into a
high-dimensional feature vector. It accounts for the recent ad-
vantages of the deep learning based speaker recognition much,
and has been extensively studied. In Sections 3 to 7, we survey
the research on the front-end comprehensively. The back-end
first calculates a similarity score between enrollment and test
speaker features and then compare it with a threshold:

f (x, y,w)
H0

≷
H1

θ (1)

1The term speaker features (such as the i-vector, d-vector, x-vector, etc) and
the term features are equivalent in this paper, unless otherwise stated. (delete
!!!)

2

Figure 1: Flowcharts of speaker verification, speaker identification, and speaker diarization. Fig. A describes speaker verification, which is a task of verifying
whether a test utterance and an enrollment utterance are uttered by the same speaker via comparing the similarity score of the utterances with a pre-defined
threshold. Fig. B describes speaker identification, which is a task of determining the speaker identity of a test utterance from a set of speakers. If the utterance must
be produced from the set of the speakers, then it is a closed set identification problem; otherwise, it is an open set problem. Fig. C describes speaker diarization,
which addresses the problem of “who spoke when”, i.e., partitioning a conversation recording into several speech recordings, each of which belongs to a single
speaker.

tion techniques for speaker verification and identification,
from the aspects of inputs, network structures, temporal
pooling strategies, and objective functions which are also
the fundamental components of many other speaker recog-
nition subtasks beyond speaker verification and identifica-
tion.

• We make an overview to the deep learning based speaker
diarization, with an emphasis of recent supervised, end-to-
end, and online diarization.

• We survey robust speaker recognition from the perspec-
tives of domain adaptation and speech enhancement,
which are two major approaches to deal with domain mis-
match and noise problems.

In the last two decades, many excellent overviews on speaker
recognition have been published. This paper is fundamentally
different from previous overviews. First, this paper focuses on
the recently development of deep learning based speaker recog-
nition techniques, while most previous overviews are based
on traditional speaker recognition methods [1, 17, 4, 18, 19,
20, 21]. Although [22, 23] summarized deep learning based
speaker recognition methods in certain aspects, our paper sum-
marizes different subtasks and topics from new perspectives.
Specifically, [22] presents an overview to the potential threats of
adversarial attacks to speaker verification as well as the spoof-
ing countermeasures, which is not the focus of this overview.
We provide a broad and comprehensive overview to a wide as-
pects of speaker verification, speaker diarization, domain adap-
tation, most of which have not been mentioned in [23].

This article is targeted at three categories of readers: The be-
ginners who wish to study speaker recognition, the researchers

who want to learn the whole picture of speaker recognition
based on deep learning, and the engineers who need to under-
stand or implement specific algorithms for their speaker recog-
nition related products. In addition, we assume that the read-
ers have basic knowledge of speech signal processing, machine
leaning and pattern recognition.

The rest of the survey is organized as follows. In Section
2, we give a general overview and define some notations. In
Sections 3 to 10, we survey the deep learning based speaker
recognition methods in various aspects. In Section 11, we sum-
marize some speaker recognition challenges and publicly avail-
able data. Finally, we conclude this article in Section 12.

2. Overview and scope

This overview summarizes four major research branches of
speaker recognition, which are speaker verification, identifica-
tion, diarization, and robust speaker recognition respectively.
The flowcharts of the first three branches are described in Fig.
1, while robust speaker recognition deals with the challenges
of noise and domain mismatch problems. The contents of the
overview are organized in Fig. 2, which are described briefly as
follows.

Speaker verification aims at verifying whether an utterance
is pronounced by a hypothesized speaker based on his/her pre-
recorded utterances. Speaker verification algorithms can be cat-
egorized into stage-wise and end-to-end ones. A stage-wise
speaker verification system usually consists of a front-end for
the extraction of speaker features and a back-end for the simi-
larity calculation of speaker features. The front-end transforms
an utterance in time domain or time-frequency domain into a

2

[Bai21] Z. Bai and X.-L. Zhang, “Speaker recognition based on deep learning: An overview”. Elsevier Neural Networks, 2021

Verificación (1:1) vs. identificación/reconocimiento (1:N)

Diarización: ¿En qué momento habló quién?

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 35 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Detección de Suplantación por Voz
Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Speech a 
voice               

Waveform

Waveform

Replayed

Genuine

Record on 
microphone

Record on 
microphone

Record on 
microphone

Play on 
speaker

Speech a 
voice               

Physical Access (PA)

Waveform

Waveform

TTS Server

Text to Speech (TTS) : synthetic speech

Speech a 
voice               

Record on 
microphone

Record on 
microphoneVC Server

Voice Conversion (VC) : converted voice

Genuine

Logical Access (LA)

FIGURE 1: Processes involved in detecting voice spoofing attacks, for logical access and physical access, respectively.

speech data, and it applies augmentation to raw speech and
the associated spectrograms. The MoCo speaker embedding
system [33] modified MoCo used for speaker verification.
Similarly, as in Speech SimCLR, this method applies aug-
mentation to raw speech and the associated spectrograms.

E. EXPERIMENTAL CASE STUDY OF CONTRASTIVE
LEARNING FOR VOICE SPOOFING DETECTION
In this study, we investigated the effect of pre-training based
on contrastive learning on voice spoofing attack detection.
For training, we used two features, STFT and CQT. We
used ResMax models that had displayed good performance
levels in the ASVspoof challenge as a base model [18]. The
proposed method applies the data augmentation technique
and has the following characteristics:

• MoCo’s dynamic dictionary is considered to achieve rel-
atively good performance even with small batch sizes.
Since SimCLR creates negative pairs in one mini-batch
(the size of the negative pairs depends on the size of
the mini-batch, N ), SimCLR requires a large batch size
for efficient performance.MoCo relieves the SimCLR’s
problem that requires large batch sizes by using a dy-
namic dictionary to generate negative pairs. Therefore,
the proposed model considered Moco’s dynamic dictio-
nary to ensure that experiments are feasible with small
batch sizes. In our experimental study, the proposed
outperformed the baseline model. EERs reduced from
6.93% to 6.23% for the LA scenario and from 0.60% to
0.47% for the PA scenario.

• The symmetric loss of SimCLR and BYOL is consid-
ered. The symmetric loss re-calculates loss by changing
the original loss’s query and key, and the model uses
the average of the two resulting losses. In our study, the
proposed model showed better performance in EERs.
EERs reduced from 6.23% to 6.08% for the LA scenario
and from 0.47% to 0.45% for the PA scenario.

• COLA’s bilinear similarity is applied to learn weights
for each query and key. The performance levels of
6.08% for the LA scenario and 0.45% for the PA sce-
nario achieved in the preceding experiment were further
improved from 6.08% to 5.92% for the LA scenario and
from 0.45% to 0.40% for the PA scenario.

• Random crop and noise addition are used, which are
commonly used augmentation techniques in existing
studies of contrast learning with audio data. We experi-
mented with center shifting, dynamic range change, and
speed change. The combination of random crop, addi-
tive noise, and center shifting improved the performance
in the LA scenario from 5.92% to 5.26%.

II. METHODS
A. SIMCLR

SimCLR [21] is a framework for contrastive learning based
on data augmentation. Say we have N image samples in a
given training batch (x1, · · · , xN ), two transformed images
x̃i,1 and x̃i,2 are generated from each image xi, resulting 2N
transformed images in one batch. In 2N number of images
x̃i,1 have one positive pair x̃i,2, generated from the same
source of image xi, and other images are negative images.

The images x̃i,j , i ∈ {1, · · · , N}, j ∈ {1, 2} are passed
through the encoder f(·) to obtain fixed-size image rep-
resentations hi,j . The representations hi,j = f(x̃i,j) are
passed through the projection head g(·), which is a nonlinear
network, to obtain zk = g(f(x̃i,j)), k = 2(i− 1) + j. Here,
f(·) is a base encoder, for example, we can use ResNet. A
projector header g(·) can be a simple multi-layer perceptron.

The similarity between zi, and zj , i, j ∈ {1, · · · , 2N} is
calculated using cosine similarity:

si,j =
zTi zj

τ∥zi∥∥zj∥
,

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3254880

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

[Lee23] Y. Lee et al., “Experimental Case Study of Self-Supervised Learning for Voice Spoofing Detection”. IEEE Access, 2023

Ataques de acceso lógico: Śıntesis de voz,
conversión de voz (deepfakes)

Ataques de acceso f́ısico: Imitación,
repetición/reproducción

Feature  
extractor

Utterance-level
processing . 

. 

Binary classifier
Genuine

Impersonated

Speech
signal

Embedding

Deep neural network

Anti-spoofing model

Signal 
pre-processing

Figure 1: Diagram of a typical anti-spoofing system. The input speech undergoes pre-processing before being passed to a deep feature
extractor, which generates an embedding representing the entire utterance. A binary classifier then determines whether the speech is
genuine or spoofed. In many cases, these components are integrated into a single DNN architecture.

representative datasets are available. As spoofing attacks can
vary widely, making it nearly impossible to account for all pos-
sible attack vectors in training data, DNN-based anti-spoofing
methods often struggle to generalize to real-world scenarios.
This highlights the need for more robust or, even, alternative
solutions.

2. Project goals
This project focuses on enhancing the security of voice-based
interactions, particularly in the contexts of voice biometrics and
audio deepfakes. Building upon our previous research [15], this
project aims to address current anti-spoofing systems shortcom-
ings. To this end, we will first explore novel DNN architec-
tures, cost functions and training strategies. Explainability will
be also crucial for understanding how models detect genuine
or spoofed speech, providing insight into the decision-making
process. Additionally, the environmental impact of DNN mod-
els will be considered, as their computational requirements have
skyrocketed, leading to significant increases in energy con-
sumption and carbon emissions [16].

Another critical aspect of this project is the creation of im-
proved anti-spoofing databases. High-quality, diverse datasets
are essential for training models that can generalize to a wide
range of attack scenarios. The evolution of anti-spoofing chal-
lenges has shown that generating more realistic data that reflect
real-world conditions is crucial, as is employing data augmen-
tation techniques to enhance diversity within training sets.

Finally, as deep learning methods for generating synthetic
speech continue to evolve, there is a risk that detection sys-
tems will become less effective against increasingly realis-
tic deepfakes. In anticipation of this, we propose investigat-
ing robust and imperceptible watermarking techniques for syn-
thesized speech, ensuring that deepfake audio can be reliably
tagged and identified, even if attackers attempt to tamper with
the watermark. This will help create a more secure framework
for speech-based interactions in the digital age.

2.1. Feature extractors and detection models

Speech features play a critical role in detecting spoofing attacks
in voice biometrics systems. Traditional speech features such as
filter banks (FBANK) and Mel-frequency cepstral coefficients
(MFCC) have been replaced by more advanced extractors de-
signed specifically for spoof detection, such as constant-Q cep-
stral coefficients (CQCC) [17] and long-term spectral statistics
(LTSS) [18]. These features primarily focus on spectral magni-
tude, but recent approaches also explore working directly with
audio samples through task-oriented deep learning models, such
as convolutional neural networks (CNNs), SincNet [19], and
self-supervised models like wav2vec 2.0 [20].

Recurrent networks are frequently used for extracting iden-
tity vectors and making final decisions in spoofing detection.
For example, the Gated Recurrent Convolutional Neural Net-
work [12] and RawNet2 [21] have shown strong performance
against both PA and LA attacks. Emerging models now incor-
porate attention mechanisms and graph neural networks [22],
while our team is investigating novel architectures such as Con-
former [13].

Beyond architecture, the choice of a loss function is cru-
cial for optimizing detection models. While cross-entropy is
the standard, alternative approaches like triplet loss [23] and
kernel-based methods [24] are being explored to enhance fea-
ture discrimination and generalization.

Despite these advances, current state-of-the-art systems still
show significant limitations, with high equal error rates (EER)
in cross-database evaluations [25], making those unsuitable for
real-world applications. This project aims to address these gaps
by developing more robust feature extractors, novel DNN archi-
tectures, and better loss functions. Additionally, we will prior-
itize energy efficiency and carbon footprint considerations (by
means of tools as the proposed in [26]) and explore explainable
AI (xAI) frameworks [27] to enhance both model transparency
and performance.

2.2. Data generation and augmentation

One of the main challenges in developing anti-spoofing sys-
tems is the availability of suitable data, especially for PA at-
tacks. The ASVspoof challenge series [8] has played a signif-
icant role in providing standardized datasets for training and
evaluating spoof detection methods. However, earlier datasets,
such as ASVspoof 2017 [7], revealed that models often ex-
ploited defects in the data generation process, leading to over-
fitting rather than solving the actual problem. In response,
ASVspoof 2019 [28] used simulated PA data to control con-
ditions. As a result, models achieved strong performance in the
simulated environment. However, when tested on real-world
data, they performed poorly, showing an inability to generalize.
The ASVspoof 2021 [11] challenge continued this line, further
confirming the difficulty models face in adapting to real-world
spoofing scenarios, with EERs exceeding 24%. Logical access
attack detection faces similar challenges in terms of generaliza-
tion. While fusing complementary subsystems has shown some
success in combating diverse speech synthesis attacks [28], new
issues have arisen due to factors such as speech transmission ef-
fects and the inclusion of deepfake detection tasks in ASVspoof
2021.

This underscores the need for more suitable data to train ro-
bust anti-spoofing systems. However, collecting extensive real-
world data can be costly, prompting the exploration of data aug-

243

[Gomez24] A. M. Gomez et al., “Signal and Neural Processing
against Spoofing Attacks and Deepfakes for Secure Voice
Interaction (ASASVI)”. In Proc. of IberSPEECH 2024

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 36 / 59



Aplicaciones de las Tecnoloǵıas del Habla

Diagnóstico de Enfermedades

Detección de la
enfermedad de Alzheimer

                          x2

Input Speech

BN Feature
Extractor

Normalization

Fully Connected

CNN

MaxPooling

Batch Norm

Dropout

Fully Connected

Fully Connected

  AD/CTRL

Attention Pooling

                           x2

Dropout

BiLSTM

Feature Extraction Local Context Modeling Global Context Modeling Classification

Fig. 2. The structure of our proposed neural networks for AD detection, where “BN” stands for “bottleneck”.

a gated convolutional neural network (GCNN) trained on acoustic
features. This method achieved an accuracy of 73.6% on Demen-
tiaBank and it still relied on the sentence boundary information
in manual annotations. One challenge of only using acoustic
features is that it is difficult to learn linguistic-related representations
automatically from acoustic features. Another challenge is the
limited amount of training data, especially considering the diverse
speaker characteristics and acoustic environments in the corpus.

In this paper, we propose a neural-network-based method to
detect AD from speech without reliance on manual transcriptions.
The neural network utilizes the bottleneck features extracted by a
separately built ASR model as its input. Bottleneck features can
provide intermediate representations between raw acoustic features
and text transcriptions, which alleviate the influence of both acoustic
diversities and ASR errors on AD detection. The network structure
is composed of convolutional neural network (CNN) layers for local
context modeling, recurrent neural network (RNN) layers for global
context modeling and an attention pooling layer for classification.
A masking-based data augmentation method is further designed to
deal with data scarcity. Experimental results on the DementiaBank
corpus demonstrate the effectiveness of our proposed method.

2. METHODS

2.1. Model Structure

The task studied in this paper is to make a binary classification
between AD and CTRL based on a subject’s speech. Inspired
by the CNN-RNN neural networks for speech emotion recognition
[14, 15], our model is designed as Fig. 2, which contains several
blocks, including (1) bottleneck feature extraction, (2) local context
modeling, (3) global context modeling, and (4) attention pooling and
classification.

2.1.1. Bottleneck Features

Common acoustic features for speech classification include spectral
features (e.g., MFCC and Mel-spectrum), voicing-related features
(e.g., F0, jitter and shimmer), energy features, etc. These features
are all low-level descriptions of speech signals, containing a large
amount of speaker information and environmental variation. Di-
rectly using these low-level features to train neural networks for AD
detection may cause serious overfitting problems. Therefore, this
paper proposes to utilize bottleneck features for AD detection.

Bottleneck features were initially proposed by utilizing the deep
neural network (DNN) acoustic model for speech recognition as

a feature extractor [16]. The DNN model predicted the phoneme
identification of each frame from spectral features and it contained a
hidden layer with fewer units than other layers, which was called the
bottleneck layer. The activation values of this layer were extracted
as bottleneck features, which eliminated speaker information and
provided intermediate representations between raw acoustic features
and phonetic transcriptions for each frame.

The bottleneck feature extractor used in this paper is a speaker-
independent LSTM model for ASR. This model was trained using
an internal dataset of iFLYTEK company, which contained about
3000 hours of English recordings. The model inputs are MFCC
features, and the classification targets are clustered triphones, i.e.,
senones. The dimension of the extracted bottleneck feature vector at
each frame is D = 512 and the frame shift is 40ms.

After extracting bottleneck features from the recordings of a
subject, their length is normalized to T frames by truncation or
zero-padding. We set T = 2560 which corresponds to recordings
of 102.4s and exceeds the length of about 90% samples in the
DementiaBank corpus. Then, each dimension in the extracted
bottleneck feature vectors is globally normalized to zero mean and
unit variance. The results XBN ∈ RD×T are sent into following
blocks for classification.

2.1.2. Local Context Modeling

This block aims to extract local context information contained by the
bottleneck features within a short frame window. As shown in Fig. 2,
this block contains two CNN layers. Each layer conducts a one-
dimensional convolution along the sequence of bottleneck features
using kernels (i.e., filters). We pad the sequence with zero before
convolution, so that the length of convolution output is the same as
the input one. These two CNN layers have 128 and 256 kernels
respectively and the kernel size is 3. A rectified linear unit (ReLU)
is employed as the activation function of both CNN layers. Then, a
max-pooling layer with a pooling size of 2 is inserted after each CNN
layer to reduce the length of sequences. Thus, the output sequence
of local context modeling has T/4 frames. In order to alleviate
overfitting, L2 regularization is used on all convolutional layers
during model training. The regularization coefficient is 1× 10−5.

2.1.3. Global Context Modeling

RNNs provide a better capability of modeling sequential data than
CNNs because the RNN hidden state at each time step contains all
historical information. As traditional RNN models suffer from the
problem of vanishing and exploding gradients, LSTM units are used

7324

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 27,2025 at 07:11:42 UTC from IEEE Xplore.  Restrictions apply. 

[Liu21] Z. Liu et al., “Detecting Alzheimer’s Disease from Speech Using NNs
with Bottleneck Features and DA”. In Proc. of ICASSP 2021

Detección de la depresión

Fig. 1. (a) Overall framework of the proposed methods which consists of the long sequence modelling module, the temporal external attention module, and
the prediction module. (b) Illustration of the long sequence modelling module. It employs the Bi-Mamba and dual-path architecture to reconstruct the raw
audio waves. (c) Illustration of the temporal external attention module. It enhances depression patterns through correlation analysis with additional parameters.
(d) Illustration of the prediction module. It predicts the individual depression level scores based on previous output.

of our knowledge, this is the first study attempt to adopt
long speech sequences to reflect the real-world scenarios
for depression estimation. 3) The experimental results on
the real datasets e.g., AVEC2013 [24] and AVEC2014 [25]
demonstrate the effectiveness of the proposed method.

II. PROPOSED METHOD

In this section, we first review the preliminaries of the state
space model which is the basic component of Bi-Mamba.
We then provide a detailed explanation of the long-sequence
modeling module, the temporal external attention module, and
the prediction module.

A. Long Sequence Modelling Module
The long sequence modelling module has a dual-path struc-

ture, integrating SSMs with Mamba. Let X ∈ RN×L represent
the input raw waveform, where N is the feature dimension and
L is the sequence length. Following the approach suggested
by [16], the raw waveform is transformed into a 3D tensor
RN×K×S , where K is the chunk length and S is the number
of chunks. The output of this module Y ∈ RN×L maintains
the same shape as the input.

1) State Space Model: The SSM maps sequences from
x(t) ∈ R to y(t) ∈ R through a hidden state h ∈ RH . It
utilizes matrices A ∈ RH×H for state transitions, B ∈ RH×1

for input projection, and C ∈ R1×H for output projection,
where H denotes the dimension of the hidden state.

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t) (1)

For discrete-time signal analysis, the continuous SSM is
discretized using matrices Â, B̂:

ht = Âht−1 + B̂xt, yt = Cht (2)

Fig. 2. The Bi-Mamba network structure. g+ and j+ stand for the anterior
processed sequence. g− and j− stand for the posterior processed sequence.

where matrices Â and B̂ are derived via a zero-order hold
approximation and a learnable parameter ∆ adjusts the balance
of current state influence and input at each timestep t. The
Mamba model, an extension of the standard SSM, is designed
to be input-selective and dynamically update the parameters
∆, Â, B̂, and C based on input xt at each time step t, thereby
enabling efficient handling of dynamic updates and enhancing
input context awareness.

2) Dual-path Long Sequence Modelling: Figure 1(b) shows
the long sequence modelling module is composed of two
consecutive processing blocks: the intra-chunk and the inter-
chunk blocks. Each block initially splits the input tensors
and then processes them through the Bi-Mamba followed by
the linear layer and the layer normalization, respectively. The
detail of Bi-Mamba is depicted in Figure 2 which incorporates
two parallel convolutions coupled with SSMs to facilitate
bidirectional processing.
The original reshaped 3D tensor RN×K×S is initially split
along its second and third dimensions into multiple 2D tensors.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 27,2025 at 07:25:54 UTC from IEEE Xplore.  Restrictions apply. 

[Li25] S. Li et al., “Efficient Long Speech Sequence Modelling for
Time-Domain Depression Level Estimation”. In Proc. of ICASSP 2025

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 37 / 59



Análisis de la Señal de Voz

Tabla de Contenidos

1 Introducción y Breve Recorrido Histórico

2 Aplicaciones de las Tecnoloǵıas del Habla

3 Análisis de la Señal de Voz

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 38 / 59



Análisis de la Señal de Voz

Modelo LPC de Producción de Voz

PRÁCTICA 5: PROCESAMIENTO DIGITAL DE VOZ

1. Introducción: Modelo LPC de Producción de Voz

En la figura de abajo se muestra un modelo digital de producción de voz usualmente cono-
cido como modelo LPC (linear prediction coding), empleado en diversas aplicaciones de voz y,
particularmente, en codificación de voz para telefonı́a y videoconferencia. En estas aplicaciones,
el codificador extrae los parámetros del modelo y estos son empleados por el decodificador en
regenerar la señal de voz. En el modelo LPC se supone que la señal de voz x(n) es producida
por un filtro digital todo-polos h(k) (representando al tracto vocal) excitado por una señal u(n), que
puede ser de dos tipos:

x(n)

PITCH

GENERADOR

DE PULSOS

DE RUIDO

GENERADOR

BLANCO

TODO−POLOS

FILTRO

H(z)

u(n)

1. Sonidos sordos (/s/, /f/, ...): excitación tipo rui-
do blanco (imitando el flujo de aire proceden-
te de los pulmones).
Modelo resultante: AR(p).

2. Sonidos sonoros (/a/,/m/,/b/,...): excitación ti-
po tren de impulsos unitarios (imitando la vi-
bración de las cuerdas vocales).
Modelo resultante: todo-polos determinista.

En el caso de sonidos sonoros, el tren de impulsos tendra una frecuencia igual a la de vibración
de las cuerdas vocales, conocida como frecuencia de pitch. Su inversa se denomina periodo de
pitch o, simplemente, pitch.

Como veremos más adelante, ambas modelados, AR(p) y todo-polos determinista, no difieren
en la forma de estimar el filtro (todo-polos) H(z) que representa el tracto vocal, que únicamente
modela las correlaciones cortas. En el caso de sonidos sonoros, existen además correlaciones
largas que quedan modeladas por la excitación.

2. Análisis espectral de un sonido sonoro

Numerosas aplicaciones de procesado de voz se fundamentan en una estimación de la densi-
dad espectral de potencia (PSD). Una forma sencilla, no paramétrica, de obtener esta estimación
es mediante el periodograma, que se obtiene a partir de la transformada de Fourier F de un
segmento de señal x(n) de N muestras (o, equivalentemente, a partir de las estimas sesgadas de
la autocorrelación) de la siguiente forma:

PPER(ω) = F [r̂x(k)] =
1
N

F [x(n)∗ x(−n)] =
1
N
|X(ω)|2. (1)

1

Sonidos sordos (/s/, /f/, ...):
Excitación tipo ruido blanco
(flujo de aire procedente de los
pulmones) – AR(p)

Sonidos sonoros (/a/, /m/,
/b/, ...): Excitación tipo tren
de impulsos (vibración de las
cuerdas vocales) – Todo-polos

Frecuencia de pitch: Frecuencia de vibración de las cuerdas vocales

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 39 / 59



Análisis de la Señal de Voz

Modelo LPC de Producción de Voz

Ejemplo de vocal española ‘e’:

0 50 100 150 200 250
n

1000

500

0

500

1000

x′
(n

)

Vocal e real

0 500 1000 1500 2000 2500 3000 3500 4000
Frecuencia (Hz)

20

30

40

50

60

70

PS
D 

(d
B)

Periodograma de la vocal e real

Frecuencia de muestreo de 8.000 Hz

Dos componentes diferenciadas:

1 Formantes: Debidos al tracto vocal (correlaciones cortas)
2 Pitch: Debido a la vibración de las cuerdas vocales (correlaciones largas)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 40 / 59



Análisis de la Señal de Voz

Modelo LPC de Producción de Voz

0 50 100 150 200 250
n

0.0

0.2

0.4

0.6

0.8

1.0

u(
n)

Señal excitación

PRÁCTICA 5: PROCESAMIENTO DIGITAL DE VOZ

1. Introducción: Modelo LPC de Producción de Voz

En la figura de abajo se muestra un modelo digital de producción de voz usualmente cono-
cido como modelo LPC (linear prediction coding), empleado en diversas aplicaciones de voz y,
particularmente, en codificación de voz para telefonı́a y videoconferencia. En estas aplicaciones,
el codificador extrae los parámetros del modelo y estos son empleados por el decodificador en
regenerar la señal de voz. En el modelo LPC se supone que la señal de voz x(n) es producida
por un filtro digital todo-polos h(k) (representando al tracto vocal) excitado por una señal u(n), que
puede ser de dos tipos:

x(n)

PITCH

GENERADOR

DE PULSOS

DE RUIDO

GENERADOR

BLANCO

TODO−POLOS

FILTRO

H(z)

u(n)

1. Sonidos sordos (/s/, /f/, ...): excitación tipo rui-
do blanco (imitando el flujo de aire proceden-
te de los pulmones).
Modelo resultante: AR(p).

2. Sonidos sonoros (/a/,/m/,/b/,...): excitación ti-
po tren de impulsos unitarios (imitando la vi-
bración de las cuerdas vocales).
Modelo resultante: todo-polos determinista.

En el caso de sonidos sonoros, el tren de impulsos tendra una frecuencia igual a la de vibración
de las cuerdas vocales, conocida como frecuencia de pitch. Su inversa se denomina periodo de
pitch o, simplemente, pitch.

Como veremos más adelante, ambas modelados, AR(p) y todo-polos determinista, no difieren
en la forma de estimar el filtro (todo-polos) H(z) que representa el tracto vocal, que únicamente
modela las correlaciones cortas. En el caso de sonidos sonoros, existen además correlaciones
largas que quedan modeladas por la excitación.

2. Análisis espectral de un sonido sonoro

Numerosas aplicaciones de procesado de voz se fundamentan en una estimación de la densi-
dad espectral de potencia (PSD). Una forma sencilla, no paramétrica, de obtener esta estimación
es mediante el periodograma, que se obtiene a partir de la transformada de Fourier F de un
segmento de señal x(n) de N muestras (o, equivalentemente, a partir de las estimas sesgadas de
la autocorrelación) de la siguiente forma:

PPER(ω) = F [r̂x(k)] =
1
N

F [x(n)∗ x(−n)] =
1
N
|X(ω)|2. (1)

1

0 50 100 150 200 250
n

2000

1000

0

1000

2000

3000

x(
n)

Vocal e sintetizada

Se estiman los parámetros {a1, ..., ap , b0} mediante
las ecuaciones de Yule-Walker

PLPC(ω) =
1

N

∣∣∣H (
e jω

)∣∣∣2 =
|b0|2/N∣∣∣∣∣1 +

p∑
k=1

ake
−jωk

∣∣∣∣∣
2

0 500 1000 1500 2000 2500 3000 3500 4000
Frecuencia (Hz)

40

45

50

55

60

65

PS
D 

(d
B)

Modelo todo-polos de orden p=12

p = 12

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 41 / 59



Análisis de la Señal de Voz

Análisis Homomórfico

Análisis homomórfico: Nos permite separar la información relativa al
tracto vocal de la excitación

Pasos:

1 Se aplica el logaritmo a una representación espectral de la señal de voz
2 Se aplica la transformada inversa de Fourier al resultado del paso anterior

Resultado: Nueva secuencia temporal llamada cepstrum que es función de la
cuefrencia

Px(ω) = |F {x(n) = h(n) ∗ u(n)}|2 = |H(ω)|2Pu(ω)

log (Px(ω)) = log
(
|H(ω)|2

)
+ log (Pu(ω))

cx(n) = F−1 {log (Px(ω))} = F−1
{
log

(
|H(ω)|2

)}
+ F−1 {log (Pu(ω))}

cx(n) = ch(n) + cu(n)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 42 / 59



Análisis de la Señal de Voz

Análisis Homomórfico

cx(n) = ch(n) + cu(n):

1 ch(n): Componente cepstral de baja cuefrencia debida al tracto vocal/filtro
2 cu(n): Componente cepstral de alta cuefrencia debida al pitch

0 20 40 60 80 100
n

0.4

0.2

0.0

0.2

0.4

0.6

c x
(n

)
Representación cepstral de la vocal e

Cepstrum FFT
Cepstrum LPC

ch(n) es discriminativo de la información fonética

cx(0) suele descartarse (relacionado con la enerǵıa de la señal)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 43 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel
I. López-Espejo et al.: Deep Spoken KWS: An Overview

"Right"
"Left"
Other speech
Silence/noise

"Right"
"Left"
Other speech
Silence/noise

:
:
:
:

:
:
:
:

0.9
0.0
0.1
0.0

0.9
0.0
0.1
0.0

(a)

X{i}

X{i+1}

y{i} y{i+1}
"Right"
"Left"
Other speech
Silence/noise

"Right"
"Left"
Other speech
Silence/noise

:
:
:
:

:
:
:
:

0.45
0.0
0.5
0.05

0.4
0.0
0.1
0.5

(b)

X{i} X{i+1}

y{i} y{i+1}

FIGURE 4. Example of the processing of two consecutive feature segments
X{i} and X{i+1}, from X comprising the keyword “right”, by a DNN acoustic
model: (a) when using an overlapping segmentation window, and (b) when
using a smaller, non-overlapping one.

as an output layer, e.g., [16], [43], [47], [52], [60], [67]–
[72]. The parameters of the model, θ, are usually estimated
by discriminatively training f(·|θ) by backpropagation from
annotated speech data characterizing the different N classes.
The most popular loss function that is employed to this end
is cross-entropy loss [73], [74].

Figure 3 shows an example, illustrating the above para-
graph, in which there are N = 4 different classes. Two of
these classes represent the keywords “right” (C1) and “left”
(C2). The other two classes are the filler classes other speech
(C3) and silence/noise (C4). A segment X{i} consisting of a
log-Mel spectrogram comprising the keyword “left” is input
to the DNN acoustic model. Then, this generates a posterior
distribution y{i} over the N = 4 classes. Keyword “left”
is given the highest posterior probability, namely, y{i}2 =
P
(
C2|X{i}, θ

)
= 0.8.

Most of the research that has been conducted on deep
KWS has focused on its key part, which is the design of
increasingly accurate and decreasingly computationally com-
plex acoustic models f(·|θ) [32], [75].

Finally, KWS is not a static task but a dynamic one in
which the KWS system has to continuously listen to the
input signal x(m) to yield the sequence of posteriors y{i},
i = dPs e, ..., b

T−1−F
s c, in order to detect keywords in real-

time. In the example in Figure 3, a straightforward way to do
this could just be choosing the class Ĉ{i} with the highest
posterior, that is,

Ĉ{i} = argmax
Cn

y{i}n = argmax
Cn

P
(
Cn|X{i}, θ

)
. (4)

Nevertheless, this approach is not robust, as discussed in
what follows. Continuing with the illustration of Figure 3,
Figure 4 exemplifies the processing by the acoustic model of
two consecutive feature segments X{i} and X{i+1} from X
comprising the keyword “right”. Figure 4a shows the typical
case of using an overlapping segmentation window. As we
can see, following the approach of Eq. (4) might lead to

Pre-
emphasis

Framing
and

Windowing
FFT |·|2

Mel-
frequency
warping

log
Discrete
cosine

transform

Speech signal

Log-Mel spectrogram

Mel-frequency cepstrum

FIGURE 5. Classical pipeline for extracting log-Mel spectral and
Mel-frequency cepstral speech features using the fast Fourier transform (FFT).

detecting the same keyword realization twice, yielding a false
alarm. In addition, Figure 4b depicts the case in which a
non-overlapping segmentation window is employed. In this
situation, the energy of the keyword realization leaks into two
different segments in such a manner that neither the posterior
P
(
C1|X{i}, θ

)
nor P

(
C1|X{i+1}, θ

)
is sufficiently strong

for the keyword to be detected, thereby yielding a miss detec-
tion. Hence, a proper handling of the sequence of posteriors
y{i} (i = dPs e, ..., b

T−1−F
s c) is a very important component

for effective keyword detection [2], [4], [15], [22], [29],
[41]–[43], [45], [46], [56], [76]–[79]. Posterior handling is
examined in Section V.

III. SPEECH FEATURE EXTRACTION
In the following subsections, we walk through the most
relevant speech features revolving around deep KWS: Mel-
scale-related features, recurrent neural network features, low-
precision features, learnable filterbank features and other
features.

A. MEL-SCALE-RELATED FEATURES
Speech features based on the perceptually-motivated Mel-
scale filterbank [80], like the log-Mel spectral coefficients
and Mel-frequency cepstral coefficients (MFCCs) [81], have
been widely used over decades in the fields of ASR and,
indeed, KWS. Despite the multiple attempts to learn opti-
mal, alternative representations from the speech signal (see
Subsection III-D for more details), Mel-scale-related features
are still nowadays a solid, competitive and safe choice [82].
Figure 5 depicts the well-known classical pipeline for extract-
ing log-Mel spectral and MFCC features. In deep KWS, both
types of speech features are commonly normalized to have
zero mean and unit standard deviation before being input
to the acoustic model, thereby stabilizing and speeding up
training as well as improving model generalization [83].

Mel-scale-related features are, by far, the most widely used
speech features in deep KWS. For example, MFCCs with
temporal context and, sometimes, their first- and second-
order derivatives are used in [16], [30], [46], [51]–[53], [84]–
[91]. As can be seen from Figure 5, MFCCs are obtained

4 VOLUME 4, 2016

[Espejo21] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE Access, 2021

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 44 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel

Pre-énfasis

El habla se caracteriza por una inclinación
espectral originada en la excitación glotal
debida a la vibración de las cuerdas vocales

Inclinación espectral −→ Los sistemas de
procesamiento del habla podŕıan “pasar por
alto” las frecuencias más altas

El filtrado de pre-énfasis es un
pre-procesamiento simple pero efectivo que
compensa las componentes de alta
frecuencia aplanando el espectro del habla

|H(f )| =
∣∣1− αe−j2πf /fs

∣∣ = √
α2 − 2α cos(2πf /fs) + 1

Filtro FIR paso-alto de primer orden

Introduction

Pre-emphasis filtering is a simple yet effective pre-processing step that
compensates high-frequency components by flattening the speech spectrum

Pre-emphasis filtering is a default consideration in classical ASR and speech
coding systems

0 1 2 3 4 5

-60

-40

-20

0

I. López-Espejo et al. (UGR) Pre-emphasis to Boost Speech Enhancement Wednesday 13th November, 2024 4 / 15

f (Hz)
0 2000 4000 6000 8000

M
a
g
n
it
u
d
e
re
sp
o
n
se

(d
B
)

-30

-20

-10

0

∣

∣H̄SP(f)
∣

∣ , α = 0.5
∣

∣H̄SP(f)
∣

∣ , α = 0.6
∣

∣H̄SP(f)
∣

∣ , α = 0.7
∣

∣H̄SP(f)
∣

∣ , α = 0.8
∣

∣H̄SP(f)
∣

∣ , α = 0.9
∣

∣H̄ELP(f)
∣

∣

Figure 2: A comparison between the normalized magnitude re-
sponses of standard pre-emphasis (given various values of α)
and equal-loudness pre-emphasis.

Let
∣∣H̄SP(f)

∣∣ ∈ (0, 1] represent a scaled version of Eq. (5)
that is obtained by normalizing |HSP(f)| to have a maximum
amplitude of 1. Then,

∣∣H̄SP(k)
∣∣ is found by uniform sampling

of
∣∣H̄SP(f)

∣∣, and the former quantity is used to compute pre-
emphasized versions of the estimated and actual clean speech
magnitude spectra, respectively, as follows:∣∣∣X̂SP(k, t)

∣∣∣ =
∣∣H̄SP(k)

∣∣ · ∣∣∣X̂(k, t)
∣∣∣ ,

|XSP(k, t)| =
∣∣H̄SP(k)

∣∣ · |X(k, t)| .
(6)

Finally,
∣∣∣X̂SP(k, t)

∣∣∣ and |XSP(k, t)| are employed to replace∣∣∣X̂(k, t)
∣∣∣ and |X(k, t)|, respectively, in the MSE loss function

of Eq. (4), LMSE.

3.2. Equal-loudness Pre-emphasis (ELP)

As an alternative to standard speech pre-emphasis, equal-
loudness pre-emphasis, proposed by Hermansky [9] and ac-
counting for the psychophysics of hearing, may be used. The
equal-loudness pre-emphasis magnitude response, |HELP(f)|,
approximates the frequency-dependent sensitivity of human
hearing at about the 40 dB level:

|HELP(f)| =

√
(f2 + β1) f4

(f2 + β2)
2 (f2 + β3) ((2πf)6 + β4)

, (7)

where β1 = 1.44 · 106, β2 = 1.6 · 105, β3 = 9.61 · 106, and
β4 = 9.58 · 1026.

A procedure similar to that of the previous subsection is
then followed. First, |HELP(f)| is scaled to have a maximum
amplitude of 1 and produce |H̄ELP(f)| ∈ [0, 1], which, in turn,
is uniformly sampled to obtain |H̄ELP(k)|. Second, the latter

quantity is applied as in Eq. (6) to calculate
∣∣∣X̂ELP(k, t)

∣∣∣ and

|XELP(k, t)|, which are used to replace
∣∣∣X̂(k, t)

∣∣∣ and |X(k, t)|,
respectively, in Eq. (4).

Figure 2 shows a comparison between the normalized mag-
nitude responses of standard pre-emphasis —given several val-
ues of α— and equal-loudness pre-emphasis. As can be
seen, unlike standard speech pre-emphasis, equal-loudness pre-
emphasis accounts for the decrease in hearing sensitivity at
higher frequencies [9, 18].

3.3. Intensity-to-loudness Conversion (I2L)

In his pipeline definition of the well-known perceptual lin-
ear prediction (PLP) acoustic features [9], Hermansky incor-
porated cubic-root amplitude compression after equal-loudness
pre-emphasis to simulate the non-linear relationship between
the intensity of sound and its perceived loudness [19]. Moti-
vated by this, we optionally consider cubic-root amplitude com-
pression by applying the operator (·)2/3 to the pre-emphasized
versions (regardless of the pre-emphasis type) of the estimated
and actual clean speech magnitude spectra before they are used
in the MSE loss function of Eq. (4). Notice that cubic-root
amplitude compression can boost the effect of pre-emphasis by
further reducing the dynamic range of the speech magnitude
spectrum.

4. Speech Dataset
For experimental purposes, we use the TIMIT-1C speech
dataset [10], which is comprised of clean and simulated noisy
speech signals at a sampling rate of 16 kHz. First, 300 clean
speech signals were created from the speaker-wise concatena-
tion of utterances from the well-known TIMIT dataset [20, 21]
for the clean speech signals to have a duration between 6 and
10 seconds. Second, these clean speech signals were artificially
distorted by diverse types of additive noise at distinct signal-to-
noise ratios (SNRs) to generate simulated noisy speech samples.

TIMIT-1C is composed of three sets: training, validation
and test, to which 200/300, 50/300 and 50/300 unique clean
speech signals, respectively, are assigned. The training and
validation sets contain speech signals degraded by noise types
“car”, “bus station”, “restaurant”, and “street”. The test set
includes speech signals distorted by, in addition to the previ-
ous noises (seen noises), the noise types “café”, “train station”,
“pedestrian street”, and “bus” (unseen noises). The three sets
consider the same discrete set of SNRs: {−5, 0, 5, 10, 15, 20}
dB. Neither noise realizations nor speakers overlap across sets,
and the number of female and male speakers in each set is bal-
anced. In total, the training, validation and test sets are com-
posed of

1. 200 clean signals × 4 noises × 6 SNRs = 4, 800,
2. 50 clean signals × 4 noises × 6 SNRs = 1, 200, and
3. 50 clean signals × 8 noises × 6 SNRs = 2, 400

noisy speech samples, respectively [10].

5. Experimental Results
In this section, we evaluate the pre-emphasis-based procedures
presented in Section 3 in terms of estimated quality and intelli-
gibility of the enhanced speech by means of PESQ (Perceptual
Evaluation of Speech Quality) [11, 12] and STOI (Short-Time
Objective Intelligibility) [22], respectively.

First of all, it is important to point out that preliminary ex-
periments revealed that, when considering standard speech pre-
emphasis (see Subsec. 3.1), α = 0.6 is a good choice, and,
therefore, we use this parameter value in the rest of this section.
That being said, we also observed that the value of α has a rela-
tively low impact on speech enhancement performance as long
as it is not too close to either 0 or 1.

Table 1 displays STOI and PESQ results calculated from
speech signals processed by the speech enhancement system of
Section 2 when this system integrates no pre-emphasis (baseline
system), standard pre-emphasis (+SP) or equal-loudness pre-
emphasis (+ELP). In case pre-emphasis is integrated, results

98

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 45 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel
I. López-Espejo et al.: Deep Spoken KWS: An Overview

"Right"
"Left"
Other speech
Silence/noise

"Right"
"Left"
Other speech
Silence/noise

:
:
:
:

:
:
:
:

0.9
0.0
0.1
0.0

0.9
0.0
0.1
0.0

(a)

X{i}

X{i+1}

y{i} y{i+1}
"Right"
"Left"
Other speech
Silence/noise

"Right"
"Left"
Other speech
Silence/noise

:
:
:
:

:
:
:
:

0.45
0.0
0.5
0.05

0.4
0.0
0.1
0.5

(b)

X{i} X{i+1}

y{i} y{i+1}

FIGURE 4. Example of the processing of two consecutive feature segments
X{i} and X{i+1}, from X comprising the keyword “right”, by a DNN acoustic
model: (a) when using an overlapping segmentation window, and (b) when
using a smaller, non-overlapping one.

as an output layer, e.g., [16], [43], [47], [52], [60], [67]–
[72]. The parameters of the model, θ, are usually estimated
by discriminatively training f(·|θ) by backpropagation from
annotated speech data characterizing the different N classes.
The most popular loss function that is employed to this end
is cross-entropy loss [73], [74].

Figure 3 shows an example, illustrating the above para-
graph, in which there are N = 4 different classes. Two of
these classes represent the keywords “right” (C1) and “left”
(C2). The other two classes are the filler classes other speech
(C3) and silence/noise (C4). A segment X{i} consisting of a
log-Mel spectrogram comprising the keyword “left” is input
to the DNN acoustic model. Then, this generates a posterior
distribution y{i} over the N = 4 classes. Keyword “left”
is given the highest posterior probability, namely, y{i}2 =
P
(
C2|X{i}, θ

)
= 0.8.

Most of the research that has been conducted on deep
KWS has focused on its key part, which is the design of
increasingly accurate and decreasingly computationally com-
plex acoustic models f(·|θ) [32], [75].

Finally, KWS is not a static task but a dynamic one in
which the KWS system has to continuously listen to the
input signal x(m) to yield the sequence of posteriors y{i},
i = dPs e, ..., b

T−1−F
s c, in order to detect keywords in real-

time. In the example in Figure 3, a straightforward way to do
this could just be choosing the class Ĉ{i} with the highest
posterior, that is,

Ĉ{i} = argmax
Cn

y{i}n = argmax
Cn

P
(
Cn|X{i}, θ

)
. (4)

Nevertheless, this approach is not robust, as discussed in
what follows. Continuing with the illustration of Figure 3,
Figure 4 exemplifies the processing by the acoustic model of
two consecutive feature segments X{i} and X{i+1} from X
comprising the keyword “right”. Figure 4a shows the typical
case of using an overlapping segmentation window. As we
can see, following the approach of Eq. (4) might lead to

Pre-
emphasis

Framing
and

Windowing
FFT |·|2

Mel-
frequency
warping

log
Discrete
cosine

transform

Speech signal

Log-Mel spectrogram

Mel-frequency cepstrum

FIGURE 5. Classical pipeline for extracting log-Mel spectral and
Mel-frequency cepstral speech features using the fast Fourier transform (FFT).

detecting the same keyword realization twice, yielding a false
alarm. In addition, Figure 4b depicts the case in which a
non-overlapping segmentation window is employed. In this
situation, the energy of the keyword realization leaks into two
different segments in such a manner that neither the posterior
P
(
C1|X{i}, θ

)
nor P

(
C1|X{i+1}, θ

)
is sufficiently strong

for the keyword to be detected, thereby yielding a miss detec-
tion. Hence, a proper handling of the sequence of posteriors
y{i} (i = dPs e, ..., b

T−1−F
s c) is a very important component

for effective keyword detection [2], [4], [15], [22], [29],
[41]–[43], [45], [46], [56], [76]–[79]. Posterior handling is
examined in Section V.

III. SPEECH FEATURE EXTRACTION
In the following subsections, we walk through the most
relevant speech features revolving around deep KWS: Mel-
scale-related features, recurrent neural network features, low-
precision features, learnable filterbank features and other
features.

A. MEL-SCALE-RELATED FEATURES
Speech features based on the perceptually-motivated Mel-
scale filterbank [80], like the log-Mel spectral coefficients
and Mel-frequency cepstral coefficients (MFCCs) [81], have
been widely used over decades in the fields of ASR and,
indeed, KWS. Despite the multiple attempts to learn opti-
mal, alternative representations from the speech signal (see
Subsection III-D for more details), Mel-scale-related features
are still nowadays a solid, competitive and safe choice [82].
Figure 5 depicts the well-known classical pipeline for extract-
ing log-Mel spectral and MFCC features. In deep KWS, both
types of speech features are commonly normalized to have
zero mean and unit standard deviation before being input
to the acoustic model, thereby stabilizing and speeding up
training as well as improving model generalization [83].

Mel-scale-related features are, by far, the most widely used
speech features in deep KWS. For example, MFCCs with
temporal context and, sometimes, their first- and second-
order derivatives are used in [16], [30], [46], [51]–[53], [84]–
[91]. As can be seen from Figure 5, MFCCs are obtained

4 VOLUME 4, 2016

[Espejo21] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE Access, 2021

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 46 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel

Transformada discreta de Fourier de tiempo reducido + | · |2

[MATLABstft] MATLAB Help Center, “stft”.
https://www.mathworks.com/help/signal/ref/stft.html

1 Segmentación

2 Enventanado

3 FFT

4 | · |2

|Xm(f )|2 =∣∣∣∣∣∣
Nx−1∑
n=0

x(n)g(n − mR)e−j2πfn

∣∣∣∣∣∣
2

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 47 / 59

https://www.mathworks.com/help/signal/ref/stft.html


Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel

Ejemplo de cálculo de espectrograma:

Spectrogram

dithering, removing DC offset, pre-emphasis

windowing

Discrete Fourier transform (DFT)

Short-time Fourier transform (STFT)

Hao Tang Speech Signal Analysis 2

[Tang24] H. Tang, “Speech Signal Analysis 2”. Automatic Speech Recognition—ASR Lecture 3, 2024

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 48 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel
I. López-Espejo et al.: Deep Spoken KWS: An Overview

"Right"
"Left"
Other speech
Silence/noise

"Right"
"Left"
Other speech
Silence/noise

:
:
:
:

:
:
:
:

0.9
0.0
0.1
0.0

0.9
0.0
0.1
0.0

(a)

X{i}

X{i+1}

y{i} y{i+1}
"Right"
"Left"
Other speech
Silence/noise

"Right"
"Left"
Other speech
Silence/noise

:
:
:
:

:
:
:
:

0.45
0.0
0.5
0.05

0.4
0.0
0.1
0.5

(b)

X{i} X{i+1}

y{i} y{i+1}

FIGURE 4. Example of the processing of two consecutive feature segments
X{i} and X{i+1}, from X comprising the keyword “right”, by a DNN acoustic
model: (a) when using an overlapping segmentation window, and (b) when
using a smaller, non-overlapping one.

as an output layer, e.g., [16], [43], [47], [52], [60], [67]–
[72]. The parameters of the model, θ, are usually estimated
by discriminatively training f(·|θ) by backpropagation from
annotated speech data characterizing the different N classes.
The most popular loss function that is employed to this end
is cross-entropy loss [73], [74].

Figure 3 shows an example, illustrating the above para-
graph, in which there are N = 4 different classes. Two of
these classes represent the keywords “right” (C1) and “left”
(C2). The other two classes are the filler classes other speech
(C3) and silence/noise (C4). A segment X{i} consisting of a
log-Mel spectrogram comprising the keyword “left” is input
to the DNN acoustic model. Then, this generates a posterior
distribution y{i} over the N = 4 classes. Keyword “left”
is given the highest posterior probability, namely, y{i}2 =
P
(
C2|X{i}, θ

)
= 0.8.

Most of the research that has been conducted on deep
KWS has focused on its key part, which is the design of
increasingly accurate and decreasingly computationally com-
plex acoustic models f(·|θ) [32], [75].

Finally, KWS is not a static task but a dynamic one in
which the KWS system has to continuously listen to the
input signal x(m) to yield the sequence of posteriors y{i},
i = dPs e, ..., b

T−1−F
s c, in order to detect keywords in real-

time. In the example in Figure 3, a straightforward way to do
this could just be choosing the class Ĉ{i} with the highest
posterior, that is,

Ĉ{i} = argmax
Cn

y{i}n = argmax
Cn

P
(
Cn|X{i}, θ

)
. (4)

Nevertheless, this approach is not robust, as discussed in
what follows. Continuing with the illustration of Figure 3,
Figure 4 exemplifies the processing by the acoustic model of
two consecutive feature segments X{i} and X{i+1} from X
comprising the keyword “right”. Figure 4a shows the typical
case of using an overlapping segmentation window. As we
can see, following the approach of Eq. (4) might lead to

Pre-
emphasis

Framing
and

Windowing
FFT |·|2

Mel-
frequency
warping

log
Discrete
cosine

transform

Speech signal

Log-Mel spectrogram

Mel-frequency cepstrum

FIGURE 5. Classical pipeline for extracting log-Mel spectral and
Mel-frequency cepstral speech features using the fast Fourier transform (FFT).

detecting the same keyword realization twice, yielding a false
alarm. In addition, Figure 4b depicts the case in which a
non-overlapping segmentation window is employed. In this
situation, the energy of the keyword realization leaks into two
different segments in such a manner that neither the posterior
P
(
C1|X{i}, θ

)
nor P

(
C1|X{i+1}, θ

)
is sufficiently strong

for the keyword to be detected, thereby yielding a miss detec-
tion. Hence, a proper handling of the sequence of posteriors
y{i} (i = dPs e, ..., b

T−1−F
s c) is a very important component

for effective keyword detection [2], [4], [15], [22], [29],
[41]–[43], [45], [46], [56], [76]–[79]. Posterior handling is
examined in Section V.

III. SPEECH FEATURE EXTRACTION
In the following subsections, we walk through the most
relevant speech features revolving around deep KWS: Mel-
scale-related features, recurrent neural network features, low-
precision features, learnable filterbank features and other
features.

A. MEL-SCALE-RELATED FEATURES
Speech features based on the perceptually-motivated Mel-
scale filterbank [80], like the log-Mel spectral coefficients
and Mel-frequency cepstral coefficients (MFCCs) [81], have
been widely used over decades in the fields of ASR and,
indeed, KWS. Despite the multiple attempts to learn opti-
mal, alternative representations from the speech signal (see
Subsection III-D for more details), Mel-scale-related features
are still nowadays a solid, competitive and safe choice [82].
Figure 5 depicts the well-known classical pipeline for extract-
ing log-Mel spectral and MFCC features. In deep KWS, both
types of speech features are commonly normalized to have
zero mean and unit standard deviation before being input
to the acoustic model, thereby stabilizing and speeding up
training as well as improving model generalization [83].

Mel-scale-related features are, by far, the most widely used
speech features in deep KWS. For example, MFCCs with
temporal context and, sometimes, their first- and second-
order derivatives are used in [16], [30], [46], [51]–[53], [84]–
[91]. As can be seen from Figure 5, MFCCs are obtained

4 VOLUME 4, 2016

[Espejo21] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE Access, 2021

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 49 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel

Aplicación de banco de filtros Mel

0 2000 4000 6000 8000

Hz

0

1000

2000

3000

M
e
l

Mel Filters

frequency (Mel)

Hao Tang Speech Signal Analysis 2

Mel Filters

frequency (Hz)

Hao Tang Speech Signal Analysis 2

[Tang24] H. Tang, “Speech Signal Analysis 2”. Automatic Speech
Recognition—ASR Lecture 3, 2024

Ym(k1)
Ym(k2)

...
Ym(kK )

 =


H1(f1) H1(f2) · · · H1(fF )
H2(f1) H2(f2) · · · H2(fF )

...
...

. . .
...

HK (f1) HK (f2) · · · HK (fF )




|Xm(f1)|2
|Xm(f2)|2

...
|Xm(fF )|2

 , ∀m ∈ [1,T ]

T tramas temporales, F bins de frecuencia lineal, K filtros

Hk (f ): k-ésimo filtro del banco de filtros Mel (k ∈ [1,K ])

Ym(k): m-ésima trama temporal del espectrograma Mel

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 50 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel

Ejemplo de cálculo de espectrograma Mel a partir de espectrograma lineal:

Mel Spectrograms

linear spectrogram

Mel spectrogram

Hao Tang Speech Signal Analysis 2

[Tang24] H. Tang, “Speech Signal Analysis 2”. Automatic Speech Recognition—ASR Lecture 3, 2024

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 51 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel
I. López-Espejo et al.: Deep Spoken KWS: An Overview

"Right"
"Left"
Other speech
Silence/noise

"Right"
"Left"
Other speech
Silence/noise

:
:
:
:

:
:
:
:

0.9
0.0
0.1
0.0

0.9
0.0
0.1
0.0

(a)

X{i}

X{i+1}

y{i} y{i+1}
"Right"
"Left"
Other speech
Silence/noise

"Right"
"Left"
Other speech
Silence/noise

:
:
:
:

:
:
:
:

0.45
0.0
0.5
0.05

0.4
0.0
0.1
0.5

(b)

X{i} X{i+1}

y{i} y{i+1}

FIGURE 4. Example of the processing of two consecutive feature segments
X{i} and X{i+1}, from X comprising the keyword “right”, by a DNN acoustic
model: (a) when using an overlapping segmentation window, and (b) when
using a smaller, non-overlapping one.

as an output layer, e.g., [16], [43], [47], [52], [60], [67]–
[72]. The parameters of the model, θ, are usually estimated
by discriminatively training f(·|θ) by backpropagation from
annotated speech data characterizing the different N classes.
The most popular loss function that is employed to this end
is cross-entropy loss [73], [74].

Figure 3 shows an example, illustrating the above para-
graph, in which there are N = 4 different classes. Two of
these classes represent the keywords “right” (C1) and “left”
(C2). The other two classes are the filler classes other speech
(C3) and silence/noise (C4). A segment X{i} consisting of a
log-Mel spectrogram comprising the keyword “left” is input
to the DNN acoustic model. Then, this generates a posterior
distribution y{i} over the N = 4 classes. Keyword “left”
is given the highest posterior probability, namely, y{i}2 =
P
(
C2|X{i}, θ

)
= 0.8.

Most of the research that has been conducted on deep
KWS has focused on its key part, which is the design of
increasingly accurate and decreasingly computationally com-
plex acoustic models f(·|θ) [32], [75].

Finally, KWS is not a static task but a dynamic one in
which the KWS system has to continuously listen to the
input signal x(m) to yield the sequence of posteriors y{i},
i = dPs e, ..., b

T−1−F
s c, in order to detect keywords in real-

time. In the example in Figure 3, a straightforward way to do
this could just be choosing the class Ĉ{i} with the highest
posterior, that is,

Ĉ{i} = argmax
Cn

y{i}n = argmax
Cn

P
(
Cn|X{i}, θ

)
. (4)

Nevertheless, this approach is not robust, as discussed in
what follows. Continuing with the illustration of Figure 3,
Figure 4 exemplifies the processing by the acoustic model of
two consecutive feature segments X{i} and X{i+1} from X
comprising the keyword “right”. Figure 4a shows the typical
case of using an overlapping segmentation window. As we
can see, following the approach of Eq. (4) might lead to

Pre-
emphasis

Framing
and

Windowing
FFT |·|2

Mel-
frequency
warping

log
Discrete
cosine

transform

Speech signal

Log-Mel spectrogram

Mel-frequency cepstrum

FIGURE 5. Classical pipeline for extracting log-Mel spectral and
Mel-frequency cepstral speech features using the fast Fourier transform (FFT).

detecting the same keyword realization twice, yielding a false
alarm. In addition, Figure 4b depicts the case in which a
non-overlapping segmentation window is employed. In this
situation, the energy of the keyword realization leaks into two
different segments in such a manner that neither the posterior
P
(
C1|X{i}, θ

)
nor P

(
C1|X{i+1}, θ

)
is sufficiently strong

for the keyword to be detected, thereby yielding a miss detec-
tion. Hence, a proper handling of the sequence of posteriors
y{i} (i = dPs e, ..., b

T−1−F
s c) is a very important component

for effective keyword detection [2], [4], [15], [22], [29],
[41]–[43], [45], [46], [56], [76]–[79]. Posterior handling is
examined in Section V.

III. SPEECH FEATURE EXTRACTION
In the following subsections, we walk through the most
relevant speech features revolving around deep KWS: Mel-
scale-related features, recurrent neural network features, low-
precision features, learnable filterbank features and other
features.

A. MEL-SCALE-RELATED FEATURES
Speech features based on the perceptually-motivated Mel-
scale filterbank [80], like the log-Mel spectral coefficients
and Mel-frequency cepstral coefficients (MFCCs) [81], have
been widely used over decades in the fields of ASR and,
indeed, KWS. Despite the multiple attempts to learn opti-
mal, alternative representations from the speech signal (see
Subsection III-D for more details), Mel-scale-related features
are still nowadays a solid, competitive and safe choice [82].
Figure 5 depicts the well-known classical pipeline for extract-
ing log-Mel spectral and MFCC features. In deep KWS, both
types of speech features are commonly normalized to have
zero mean and unit standard deviation before being input
to the acoustic model, thereby stabilizing and speeding up
training as well as improving model generalization [83].

Mel-scale-related features are, by far, the most widely used
speech features in deep KWS. For example, MFCCs with
temporal context and, sometimes, their first- and second-
order derivatives are used in [16], [30], [46], [51]–[53], [84]–
[91]. As can be seen from Figure 5, MFCCs are obtained

4 VOLUME 4, 2016

[Espejo21] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE Access, 2021

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 52 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel

Cálculo de los coeficientes cepstrales de frecuencia Mel (MFCCs)

Se trata de aplicar la transformada discreta del coseno (DCT) a nuestro
espectrograma log-Mel (∀m ∈ [1,T ]):

Zm(q1)
Zm(q2)

...
Zm(qQ)

 = ·


Ym(k1)
Ym(k2)

...
Ym(kK )


C(ν, ℓ) = κν cos

(
(2ℓ+ 1)νπ

2K

)
, ν = 1, ...,Q, ℓ = 1, ...,K

κν =

{ √
1/K si ν = 0√
2/K en otro caso

Q bins de cuefrencia, K filtros, Q < K

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 53 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel

Ejemplo de cálculo de MFCCs:

waveform

linear
spectrogram

Mel
spectrogram

MFCC

Hao Tang Speech Signal Analysis 2

[Tang24] H. Tang, “Speech Signal Analysis 2”. Automatic Speech Recognition—ASR Lecture 3, 2024

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 54 / 59



Análisis de la Señal de Voz

Caracteŕısticas Relacionadas con la Escala Mel
I. López-Espejo et al.: Deep Spoken KWS: An Overview

"Right"
"Left"
Other speech
Silence/noise

"Right"
"Left"
Other speech
Silence/noise

:
:
:
:

:
:
:
:

0.9
0.0
0.1
0.0

0.9
0.0
0.1
0.0

(a)

X{i}

X{i+1}

y{i} y{i+1}
"Right"
"Left"
Other speech
Silence/noise

"Right"
"Left"
Other speech
Silence/noise

:
:
:
:

:
:
:
:

0.45
0.0
0.5
0.05

0.4
0.0
0.1
0.5

(b)

X{i} X{i+1}

y{i} y{i+1}

FIGURE 4. Example of the processing of two consecutive feature segments
X{i} and X{i+1}, from X comprising the keyword “right”, by a DNN acoustic
model: (a) when using an overlapping segmentation window, and (b) when
using a smaller, non-overlapping one.

as an output layer, e.g., [16], [43], [47], [52], [60], [67]–
[72]. The parameters of the model, θ, are usually estimated
by discriminatively training f(·|θ) by backpropagation from
annotated speech data characterizing the different N classes.
The most popular loss function that is employed to this end
is cross-entropy loss [73], [74].

Figure 3 shows an example, illustrating the above para-
graph, in which there are N = 4 different classes. Two of
these classes represent the keywords “right” (C1) and “left”
(C2). The other two classes are the filler classes other speech
(C3) and silence/noise (C4). A segment X{i} consisting of a
log-Mel spectrogram comprising the keyword “left” is input
to the DNN acoustic model. Then, this generates a posterior
distribution y{i} over the N = 4 classes. Keyword “left”
is given the highest posterior probability, namely, y{i}2 =
P
(
C2|X{i}, θ

)
= 0.8.

Most of the research that has been conducted on deep
KWS has focused on its key part, which is the design of
increasingly accurate and decreasingly computationally com-
plex acoustic models f(·|θ) [32], [75].

Finally, KWS is not a static task but a dynamic one in
which the KWS system has to continuously listen to the
input signal x(m) to yield the sequence of posteriors y{i},
i = dPs e, ..., b

T−1−F
s c, in order to detect keywords in real-

time. In the example in Figure 3, a straightforward way to do
this could just be choosing the class Ĉ{i} with the highest
posterior, that is,

Ĉ{i} = argmax
Cn

y{i}n = argmax
Cn

P
(
Cn|X{i}, θ

)
. (4)

Nevertheless, this approach is not robust, as discussed in
what follows. Continuing with the illustration of Figure 3,
Figure 4 exemplifies the processing by the acoustic model of
two consecutive feature segments X{i} and X{i+1} from X
comprising the keyword “right”. Figure 4a shows the typical
case of using an overlapping segmentation window. As we
can see, following the approach of Eq. (4) might lead to

Pre-
emphasis

Framing
and

Windowing
FFT |·|2

Mel-
frequency
warping

log
Discrete
cosine

transform

Speech signal

Log-Mel spectrogram

Mel-frequency cepstrum

FIGURE 5. Classical pipeline for extracting log-Mel spectral and
Mel-frequency cepstral speech features using the fast Fourier transform (FFT).

detecting the same keyword realization twice, yielding a false
alarm. In addition, Figure 4b depicts the case in which a
non-overlapping segmentation window is employed. In this
situation, the energy of the keyword realization leaks into two
different segments in such a manner that neither the posterior
P
(
C1|X{i}, θ

)
nor P

(
C1|X{i+1}, θ

)
is sufficiently strong

for the keyword to be detected, thereby yielding a miss detec-
tion. Hence, a proper handling of the sequence of posteriors
y{i} (i = dPs e, ..., b

T−1−F
s c) is a very important component

for effective keyword detection [2], [4], [15], [22], [29],
[41]–[43], [45], [46], [56], [76]–[79]. Posterior handling is
examined in Section V.

III. SPEECH FEATURE EXTRACTION
In the following subsections, we walk through the most
relevant speech features revolving around deep KWS: Mel-
scale-related features, recurrent neural network features, low-
precision features, learnable filterbank features and other
features.

A. MEL-SCALE-RELATED FEATURES
Speech features based on the perceptually-motivated Mel-
scale filterbank [80], like the log-Mel spectral coefficients
and Mel-frequency cepstral coefficients (MFCCs) [81], have
been widely used over decades in the fields of ASR and,
indeed, KWS. Despite the multiple attempts to learn opti-
mal, alternative representations from the speech signal (see
Subsection III-D for more details), Mel-scale-related features
are still nowadays a solid, competitive and safe choice [82].
Figure 5 depicts the well-known classical pipeline for extract-
ing log-Mel spectral and MFCC features. In deep KWS, both
types of speech features are commonly normalized to have
zero mean and unit standard deviation before being input
to the acoustic model, thereby stabilizing and speeding up
training as well as improving model generalization [83].

Mel-scale-related features are, by far, the most widely used
speech features in deep KWS. For example, MFCCs with
temporal context and, sometimes, their first- and second-
order derivatives are used in [16], [30], [46], [51]–[53], [84]–
[91]. As can be seen from Figure 5, MFCCs are obtained

4 VOLUME 4, 2016

[Espejo21] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE Access, 2021

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 55 / 59



Análisis de la Señal de Voz

Aprendizaje Auto-Supervisado de Representaciones de Voz

1

Self-Supervised Speech Representation Learning:
A Review

Abdelrahman Mohamed*, Hung-yi Lee*, Lasse Borgholt*, Jakob D. Havtorn*, Joakim Edin, Christian Igel
Katrin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars Maaløe, Tara N. Sainath, Shinji Watanabe

Abstract—Although supervised deep learning has revolution-
ized speech and audio processing, it has necessitated the building
of specialist models for individual tasks and application scenarios.
It is likewise difficult to apply this to dialects and languages
for which only limited labeled data is available. Self-supervised
representation learning methods promise a single universal model
that would benefit a wide variety of tasks and domains. Such
methods have shown success in natural language processing and
computer vision domains, achieving new levels of performance
while reducing the number of labels required for many down-
stream scenarios. Speech representation learning is experiencing
similar progress in three main categories: generative, contrastive,
and predictive methods. Other approaches rely on multi-modal
data for pre-training, mixing text or visual data streams with
speech. Although self-supervised speech representation is still
a nascent research area, it is closely related to acoustic word
embedding and learning with zero lexical resources, both of
which have seen active research for many years. This review
presents approaches for self-supervised speech representation
learning and their connection to other research areas. Since many
current methods focus solely on automatic speech recognition as
a downstream task, we review recent efforts on benchmarking
learned representations to extend the application beyond speech
recognition.

Index Terms—Self-supervised learning, speech representations.

I. INTRODUCTION

Over the past decade, deep learning approaches have rev-
olutionized speech processing through a giant leap in perfor-
mance, enabling various real-world applications. Supervised
learning of deep neural networks has been the cornerstone
of this transformation, offering impressive gains for scenarios
rich in labeled data [1]–[3]. Paradoxically, this heavy reliance

*equal contribution, order is random, remaining sorted alphabetically.
Abdelrahman Mohamed and Shang-Wen Li are with Meta (e-emails:

abdo@fb.com, shangwel@fb.com).
Hung-yi Lee is with the Department of Electrical Engineering and the

Department of Computer Science & Information Engineering of National
Taiwan University (e-mail: hungyilee@ntu.edu.tw).

Lasse Borgholt is with Corti AI and the Department of Computer
Science, University of Copenhagen, Denmark (e-mail: lb@corti.ai).

Jakob D. Havtorn and Lars Maaløe are with Corti AI and the Department
of Applied Mathematics and Computer Science, Technical University of
Denmark, Denmark (e-mails: jdha@dtu.dk, lm@corti.ai).

Joakim Edin is with Corti AI, Denmark (e-mail: je@corti.ai).
Christian Igel is with the Department of Computer Science, University

of Copenhagen, Denmark (e-mail: igel@di.ku.dk).
Katrin Kirchhhoff is with AWS AI Labs, Amazon, Seattle, 98121, USA

(email: katrinki@amazon.com).
Karen Livescu is with the Toyota Technological Institute at Chicago,

Chicago, IL 60615 USA (e-mail: klivescu@ttic.edu).
Shinji Watanabe is with the Language Technologies Institute, Carnegie

Mellon University, Pittsburgh, PA 15213 USA (e-mail: shinjiw@ieee.org).

Fig. 1: Framework for using self-supervised representation
learning in downstream applications

on supervised learning has restricted progress in languages
and domains that do not attract the same level of labeling
investment.

To overcome the need for labeled data, researchers have
explored approaches that use unpaired audio-only data to
open up new industrial speech use-cases and low-resource
languages [4]–[6]. Inspired by how children learn their first
language through listening and interacting with family and sur-
roundings, scientists seek to use raw waveforms and spectral
signals to learn speech representations that capture low-level
acoustic events, lexical knowledge, all the way to syntactic
and semantic information. These learned representations are
then used for target downstream applications requiring a min-
imal number of labeled data [7]–[9]. Formally, representation
learning refers to algorithms for extracting latent features that
capture the underlying explanatory factors for the observed
input [9].

Representation learning approaches are generally considered
examples of unsupervised learning, which refers to the family
of machine learning methods that discover naturally occurring
patterns in training samples for which there are no pre-
assigned labels or scores [10]. The term “unsupervised” is
used to distinguish this family of methods from “supervised”
approaches, which assign a label to each training sample, and

ar
X

iv
:2

20
5.

10
64

3v
3 

 [
cs

.C
L

] 
 2

7 
O

ct
 2

02
2

[Mohamed22] A. Mohamed et al., “Self-Supervised Speech
Representation Learning: A Review”. IEEE Journal of Selected

Topics in Signal Processing, 2022

Existe una ingente cantidad de
datos de voz sin etiquetar ←−
¿Cómo aprovecharlos?

Aprendizaje auto-supervisado de
representaciones del habla:

1 Generativo
2 Contrastivo
3 Predictivo

Tareas posteriores: Ajuste fino o no

En general, superior a las
caracteŕısticas relacionadas con la
escala Mel

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 56 / 59



Análisis de la Señal de Voz

Aprendizaje Auto-Supervisado de Representaciones de Voz

Ejemplo de aprendizaje
generativo: Reconstrucción de
datos enmascarados

Ejemplo de aprendizaje
contrastivo

(a) Example of Masked Image Modelling [20]
(b) Example of Contrastive Learning [21]

Figure 1. Two Mainstream Self-Supervised Learning Approaches. Figure 1a shows the Masked Autoencoder (MAE), which minimizes
the pixel reconstruction loss from randomly masked images. Figure 1b illustrates the Momentum Contrast (MoCo), relying on the power
of strong data augmentation, momentum encoder, memory bank etc. It learns representations by maximizing the agreement between similar
representations.

proposed to utilize a momentum encoder in the network.
The architecture has one encoder and one momentum en-
coder; the encoder is updated by gradient back propagation,
while the momentum encoder is updated with the moving
average from the encoder weights. In this siamese setting,
the learning algorithm aims to force the representation from
the encoder and the momentum encoder to be similar. In
SimCLR, the authors stated that strong data augmentation
is critical for contrastive learning. They also utilized a very
large batch to have adequate negative samples during train-
ing. Most importantly, they proposed to use a non-linear
projection head for the encoded feature and maximize the
agreement for the projected representation. Additionally,
they showed that using a larger model could achieve better
results. in BYOL [19], the authors first proposed to perform
contrastive learning without any negative samples. Nor-
mally, contrastive learning without negative samples will
easily fall into trivial solutions as the network could easily
force everything to be exactly the same as constant. BYOL
borrowed core principles from MoCo and SimCLR, and in-
troduced a new predictor after the projection head. In Sim-
Siam [11], the authors did not use a momentum encoder,
negative samples, or large batches but still achieved com-
parable results to the previous studies. They proposed stop
gradient operation, which is essential to the success of Sim-
Siam to avoid mode collapse. In [47], the authors suggested
measuring the cross-correlation between two identical net-
works and minimising the redundancy as the principle. In
MoCo v3 [12], it used ViT as the backbone and further im-
proved the performance. In DINO [5], it presented impres-
sive results that the self-supervised learned attention is as
good as the results of image segmentation. It is essentially
an extension of BYOL with self-distillation [23], forcing
the learned representations from the teacher and the student
networks to be similar.

3. Approach

Masked Contrastive Representation Learning (MACRL)
is a self-supervised pre-training approach that builds upon
masked image modelling and contrastive learning. The idea
is straightforward: MACRL integrates masked image mod-
elling into the contrastive learning framework, which is an
asymmetric siamese network. The asymmetry refers to the
difference in the strength of data augmentations and mask-
ing operations for the two branches of the siamese network.
Overall, MACRL optimizes two objectives: a corruption re-
construction loss and a contrastive loss, for masked mod-
elling and contrastive learning, respectively. The design of
MACRL is illustrated in Figure 2.

Asymmetric Siamese Network. In MACRL, we adopt
siamese encoder-decoder structure for the overall architec-
ture, where there are two branches for each input sample:
the main branch (contains the encoder and projector) and
the momentum branch (contains the momentum encoder
and momentum projector). Both branches share the same
decoder for computing the masked image modelling loss
since we only use the outputs from the encoder and pro-
jector to calculate the contrastive objective. We impose
asymmetry in the siamese network setup, which follows
the observations in [42]. Specifically, the source (i.e., main
branch) should possess higher variance than the target (i.e.,
momentum branch). For the main branch, we apply ex-
tremely high mask ratio (e.g., 80%) using a random mask-
ing strategy. On the other hand, we reveal the original
augmented image (i.e., 0% mask ratio) for the momentum
branch so that it possesses lower variance than the main
branch. Furthermore, there are two sets of data augmen-
tations, which follows the convention in BYOL [19]. The
difference in the augmentation strength introduces another
level of asymmetric into the siamese network, which bene-
fits the overall learning.

3

[Yao24] Y. Yao et al., “Masked Contrastive Representation
Learning for Self-Supervised Visual Pre-Training”. In Proc. of
DSAA 2024 [Kundu22] R. Kundu, “The Beginner’s Guide to Contrastive

Learning”. https:
//www.v7labs.com/blog/contrastive-learning-guide

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 57 / 59

https://www.v7labs.com/blog/contrastive-learning-guide
https://www.v7labs.com/blog/contrastive-learning-guide


Análisis de la Señal de Voz

Aprendizaje Auto-Supervisado de Representaciones de Voz

wav2vec 2.0

[Baevski20] A. Baevski et al., “wav2vec
2.0: A Framework for Self-Supervised
Learning of Speech Representations”. In
Proc. of NeurIPS 2020

Aprendizaje contrastivo
con enmascaramiento

HuBERTHSU et al.: HUBERT: SELF-SUPERVISED SPEECH REPRESENTATION LEARNING BY MASKED PREDICTION OF HIDDEN UNITS 3455

After HuBERT pre-training, We use the connectionist tem-
poral classification (CTC) [42] loss for ASR fine-tuning of the
whole model weights except the convolutional audio encoder,
which remains frozen. The projection layer(s) is removed and
replaced with a randomly initialized softmax layer. The CTC
target vocabulary includes 26 English characters, a space token,
an apostrophe, and a special CTC blank symbol.

III. RELATED WORK

We discuss recent studies on self-supervised speech represen-
tation learning by grouping them by training objective. The ear-
liest line of work learns representations by postulating a gener-
ative model for speech with latent variables, which are assumed
to capture the relevant phonetic information. Training of these
models amounts to likelihood maximization. Different latent
structures have been applied to encode the prior assumption,
such as continuous [30], discrete [32], [43], or sequential [29],
[31], [33], [34], [44].

Prediction-based self-supervised learning has gathered in-
creasing interests recently, where a model is tasked to predict
the content of the unseen regions [5], [45]–[51] or to contrast
the target unseen frame with randomly sampled ones [2]–[4], [7].
Some models combine both the predictive and the contrastive
losses [6], [52]. These objectives can usually be interpreted as
mutual information maximization [53]. Other objectives do not
belong to these categories, for example, [54].

This work is most related to DiscreteBERT [52]: both Hu-
BERT and DiscreteBERT predict discrete targets of masked
regions. However, there are several crucial differences. First,
instead of taking quantized units as input, HuBERT takes raw
waveforms as input to pass as much information as possible to
the transformer layers, which was shown to be important in [7].
Furthermore, in the experiment section, we show that our model,
with simple k-means targets, can achieve better performance
than DiscreteBERT that uses vq-wav2vec [6] learned units. Sec-
ond, we also present many techniques to improve teacher quality
instead of using a single fixed teacher as done in DiscreteBERT.

HuBERT is also related to wav2vec 2.0 [7]. However, the
latter employs a contrastive loss that requires careful design of
where to sample negative frames from, an auxiliary diversity
loss to encourage the discrete unit usage, and demands a proper
Gumbel-softmax temperature annealing schedule. In addition,
it only explores quantizing the waveform encoder output, which
may not be the best feature for quantization due to the limited
capacity of the convolutional encoder, as suggested by our
ablation studies in Figure 2. Concretely, our proposed method
adopts a more direct predictive loss by separating the acoustic
unit discovery step from the masked prediction representation
learning phase and achieves the state-of-the-art results that
match or outperform wav2vec 2.0 on different fine-tuning scales.

Finally, the idea of iterative refinement target labels is similar
to iterative pseudo labeling for semi-supervised ASR [13], [55],
which leverages an improving student model to generate better
pseudo-labels for the next iteration of training. The HuBERT
approach can be seen as extending this method to the self-
supervised setup with a masked prediction loss.

Fig. 1. The HuBERT approach predicts hidden cluster assignments of the
masked frames (y2, y3, y4 in the figure) generated by one or more iterations of
k-means clustering.

Fig. 2. Quality of the cluster assignments obtained by running k-means
clustering on features extracted from each transformer layer of the first and
the second iteration BASE HuBERT models.

IV. EXPERIMENTAL DETAILS

A. Data

For unsupervised pre-training, we use the full 960 hours of
LibriSpeech audio [25] or 60,000 hours of Libri-light [26] audio,
both of which are derived from the LibriVox project that contains

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 30,2025 at 17:35:15 UTC from IEEE Xplore.  Restrictions apply. 

[Hsu21] W.-N. Hsu et al., “HuBERT:
Self-Supervised Speech Representation
Learning by Masked Prediction of Hidden
Units”. IEEE/ACM Transactions on
Audio, Speech, and Language Processing,
2021

Entroṕıa cruzada sólo
sobre segmentos
enmascarados

WavLM

3

x1
[M] [M] [M] x5 x6

Z1 Z2 Z3 Z4 z5 z6

Utterance 
Mixing  audio

Transformer Encoder with 
Gated Relative Position Bias

Mask Prediction Loss

Target labels

CNN Encoders

Fig. 1. Model Architecture.

work BigSSL [47] also mentions large SSL model could
handle various speech tasks. The difference is that our work
demonstrates that the full stack tasks can be handled by
the careful pre-training and fine-tuning strategy design, even
without scaling up the model size to 8 billion parameters.

III. BACKGROUND: HUBERT

HuBERT is an SSL method that benefits from an offline
clustering step to provide target labels for a BERT-like
prediction loss [1]. The backbone is a Transformer encoder [48]
with L blocks. During pre-training, the Transformer consumes
masked acoustic features u and outputs hidden states hL. The
network is optimized to predict the discrete target sequence
z, where each zt ∈ [C] is a C-class categorical variable. The
distribution over codewords is parameterized with

p(c|hL
t ) =

exp(sim(hL
t W

P , ec)/τ)∑C
c′=1 exp(sim(hL

t W
P , ec′)/τ)

(1)

where WP is a projection matrix, hL
t is the output hidden

state for step t, ec is the embedding for codeword c, sim(a, b)
computes the cosine similarity and τ = 0.1 scales the logit.
HuBERT proposes a masked speech prediction task, where
the prediction loss is only applied over the masked regions,
forcing the model to learn a combined acoustic and language
model over the continuous inputs.

HuBERT adopts an iterative re-clustering and re-training
process: For the first iteration, the targets are assigned by
clustering the MFCC features of the training data; For the
second iteration, a new generation of training targets are created
by clustering the latent representations generated by the first
iteration trained model.

IV. WAVLM

We propose a masked speech denoising and prediction
framework, where some inputs are simulated noisy/overlapped
with masks and the target is to predict pseudo-labels of the

original speech on the masked region. Unlike existing masked
speech modeling (HuBERT), which just focuses on the ASR
task, the masked speech denoising allows us to extend pre-
trained speech models to non-ASR tasks, since it implicitly
models information we need in the speaker identification,
separation, and diarization tasks. We further optimize the
Transformer backbone and extend pre-training data to 94k
public English data.

A. Model Structure
Our model architecture uses the Transformer model as the

backbone. As shown in Figure 1, it contains a convolutional
feature encoder and a Transformer encoder. The convolutional
encoder is composed of seven blocks of temporal convolution
followed by layer normalization and a GELU activation layer.
The temporal convolutions have 512 channels with strides
(5,2,2,2,2,2,2) and kernel widths (10,3,3,3,3,2,2), resulting
in each output representing about 25ms of audio strode by
20ms. The convolutional output representation x is masked as
the Transformer input. The Transformer is equipped with a
convolution-based relative position embedding layer with 128
kernel size and 16 groups at the bottom.

To improve the model, we employ gated relative position
bias [15] which is encoded based on the offset between the
“key” and “query” in the Transformer self-attention mechanism.
Let {hi}Ti=1 denote the input hidden states for the self-attention
module, each hi is linearly projected to a triple of query, key
and value (qi,ki,vi) as:

qi,ki,vi = hiW
Q,hiW

K ,hiW
V (2)

The self-attention outputs {h̃i}Ti=1 are computed via:

aij ∝ exp{qi · kj√
dk

+ ri−j} (3)

h̃i =
T∑

j=1

aijvj (4)

where ri−j is the gated relative position bias added to the
attention logits. It is computed by:

g(update)
i , g(reset)

i = σ(qi · u), σ(qi ·w)

r̃i−j = wg(reset)
i di−j

ri−j = di−j + g(update)
i di−j + (1− g(update)

i )r̃i−j

where di−j is a learnable scalar relative position bias, the
vectors u,w ∈ Rdk are learnable parameters, σ is a sigmoid
function, and w is a learnable value.

In our work, di−j is a bucket relative position embedding [3]
and the embedding parameters are shared across all layers. We
use n = 320 embeddings and each corresponds to a range of
possible (i− j) offsets. The range increased logarithmically
up to a maximum offset of m = 800, beyond which we assign
all relative offsets to the same embedding, i.e.,

d|i−j| =


|i− j|, |i− j| < n

4

bn4 (
log(|i−j|)−log(n

4 )

log(m)−log(n
4 ) + 1)c, n

4 ≤ |i− j| < m
n
2 − 1, |i− j| ≥ m

(5)

[Chen22] S. Chen et al., “WavLM:
Large-Scale Self-Supervised Pre-Training
for Full Stack Speech Processing”. IEEE
Journal of Selected Topics in Signal
Processing, 2022

Aprendizaje predictivo
similar a HuBERT

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 58 / 59



Introducción a las Tecnoloǵıas del Habla

Dr. Iván López-Espejo

DÍA 1: INTRODUCCIÓN, APLICACIONES, Y ANÁLISIS DE LA SEÑAL DE VOZ

iloes@ugr.es

Monday 2nd June, 2025

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Monday 2nd June, 2025 59 / 59



Introducción a las Tecnoloǵıas del Habla

Dr. Iván López-Espejo

DÍA 2: INTRODUCCIÓN A LA VERIFICACIÓN DE HABLANTE

iloes@ugr.es

Tuesday 3rd June, 2025

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 1 / 46



Tabla de Contenidos

1 Introducción a la Verificación de Hablante

2 Implementación de un Sistema de Verificación de Hablante

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 2 / 46



Introducción a la Verificación de Hablante

Tabla de Contenidos

1 Introducción a la Verificación de Hablante

2 Implementación de un Sistema de Verificación de Hablante

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 3 / 46



Introducción a la Verificación de Hablante

Introducción a la Verificación de Hablante

Los sistemas de reconocimiento de hablantes se han convertido en un medio
importante para verificar la identidad en aplicaciones de comercio
electrónico, ciencia forense, aplicación de la ley, etc.

Dos aproximaciones principales en biometŕıa de voz:
1 Identificación/reconocimiento (1 : N): Escenario cerrado vs. escenario abierto
2 Verificación (1 : 1)

Independencia vs. dependencia del texto

[MediaMedic] MediaMedic, “Voice Biometrics: Advancements and Applications in Forensic Investigations,”
https://www.mediamedic.studio/voice-biometrics-advancements-and-applications/

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 4 / 46

https://www.mediamedic.studio/voice-biometrics-advancements-and-applications/


Introducción a la Verificación de Hablante

Introducción a la Verificación de Hablante

Fuentes de variabilidad en el contexto del reconocimiento del hablante:

	 IEEE SIGNAL PROCESSING MAGAZINE  [77] no vember 2015

[FIG1]  Sources of variability in speaker recognition. 

•	 Situational task stress—the subject is performing 
some task while speaking, such as operating a vehicle 
(car, plane, truck, etc.), hands-free voice input (factory 
setting, emergency responders/fire fighters, etc.), which 
can include cognitive as well as physical task stress [9].
•	 Vocal effort/style—the subject alters his or her speech 
production from normal phonation, resulting in whispered 
[10], [11], soft, loud, or shouted speech; the subject alters his 
or her speech production mechanism to speak effectively in 
the presence of noise [12], known as the Lombard effect; or the 
subject is singing versus speaking [13].
•	 Emotion—the subject is communicating his or her 
emotional state while speaking (e.g., anger, sadness, happi-
ness, etc.) [14].
•	 Physiological—the subject has some illness or is intoxi-
cated or under the influence of medication; this can 
include aging as well.
•	 Disguise—the subject intentionally alters his or her voice to 
circumvent the system. This can be by natural means (speak-
ing in a harsh voice to avoid detection, mimicking another 
person’s voice, etc.) or using a voice-conversion system.

■■ Conversation-based/higher-level mode/language of speak-
ing variability sources: these reflect different scenarios with 
respect to the voice interaction with either another person or 
technology system, or differences with respect to the specific 
language or dialect spoken, and can include

•	 human-to-human: speech that includes two or more 
individuals interacting or one person speaking and 
addressing an audience

—language or dialect spoken

—if speech is read/prompted (through visual display or 
through headphones), spontaneous, conversational, or 
disguised speech
—monologue, two-way conversation, public speech in 
front of an audience or for TV or radio, group discussion

•	 human-to-machine: speech produced where the subject 
is directing his or her speech toward a piece of technology 
(e.g., cell/smart/landline telephone and computer)

—prompted speech: voice input to a computer
—voice input for telephone/dialog system/computer 
input: interacting with a voice-based system.

■■ Technology- or external-based variability sources: these 
include how and where the audio is captured and the follow-
ing issues:

•	 electromechanical—transmission channel, handset 
(cell, cordless, and landline) [15]–[17] microphone
•	 environmental—background noise [18] (stationary, 
impulsive, time-varying, etc.), room acoustics [19], rever-
beration [20], and distant microphone
•	 data quality—duration, sampling rate, recording qual-
ity, and audio codec/compression.

These multifaceted sources of variation pose the greatest chal-
lenge in accurately modeling and recognizing a speaker, whether 
automatic algorithms are used, or if human listening/assessment 
is performed. Given that speech will contain variability, the task 
of speaker verification is deciding if the variability is due to the 
same speaker (intra {within}-speaker) or different speakers (inter 
{across}-speaker).

In current automated speaker-recognition technology, various 
mathematical tools are used to mitigate the effects of these 

Noise, Signal-to-Noise RatioMicrophone/
Sensors

Speaker

Vocabulary,
Turn Taking

Task Stress Emotion

Vocal Effort

Accent/
Dialect

Language/
Culture

Speech Utterance Space (Two Dimensional)

Variability
Within Speaker 

Variability
Across Speakers

Human-to-Human
Human-to-Machine

Conversation BasedSpeaker Based Technology Based

Prompted/Read Speech
Spontaneous Speech

Monologue
Two-Way Conversation

Group Discussion

Noise, Signal-to-Noise RatioMicrophone/
Sensors

Speaker

Vocabulary,
Turn Taking

Task Stress Emotion

Vocal Effort

Accent/
Dialect

Language/
Culture

Speech Utterance Sp

Hu
Hu

Prom
Spo

Two-
Gr

Lombard Effect

[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker Recognition by Machines and Humans: A tutorial review,” IEEE Signal
Processing Magazine, 2015

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 5 / 46



Introducción a la Verificación de Hablante

Introducción a la Verificación de Hablante

Enrolamiento recursivo: Actualizamos la
muestra de referencia de un hablante tras una
verificación exitosa para robustecer el sistema
frente a la variabilidad intra-hablante

1 Edad (paso del tiempo)
2 Enfermedad
3 Estado ańımico
4 ...

¡Si y sólo si la verificación ha sido exitosa! (i.e., s ′ = s):

e
(s)
t = λ(σ(x),Ψ, γ)e

(s)
t−1 + (1− λ(σ(x),Ψ, γ))v

(s′)
t

v
(s′)
t : Nueva muestra de verificación procedente del hablante s′

e
(s)
t−1: Muestra de referencia anterior del hablante s

e
(s)
t : Muestra de referencia actualizada del hablante s

λ(σ(x),Ψ, γ): Factor de recuerdo dependiente de la puntuación calibrada σ(x)

[Espejo24] I. López-Espejo et al., “Authenticating a User,” US Patent, 2024

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 6 / 46



Introducción a la Verificación de Hablante

Introducción a la Verificación de Hablante

Diagrama de bloques de un sistema básico de verificación de hablante:

	 IEEE SIGNAL PROCESSING MAGAZINE  [83] no vember 2015

AUTOMATIC SPEAKER RECOGNITION
In automatic speaker recognition, computer programs designed 
to operate independently with minimum human intervention 
identify a speaker’s voice. The system user may adjust the 
design parameters, but to make the comparison between speech 
segments, all the user needs to do is provide the system with the 
audio recordings. In the current discussion, we focus our atten-
tion on the text-independent scenario and the speaker-verifica-
tion task. Naturally, the challenges mentioned previously affect 
the automatic systems in the same way as they do the human 
listeners or forensic experts. Various speaker-verification 
approaches can be found in the literature that address specific 
challenges; see [65]–[74] for a comprehensive tutorial review on 
automatic speaker recognition. The research community is 
largely driven by standardized tasks set forth by NIST through 
the speaker-recognition evaluation (SRE) campaigns [75]–[78]. 
We discuss the NIST SRE tasks in more detail in later sections.

A simple block diagram representation of an automatic 
speaker-verification system is shown in Figure 4. Predefined fea-
ture parameters are first extracted from the audio recordings that 
are designed to capture the idiosyncratic characteristics of a 

(a)

(b)

(c)

Speaker

Vowel

a

a

u

Sp1 Sp2 Sp3
Speaker

u

i

i

V
ow

el
V

ow
el

(d)

(e)

(a)

(b)Vowel

Speaker

a

u

i

a

Sp1 Sp2 Sp3
Speaker

u

i

V
ow

el

[FIG3]  (a)–(c) The regions of the human brain that contribute the most in discriminating between vowels (red) and speakers (blue).  
(b) and (c) Enlarged representations of the auditory cortex (region of the brain sensitive to sounds). (d) and (e) Activation patterns of 
sounds created from the 15 most discriminative voxels (of the fMRI) for decoding (d) vowels and (e) speakers. Each axis of the polar 
plot forming a pattern displays the normalized activation level in a voxel. Note the similarity among the patterns of the same vowel 
[horizontal direction in (d)] or speaker [vertical direction in (e)]. (Figure reprinted from [5].) 

Feature
Extraction

Feature
Extraction

Enrollment 

Test 

Modeling

Background
Data 

Scoring
>τ

<τ
∧

Accept 

Reject 

[FIG4]  An overall block diagram of a basic speaker-verification 
system.

[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker Recognition by Machines and Humans: A tutorial review,” IEEE Signal
Processing Magazine, 2015

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 7 / 46



Introducción a la Verificación de Hablante

Bases de Datos

VoxCeleb1: Más de 100k grabaciones de 1.251
famosos extráıdas de YouTube

VoxCeleb2: Más de 1M de grabaciones de
6.112 famosos extráıdas de YouTube

[Nagrani17] A. Nagrani et al., “VoxCeleb: a large-scale speaker identification
dataset,” in Proc. of Interspeech 2017

[Chung18] J. S. Chung et al., “VoxCeleb2: Deep Speaker Recognition,” in Proc. of
Interspeech 2018

NIST SRE (Speaker
Recognition
Evaluation): Desde el
año 1996 hasta la
actualidad

NIST SRE 2018

https://sre.nist.gov/

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 8 / 46

https://sre.nist.gov/


Introducción a la Verificación de Hablante

Curvas ROC y DET

Probabilidad de que una muestra positiva sea correctamente detectada como
tal:

True Positive Rate (TPR) = Recall ≡
TP

TP + FN

Probabilidad de que una muestra negativa sea incorrectamente clasificada
como positiva:

False Positive Rate (FPR) ≡
FP

FP + TN

La curva caracteŕıstica operativa del receptor (ROC) se obtiene
barriendo el umbral de sensibilidad/decisión:I. López-Espejo et al.: Deep Spoken KWS: An Overview

Ran
dom

 cl
ass

ifie
r

0.0      0.2      0.4      0.6      0.8      1.0

1.0


0.8


0.6


0.4


0.2


0.0


False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

 Receiver operating characteristic 
Perfect classifier

W
orse

Better

        Detection error trade-off        

1.0


0.8


0.6


0.4


0.2


0.0

0.0      0.2      0.4      0.6      0.8      1.0

False positive rate

Fa
ls

e 
ne

ga
tiv

e 
ra

te

Random classifier

Perfect classifier

W
or

se

Bett
er

SYS2

SYS1

SYS1

SYS2

FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].

VOLUME 4, 2016 19

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 9 / 46



Introducción a la Verificación de Hablante

Curvas ROC y DET

Área bajo la curva ROC (AUCROC ∈ [0, 1]): Probabilidad de que un
clasificador clasifique una muestra positiva elegida aleatoriamente en un
rango superior a una muestra negativa elegida aleatoriamente

I. López-Espejo et al.: Deep Spoken KWS: An Overview

Ran
dom

 cl
ass

ifie
r

0.0      0.2      0.4      0.6      0.8      1.0

1.0


0.8


0.6


0.4


0.2


0.0


False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

 Receiver operating characteristic 
Perfect classifier

W
orse

Better

        Detection error trade-off        

1.0


0.8


0.6


0.4


0.2


0.0

0.0      0.2      0.4      0.6      0.8      1.0

False positive rate

Fa
ls

e 
ne

ga
tiv

e 
ra

te

Random classifier

Perfect classifier

W
or

se

Bett
er

SYS2

SYS1

SYS1

SYS2

FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].

VOLUME 4, 2016 19

I. López-Espejo et al.: Deep Spoken KWS: An Overview

(deep) KWS development and evaluation. This crowdsourced
database was captured at a sampling rate of 16 kHz by means
of phone and laptop microphones, being, to some extent,
noisy. Its first version, v1 [153], was released in August 2017
under a Creative Commons BY 4.0 license [211]. Recorded
by 1,881 speakers, this first version consists of 64,727 one-
second (or less) long speech segments covering one word
each out of 30 possible different words. The main difference
between the first version and the second version —which was
made publicly available in 2018— is that the latter incorpo-
rates 5 more words (i.e., a total of 35 words), more speech
segments, 105,829, and more speakers, 2,618. Table 2 lists
the words included in the Google Speech Commands Dataset
v1 (first six rows) and v2 (all the rows). In this table, words
are broken down by the standardized 10 keywords (first two
rows) and non-keywords (last five rows). To facilitate KWS
technology reproducibility and comparison, this benchmark
also standardizes the training, development and test sets, as
well as other crucial aspects of the experimental framework,
including a training data augmentation procedure involving
background noises (see, e.g., [30] for further details). Mul-
tiple recent deep KWS works have employed either the first
version [16], [30], [32], [43], [48]–[52], [57], [58], [67], [69],
[70], [86], [90], [100], [125] or the second version [32], [47],
[48], [53], [70], [82], [89], [90], [99], [100], [109], [128]–
[130], [159], [175] of the Google Speech Commands Dataset.

Despite how valuable this open reference is for KWS
research and development, we can raise two relevant points
of criticism:

1) Class balancing: The different keyword and non-
keyword classes are rather balanced (i.e., they ap-
pear with comparable frequencies) in this benchmark,
which, as we know, is generally not realistic. See Sub-
section IX-A for further comments on this question.

2) Non-streaming mode: Most of the above-referred
works using the Google Speech Commands Dataset
performs, due to the nature of this corpus, KWS eval-
uations in non-streaming mode, namely, multi-class
classification of independent short input segments. In
this mode, a full keyword or non-keyword is surely
present within every segment. However, real-life KWS
involves the continuous processing of an input audio
stream.

A few deep KWS research works [43], [58], [129], [130]
have proposed to overcome the above two limitations by
generating more realistic streaming versions of the Google
Speech Commands Dataset by concatenation of one-second
long utterances in such a manner that the resulting word class
distribution is unbalanced. Even though the author of the
Google Speech Commands Dataset reports some streaming
evaluations in the database description manuscript [154],
still, we think that this point should be standardized for the
sake of reproducibility and comparison, thereby enhancing
the usefulness of this valuable corpus.

Lastly, we wish to draw attention to the fact that we pro-

NK NK NK KW NK NKKWNK NKNK

NK NK NK NK NK NK NK NK NK NK

NK NK KW NK NK KW NK NK NK NKGround truth

SYS1

SYS2

FIGURE 11. Example of two different KWS systems SYS1 and SYS2
recognizing a sequence of keywords (KW) and non-keywords (NK). The
ground truth sequence is also shown on top.

duced three outcomes revolving around the Google Speech
Commands Dataset v2: 1) a variant of it emulating hearing
aids as a capturing device (employed, as mentioned in Sub-
section VII-C, for KWS for hearing assistive devices robust
to external speakers) [128], [129], 2) another noisier variant
with a diversity of noisy conditions15 (i.e., types of noise
and SNR levels) [130], and 3) manually-annotated speaker
gender labels16.

IX. EVALUATION METRICS
Obviously, the gold plate test of any speech communication
system is a test with relevant end-users. However, such tests
tend to be costly and time-consuming. Instead (or in addition
to subjective tests), one adheres to objective performance
metrics for estimating system performance. It is important to
choose a meaningful objective evaluation metric that allows
us to determine the goodness of a system and is highly
correlated to the subjective user experience. In what follows,
we review and provide some criticism of the most common
metrics considered in the field of KWS. These metrics are
rather intended for binary classification —e.g., keyword/non-
keyword— tasks. In the event of having multiple keywords, a
common approach consists of applying the metric computa-
tion for every keyword and, then, the result is averaged, e.g.,
see [30], [129], [130].

A. ACCURACY
Accuracy can be defined as the ratio between the number
of correct predictions/classifications and the total number
of them [212]. In the context of binary classification (e.g.,
keyword/non-keyword), accuracy can also be expressed from
the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) as follows [213]:

Accuracy =
TP + TN

TP + TN + FP + FN
. (14)

Accuracy ∈ [0, 1], where 0 and 1 indicate, respectively,
worst and perfect classification.

It is reasonable to expect that, in real-life applications like
wake-up word detection, KWS systems will hear other word
types rather than keywords most of the time. In other words,
KWS is a task in which, in principle, the keyword and non-
keyword classes are quite unbalanced. Under these circum-

15Tools to create this noisy dataset can be freely downloaded from http:
//ilopez.es.mialias.net/misc/NoisyGSCD.zip

16These labels are publicly available at https://ilopezes.files.wordpress.
com/2019/10/gscd_spk_gender.zip

18 VOLUME 4, 2016

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 10 / 46



Introducción a la Verificación de Hablante

Curvas ROC y DET

Dado que

False Negative Rate (FNR) ≡
FN

FN + TP
= 1− TPR,

la curva de compensación de errores de detección (DET) no es otra
cosa que una versión volteada verticalmente de la curva ROC:

I. López-Espejo et al.: Deep Spoken KWS: An Overview

Ran
dom

 cl
ass

ifie
r

0.0      0.2      0.4      0.6      0.8      1.0

1.0


0.8


0.6


0.4


0.2


0.0


False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

 Receiver operating characteristic 
Perfect classifier

W
orse

Better

        Detection error trade-off        

1.0


0.8


0.6


0.4


0.2


0.0

0.0      0.2      0.4      0.6      0.8      1.0

False positive rate

Fa
ls

e 
ne

ga
tiv

e 
ra

te

Random classifier

Perfect classifier

W
or

se

Bett
er

SYS2

SYS1

SYS1

SYS2

FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].

VOLUME 4, 2016 19

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 11 / 46



Introducción a la Verificación de Hablante

Curvas ROC y DET

Área bajo la curva DET (AUCDET ∈ [0, 1]): Cuanto menor, mejor

Tasa de error igual (EER): Punto de intersección entre la función
identidad y la curva DET (i.e., punto en el cual FNR = FPR)

I. López-Espejo et al.: Deep Spoken KWS: An Overview

Ran
dom

 cl
ass

ifie
r

0.0      0.2      0.4      0.6      0.8      1.0

1.0


0.8


0.6


0.4


0.2


0.0


False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

 Receiver operating characteristic 
Perfect classifier

W
orse

Better

        Detection error trade-off        

1.0


0.8


0.6


0.4


0.2


0.0

0.0      0.2      0.4      0.6      0.8      1.0

False positive rate

Fa
ls

e 
ne

ga
tiv

e 
ra

te

Random classifier

Perfect classifier

W
or

se

Bett
er

SYS2

SYS1

SYS1

SYS2

FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].

VOLUME 4, 2016 19

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 12 / 46



Introducción a la Verificación de Hablante

Estableciendo el Umbral de Decisión

	 IEEE SIGNAL PROCESSING MAGAZINE  [93] no vember 2015

prior probability of encountering a target speaker. For a given data 
set and task, systems evaluated using a specific error/cost criteria can 
be compared. Before discussing the common performance measures, 
we introduce the type of errors encountered in speaker verification.

TYPES OF ERRORS
There are mainly two types of errors in speaker verification (or any 
other biometric authentication) when a hard decision is made by 
the automatic system. From the speaker authentication point of 
view, we define them as

■■ false accept (FA): granting access to an impostor speaker
■■ false reject (FR): denying access to a legitimate speaker.

From the speaker-detection point of view (a target speaker is 
sought), these are called false-alarm and miss errors, respectively. 
According to these definitions, two error rates are defined as

	
.

False-Acceptance Rate (FAR) Number of impostor attempts
Number of FA errors

False-Rejection Rate (FRR) Number of legitimate attempts
Number of FR errors

=

=

Speaker-verification systems generally output a match score 
between the training speaker and the test utterance. This is true 
for most two-class recognition/binary detection problem. This 
score is a scalar variable that represents the similarity between the 
enrolled speaker and the test speaker, with higher values indicat-
ing the speakers are more similar. To make a decision, the system 
needs to use a threshold ( )x  as illustrated in Figure 10. If the 
threshold is too low, there will be a lot of FA errors, whereas if the 
threshold is too high, there will be too many FR/miss errors.

EQUAL ERROR RATE
The equal error rate (EER) is defined as the FAR and FRR values 
when they become equal. That is, by changing the threshold, we find 
a point where the FAR and FRR become equal. This is shown in 

Figure 10. The EER is a very popular performance measure for 
speaker-verification systems. Only the soft scores from the automatic 
system are required to compute the EER. No actual hard decisions 
are made. It should be noted that operating a speaker-verification sys-
tem on the threshold corresponding to the EER might not be desir-
able for practical purposes. For high-security applications, one should 
set the threshold higher, lowering the FA errors at the cost of miss 
errors. However, for high convenience, the threshold may be set 
lower. Let us discuss some examples. In authenticating users for bank 
accounts, security is of utmost importance. It is thus better to deny 
access to the legitimate user (and ask other forms of verification) as 
opposed to granting access to an impostor. On the contrary, for an 
automated customer service, denying a legitimate speaker will cause 
inconvenience and frustration to the user. In this case, accepting an 
illegitimate speaker is not as critical as in high-security applications.

DETECTION COST FUNCTION
This is, in fact, a family of performance measures introduced by 
NIST over the years. As mentioned before, the EER does not differ-
entiate between the two errors, which sometimes is not a realistic 
performance measure. The detection cost function (DCF), thus, 
introduces numerical costs/penalties for the two types of errors 
(FA and miss). The a priori probability of encountering a target 
speaker is also provided. The DCF is computed over the full range 
of decision threshold values as

	 ( ) ( ) ( ) ( ) .1DCF C P P C P PMISS Target FA FA Targetx x x= + - �

Here,
CMiss 	 =	 Cost of a miss/FR error
CFA	 = 	 Cost of an FA error
P argetT 	 = 	 Prior probability of target speaker.

( )PM xiss 	 =	 Probability of (Miss | Target, Threshold = )x
( )PFA x 	 =	 Probability of (FA | Nontarget, Threshold = ) .x

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Raw Recognition Score

P
D

F

FAR – FRR = EER

EER Threshold
EER = 10.38%

Threshold
True Scores
False Scores

FR Area

FA Area

[FIG10]  An illustration of target and nontarget score distributions and the decision threshold. Areas under the curves 
with blue and red colors represent FAR and FRR errors, respectively.
[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker Recognition by Machines and Humans: A tutorial review,” IEEE Signal

Processing Magazine, 2015

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 13 / 46



Introducción a la Verificación de Hablante

Función de Coste de Detección

La función de coste de detección (DCF)
fue propuesta por NIST (National
Institute of Standards and Technology)

DCF(τ) = CmissPmiss(τ)Ptarget + CFAPFA(τ)(1− Ptarget)

1 Cmiss : Coste de un falso negativo (p. ej., 10)

2 CFA: Coste de un falso positivo (p. ej., 1)

3 Ptarget : Probabilidad a priori de un hablante objetivo (p. ej., 0,01)

4 Pmiss(τ): Probabilidad de un falso negativo dado un umbral τ

5 PFA(τ): Probabilidad de un falso positivo dado un umbral τ

El objetivo seŕıa encontrar el valor de τ que minimiza DCF(τ)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 14 / 46



Introducción a la Verificación de Hablante

Introducción a la Verificación de Hablante

CINCO GENERACIONES PRINCIPALES

1 GMM-UBM (Gaussian Mixture Models-Universal Background
Model): Tecnoloǵıa basada en modelos de mezcla de gaussianas

2 GMM-SVM (Gaussian Mixture Models-Support Vector
Machines): Supervectores GMM clasificados con SVMs

3 JFA (Joint Factor Analysis): Descomposición de la variabilidad
total en componentes de hablante y canal/sesión

4 i-vectors (identity vectors): Modelado de la variabilidad total

5 Redes neuronales: Tecnoloǵıa basada en aprendizaje profundo

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 15 / 46



Introducción a la Verificación de Hablante

1ª Generación: GMM-UBM (2000)

µ1 = −1, σ1 = 1 — µ2 = 4, σ2 = 1.5
w1 = 0.7 — w2 = 0.3

[Yehoshua23] R. Yehoshua, “Gaussian Mixture Models (GMMs): from
Theory to Implementation,” https://towardsdatascience.com/

gaussian-mixture-models-gmms-from-theory-to-implementation/

Modelos de mezcla de
gaussianas:

N (x|µ,Σ) = e−
1
2
(x−µ)⊤Σ−1(x−µ)√

(2π)d |Σ|

p(x) =
∑K

k=1 wkNk(x|µk ,Σk)∑K
k=1 wk = 1

0 ≤ wk ≤ 1 ∀k = 1, ...,K

θ = {wk ,µk ,Σk ; 1 ≤ k ≤ K}

Dado un conjunto de datos de entrenamiento X =
{
x(1), x(2), ..., x(N)

}
,

θ∗ = argmaxθ p(X|θ) = argmaxθ
∏N

i=1 p(x
(i)|θ) (¡Expectación-maximización!)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 16 / 46

https://towardsdatascience.com/gaussian-mixture-models-gmms-from-theory-to-implementation/
https://towardsdatascience.com/gaussian-mixture-models-gmms-from-theory-to-implementation/


Introducción a la Verificación de Hablante

1ª Generación: GMM-UBM (2000)

λs : GMM dependiente del hablante s (adaptación MAP de un UBM)

λ0: UBM

X = {xn; n = 1, ...,T} son vectores de caracteŕısticas procedentes de una observación O

Contraste de hipótesis:

1 H0: O proviene del hablante s

2 H1: O no procede del hablante s

Se calcula Λ(X) = log

(
p(X|λs)

p(X|λ0)

)
= log p(X|λs)− log p(X|λ0)

Si Λ(X) ≥ τ , entonces se acepta la hipótesis H0

	 IEEE SIGNAL PROCESSING MAGAZINE  [87] no vember 2015

advancement achieved by the so-called GMM–UBM method. In this 
approach, a speaker’s GMM is adapted or derived from the UBM 
using Bayesian adaptation [103]. In contrast to performing maxi-
mum likelihood training of the GMM for an enrollment speaker, 
this model is obtained by updating the well-trained UBM parame-
ters. This relation between the speaker model and the background 
model provides better performance than independently trained 
GMMs and also lays the foundation for the speaker model adapta-
tion techniques that were developed later. We will return to these 
relations as we proceed. In the following subsections, we describe 
the formulations of this approach.

The LR Test
Given an observation O and a hypothesized speaker ,s  the task of 
speaker verification can be stated as a hypothesis test between

	
: ,

: .

H O s

H O s

is from speaker

is no from speakert
0

1
�

In the GMM–UBM approach, the hypothesis H0  and H1  are repre-
sented by a speaker-dependent GMM sm  and the UBM .0m  Thus, 
for the set of observed feature vectors { | },x n T1n f!=X  the LR 
test is performed by evaluating the following ratio:

	 ( | )
( | )

,p
p

H
H

reject
accept

<X
X s

0 0

0$
m

m

x
x

' �

where x  is the decision threshold. Usually, the LR test is per-
formed in the logarithmic scale, providing the so-called log-LR

	 ( ) ( | ) ( | ) .log logp pX X Xs 0m mK = - � (2)

Maximum A Posteriori Adaptation of UBM
Let { | }x n T1X n f!=  denote the set of acoustic feature vectors 
obtained from the enrollment speaker s. Given a UBM as in (1) and 
the enrollment speaker’s data X, at first the probabilistic align-
ment of the feature vectors with respect the UBM components is 
calculated as

	 ( | , )
( | , )

( | , )
( ) .x

x

x
p g

p g

p g
gn

g n
g

M
g n

n0

0
1

0
m

r m

r m
c= =

=

/
�

Next, the values of ( )gnc  values are used to calculate the sufficient 
statistics for the weight, mean, and covariance parameter as

	 ( ) ( ) ,

( ) ( ) .

( ) ( ),

F x

x x

g g

S g g

N g g

s n
n

T

n

s n
n

T

n n
T

s n
n

T

1

1

1

c

c

c

=

=

=

=

=

=

/

/

/

�

These quantities are known as the zero-, first-, and second-order 
Baum–Welch statistics, respectively. Using these parameters, the 
posterior mean and covariance matrix of the features given the 
data vectors X  can be found as

	
[ | ] ( )

( )
,

[ | ] ( )
( )

.

x
F

x x
S

E N g
g

E N g
g

X

X

g n
s

s

g n n
T

s

s

=

=
�

The maximum a posteriori (MAP) adaptation update equations for 
weight, mean, and covariance, (3), (4), and (5), respectively, are 
proposed in [103] and used in [6] for speaker verification

	 [ ( ) / ( ) ] ,N g T 1g g s g gr a a r b= + -t � (3)
	 [ | ] ( )xE 1Xg g g n gn a a= + -t ,gn � (4)
	 [ | ] ( ) .x xE 1Xg g g n n

T
g g g g

T
g g

Ta a n n n nR R= + - + -t t t^ h � (5)

The scaling factor b  in (3) is computed from all the adapted mix-
ture weights to ensure that they sum to unity. Thus, the new GMM 
parameters are a weighted summation of the UBM parameters and 
the sufficient statistics obtained from the observed data (see 
“GMM–UBM System: Summary”). The variable ga  is defined as

	 ( )
( )

.N g r
N g

g
s

s
a =

+
� (6)

Speaker Data 
UBM 

Speaker Model 

G
M

M
 M

ea
n 

S
up

er
ve

ct
or

 

(a) (b)

[FIG7]  A schematic diagram of a GMM–UBM system using a four-mixture UBM. MAP adaptation procedure and supervector formation 
by concatenating the mean vectors are also illustrated. (a) A schematic diagram of a GMM–UBM system using a four-mixture UBM.  
(b)MAP adaptation procedure and supervector formation by concatenating the mean vectors are also illustrated.

[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker Recognition by Machines and Humans: A tutorial review,” IEEE Signal
Processing Magazine, 2015

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 17 / 46



Introducción a la Verificación de Hablante

2ª Generación: GMM-SVM (2006)

Los supervectores GMM proporcionan representaciones del hablante de
dimensionalidad fija

GMM-SVM: Clasificación de supervectores GMM usando SVMs (Support
Vector Machines)

	 IEEE SIGNAL PROCESSING MAGAZINE  [87] no vember 2015

advancement achieved by the so-called GMM–UBM method. In this 
approach, a speaker’s GMM is adapted or derived from the UBM 
using Bayesian adaptation [103]. In contrast to performing maxi-
mum likelihood training of the GMM for an enrollment speaker, 
this model is obtained by updating the well-trained UBM parame-
ters. This relation between the speaker model and the background 
model provides better performance than independently trained 
GMMs and also lays the foundation for the speaker model adapta-
tion techniques that were developed later. We will return to these 
relations as we proceed. In the following subsections, we describe 
the formulations of this approach.

The LR Test
Given an observation O and a hypothesized speaker ,s  the task of 
speaker verification can be stated as a hypothesis test between

	
: ,

: .

H O s

H O s

is from speaker

is no from speakert
0

1
�

In the GMM–UBM approach, the hypothesis H0  and H1  are repre-
sented by a speaker-dependent GMM sm  and the UBM .0m  Thus, 
for the set of observed feature vectors { | },x n T1n f!=X  the LR 
test is performed by evaluating the following ratio:

	 ( | )
( | )

,p
p

H
H

reject
accept

<X
X s

0 0

0$
m

m

x
x

' �

where x  is the decision threshold. Usually, the LR test is per-
formed in the logarithmic scale, providing the so-called log-LR

	 ( ) ( | ) ( | ) .log logp pX X Xs 0m mK = - � (2)

Maximum A Posteriori Adaptation of UBM
Let { | }x n T1X n f!=  denote the set of acoustic feature vectors 
obtained from the enrollment speaker s. Given a UBM as in (1) and 
the enrollment speaker’s data X, at first the probabilistic align-
ment of the feature vectors with respect the UBM components is 
calculated as

	 ( | , )
( | , )

( | , )
( ) .x

x

x
p g

p g

p g
gn

g n
g

M
g n

n0

0
1

0
m

r m

r m
c= =

=

/
�

Next, the values of ( )gnc  values are used to calculate the sufficient 
statistics for the weight, mean, and covariance parameter as

	 ( ) ( ) ,

( ) ( ) .

( ) ( ),

F x

x x

g g

S g g

N g g

s n
n

T

n

s n
n

T

n n
T

s n
n

T

1

1

1

c

c

c

=

=

=

=

=

=

/

/

/

�

These quantities are known as the zero-, first-, and second-order 
Baum–Welch statistics, respectively. Using these parameters, the 
posterior mean and covariance matrix of the features given the 
data vectors X  can be found as

	
[ | ] ( )

( )
,

[ | ] ( )
( )

.

x
F

x x
S

E N g
g

E N g
g

X

X

g n
s

s

g n n
T

s

s

=

=
�

The maximum a posteriori (MAP) adaptation update equations for 
weight, mean, and covariance, (3), (4), and (5), respectively, are 
proposed in [103] and used in [6] for speaker verification

	 [ ( ) / ( ) ] ,N g T 1g g s g gr a a r b= + -t � (3)
	 [ | ] ( )xE 1Xg g g n gn a a= + -t ,gn � (4)
	 [ | ] ( ) .x xE 1Xg g g n n

T
g g g g

T
g g

Ta a n n n nR R= + - + -t t t^ h � (5)

The scaling factor b  in (3) is computed from all the adapted mix-
ture weights to ensure that they sum to unity. Thus, the new GMM 
parameters are a weighted summation of the UBM parameters and 
the sufficient statistics obtained from the observed data (see 
“GMM–UBM System: Summary”). The variable ga  is defined as

	 ( )
( )

.N g r
N g

g
s

s
a =

+
� (6)

Speaker Data 
UBM 

Speaker Model 

G
M

M
 M

ea
n 

S
up

er
ve

ct
or

 
(a) (b)

[FIG7]  A schematic diagram of a GMM–UBM system using a four-mixture UBM. MAP adaptation procedure and supervector formation 
by concatenating the mean vectors are also illustrated. (a) A schematic diagram of a GMM–UBM system using a four-mixture UBM.  
(b)MAP adaptation procedure and supervector formation by concatenating the mean vectors are also illustrated.

	 IEEE SIGNAL PROCESSING MAGAZINE  [89] no vember 2015

variables. For speaker rec-
ognition, the idea of 
explaining the speaker- and 
channel-dependent vari-
ability using FA in the 
GMM supervector space 
was first discussed in [112]. 
Many variants of FA meth-
ods were employed since 
then, which finally led to 
the current state-of-the-art 
i-vector approach [79]. In this section, we discuss these methods 
briefly to illustrate how the techniques have evolved.

Linear Distortion Model
In the discussions to follow, a speaker-dependent GMM supervec-
tor m s  is generally assumed to be a linear combination of four 
components. These components are as follows:

1)	speaker-/channel-/environment-independent component
)(m0

2)	speaker-dependent component ( )mspk

3)	channel-/environment-dependent component )(mchn

4)	residual .)(mres

Component 1 is usually obtained from the UBM and is a constant. 
Components 2–4 are random vectors and are responsible for vari-
ability in the supervectors due to different phenomena. Using this 
model, a GMM supervector obtained from speaker s  and session 
h is written as

	 .m m m m m,s h 0 spk chn res= + + + � (7)

For acoustic features of dimension d  and a UBM with M  mixture 
components, these GMM supervectors are of dimension ( ) .Md 1#  
As an example, the speaker- and channel-independent supervector 
m0  is the concatenation of the UBM mean vectors. We denote the 
subvectors of m0 for the gth mixture as m [ ],g0  which equals .gn  In 
the following sections, we discuss how well-known linear Gaussian 
models, including FA, can be used to develop methods based on this 
generic decomposition of the GMM supervectors. A summary of the 
various linear statistical models in speaker recognition is included 
in Table 1, which highlights both formulation and specifics on 
matrix/model traits.

Classical Map Adaptation
We revisit the MAP adaptation technique discussed previously in 
the GMM–UBM system. If we examine the adaptation equation (4), 
which is used to update the mean vectors, it is clear that this is a 
linear combination of two components: one is speaker dependent 
and the other is independent. In a more generalized way, MAP 
adaptation can be represented as an operation on the GMM mean 
supervector as: 

	 ,m m Dz ss 0= + � (8)

where D is ( )Md Md#  a diagonal matrix and z s  is a Md 1#  
standard normal random vector. We dropped the subscript 
due to session h  for simplicity. According to the linear 

distortion model of (7), 
.m Dz sspk =  As discussed 

in [113], in the special 
case when we set

      ( / ) ,D r12 R= �

the MAP adaptation equa-
tions given in (4) [6] arises 
from (8), where r  is the 
relevance factor in (6).

Eigenvoice Adaptation
Perhaps the first FA-related model used in speaker recognition was 
the eigenvoice method [105]. The eigenvoice method was initially 
proposed for speaker adaptation in speech recognition [114]. In 
essence, this method restricts the speaker model parameters to lie 
in a lower dimensional subspace, which is defined by the columns 
of the eigenvoice matrix. In this model, a speaker-dependent GMM 
mean supervector m s  is expressed as

	 ,mm Vys s0= + � (9)

where m0  is the speaker-independent supervector obtained from 
the UBM, the columns of the matrix V spans the speaker sub-
space, and y s  are the standard normal hidden variables known as 
speaker factors. Here, we dropped the subscript h for simplicity. 
In accordance with the linear distortion model in (7), the speaker-
dependent component is .m Vy sspk =  Note that this model does 
not have a residual noise term as in probabilistic PCA (PPCA) 
[115] or FA. This means that the eigenvoice model is essentially 
equivalent to PCA. The model covariance is .VVT  Since supervec-
tors are usually of a large dimension, a full rank sample covari-
ance matrix, i.e., the supercovariance matrix, is difficult to 
estimate with limited amount of data. Thus, EM algorithms 
[116], [117] are used to estimate the eigenvoices. The speaker fac-
tors need to be estimated for an enrollment speaker. Computation 

+

– –

–

–

–
–

–

+

+

+

+

+

+
+

+

+
+

+

–
–

–

–
–

–

+

Optimal
Linear

Separator

Maximum
Margin 

2
||w||

– x1

x2

Positive Examples 

Negative Examples 
W
T  x +

 b 
= 0

+

+
+

Support Vectors 

[FIG8]  A conceptual illustration of an SVM classifier: Positive (+) 
and negative (–) examples are correspondingly labeled, with the 
optimal linear separator and support vectors shown.

[TABLE 1] a sUMMARY OF THE LINEAR STATISTICAL MODELS  
IN SPEAKER RECOGNITION.

Model Formulation Remarks

Classical MAP m m Dzs s0= + d  is diagonal, ( )z 0, INs +

Eigenvoice m m Vys s0= + v  is low rank, ( )0, Iy Ns +

Eigenchannel m m UxDz,s h s h0= + + u  is low rank, ( , ) ( )z x 0 IN ,s h +

JFA m m Ux DzVy, ,s h h s s h0= + + + ,U V  are low rank, 
( , , ) ( )z 0 Iyx N ,,s hh s +

i-vector m m Tw, ,s h s h0= + t  is low rank, ( )0 Iw N ,,s h +

[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker Recognition by Machines and Humans: A tutorial review,” IEEE Signal
Processing Magazine, 2015

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 18 / 46



Introducción a la Verificación de Hablante

3ª Generación: JFA (2004)

FA (Factor Analysis): Modo de explicar la variabilidad debida al hablante y
al canal en el espacio de los supervectores

ms,h: Supervector GMM dependiente del hablante s (y de la sesión h):

ms,h = m0 +mspk +mchn +mres

1 m0: Componente independiente del entorno, canal y hablante (cte., procedente del UBM)

2 mspk : Componente dependiente del hablante

3 mchn: Componente dependiente del entorno y canal

4 mres : Residuo

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 19 / 46



Introducción a la Verificación de Hablante

3ª Generación: JFA (2004)

Joint Factor Analysis – JFA (en el dominio de los supervectores GMM):

ms,h = m0 + Uxh︸︷︷︸
mchn

+ Vys︸︷︷︸
mspk

+Dzs,h︸ ︷︷ ︸
mres

U y V son matrices de bajo rango estimadas durante una fase de entrenamiento mediante
un algoritmo de reducción de dimensionalidad tipo PCA

D es una matriz diagonal estimada junto a U y V mediante un algoritmo tipo EM

Dado un supervector ms,h, xh, ys y zs,h (los factores de canal, de hablante y residuales)
se obtienen mediante estimación MAP o bayesiana considerando que
(xh, ys , zs,h) ∼ N (0, I)

ys es el vector de caracteŕısticas del hablante usado en la comparación/verificación

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 20 / 46



Introducción a la Verificación de Hablante

4ª Generación: i-vectors (2009)

Dr. Najim Dehak investigó el uso de JFA como
extractor de caracteŕısticas (ys) y SVMs para
clasificación

Se percató de que xh también conteńıa información
relativa al hablante

Espacio de variabilidad total: Decidió combinar en
un único espacio los factores de hablante y canal:
ms,h = m0 + Tws,h

T es la matriz de variabilidad total de bajo rango y ws,h ∼ N (0, I)

i-vector: w∗
s,h = E [ws,h|F]

F =
∑

n γk (n)
(
xn − µUBM

k

)
γk (n) = P(k|xn) =

p(xn|k)P(k)

p(xn)
=

N (xn|µk ,Σk )wk∑
k wkN (xn|µk ,Σk )

Najim Dehak, PhD

	 IEEE SIGNAL PROCESSING MAGAZINE  [89] no vember 2015

variables. For speaker rec-
ognition, the idea of 
explaining the speaker- and 
channel-dependent vari-
ability using FA in the 
GMM supervector space 
was first discussed in [112]. 
Many variants of FA meth-
ods were employed since 
then, which finally led to 
the current state-of-the-art 
i-vector approach [79]. In this section, we discuss these methods 
briefly to illustrate how the techniques have evolved.

Linear Distortion Model
In the discussions to follow, a speaker-dependent GMM supervec-
tor m s  is generally assumed to be a linear combination of four 
components. These components are as follows:

1)	speaker-/channel-/environment-independent component
)(m0

2)	speaker-dependent component ( )mspk

3)	channel-/environment-dependent component )(mchn

4)	residual .)(mres

Component 1 is usually obtained from the UBM and is a constant. 
Components 2–4 are random vectors and are responsible for vari-
ability in the supervectors due to different phenomena. Using this 
model, a GMM supervector obtained from speaker s  and session 
h is written as

	 .m m m m m,s h 0 spk chn res= + + + � (7)

For acoustic features of dimension d  and a UBM with M  mixture 
components, these GMM supervectors are of dimension ( ) .Md 1#  
As an example, the speaker- and channel-independent supervector 
m0  is the concatenation of the UBM mean vectors. We denote the 
subvectors of m0 for the gth mixture as m [ ],g0  which equals .gn  In 
the following sections, we discuss how well-known linear Gaussian 
models, including FA, can be used to develop methods based on this 
generic decomposition of the GMM supervectors. A summary of the 
various linear statistical models in speaker recognition is included 
in Table 1, which highlights both formulation and specifics on 
matrix/model traits.

Classical Map Adaptation
We revisit the MAP adaptation technique discussed previously in 
the GMM–UBM system. If we examine the adaptation equation (4), 
which is used to update the mean vectors, it is clear that this is a 
linear combination of two components: one is speaker dependent 
and the other is independent. In a more generalized way, MAP 
adaptation can be represented as an operation on the GMM mean 
supervector as: 

	 ,m m Dz ss 0= + � (8)

where D is ( )Md Md#  a diagonal matrix and z s  is a Md 1#  
standard normal random vector. We dropped the subscript 
due to session h  for simplicity. According to the linear 

distortion model of (7), 
.m Dz sspk =  As discussed 

in [113], in the special 
case when we set

      ( / ) ,D r12 R= �

the MAP adaptation equa-
tions given in (4) [6] arises 
from (8), where r  is the 
relevance factor in (6).

Eigenvoice Adaptation
Perhaps the first FA-related model used in speaker recognition was 
the eigenvoice method [105]. The eigenvoice method was initially 
proposed for speaker adaptation in speech recognition [114]. In 
essence, this method restricts the speaker model parameters to lie 
in a lower dimensional subspace, which is defined by the columns 
of the eigenvoice matrix. In this model, a speaker-dependent GMM 
mean supervector m s  is expressed as

	 ,mm Vys s0= + � (9)

where m0  is the speaker-independent supervector obtained from 
the UBM, the columns of the matrix V spans the speaker sub-
space, and y s  are the standard normal hidden variables known as 
speaker factors. Here, we dropped the subscript h for simplicity. 
In accordance with the linear distortion model in (7), the speaker-
dependent component is .m Vy sspk =  Note that this model does 
not have a residual noise term as in probabilistic PCA (PPCA) 
[115] or FA. This means that the eigenvoice model is essentially 
equivalent to PCA. The model covariance is .VVT  Since supervec-
tors are usually of a large dimension, a full rank sample covari-
ance matrix, i.e., the supercovariance matrix, is difficult to 
estimate with limited amount of data. Thus, EM algorithms 
[116], [117] are used to estimate the eigenvoices. The speaker fac-
tors need to be estimated for an enrollment speaker. Computation 

+

– –

–

–

–
–

–

+

+

+

+

+

+
+

+

+
+

+

–
–

–

–
–

–

+

Optimal
Linear

Separator

Maximum
Margin 

2
||w||

– x1

x2

Positive Examples 

Negative Examples 
W
T  x +

 b 
= 0

+

+
+

Support Vectors 

[FIG8]  A conceptual illustration of an SVM classifier: Positive (+) 
and negative (–) examples are correspondingly labeled, with the 
optimal linear separator and support vectors shown.

[TABLE 1] a sUMMARY OF THE LINEAR STATISTICAL MODELS  
IN SPEAKER RECOGNITION.

Model Formulation Remarks

Classical MAP m m Dzs s0= + d  is diagonal, ( )z 0, INs +

Eigenvoice m m Vys s0= + v  is low rank, ( )0, Iy Ns +

Eigenchannel m m UxDz,s h s h0= + + u  is low rank, ( , ) ( )z x 0 IN ,s h +

JFA m m Ux DzVy, ,s h h s s h0= + + + ,U V  are low rank, 
( , , ) ( )z 0 Iyx N ,,s hh s +

i-vector m m Tw, ,s h s h0= + t  is low rank, ( )0 Iw N ,,s h +

[Hansen15] J. H. L. Hansen and T.
Hasan, “Speaker Recognition by
Machines and Humans: A tutorial
review,” IEEE Signal Processing

Magazine, 2015

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 21 / 46



Introducción a la Verificación de Hablante

Pero... ¿Cómo Usamos ys y ws,h para Verificación?

Extraemos wtest de una muestra para verificar y reclamamos la identidad asociada a wtarget

SVMs (Support Vector Machines)

	 IEEE SIGNAL PROCESSING MAGAZINE  [89] no vember 2015

variables. For speaker rec-
ognition, the idea of 
explaining the speaker- and 
channel-dependent vari-
ability using FA in the 
GMM supervector space 
was first discussed in [112]. 
Many variants of FA meth-
ods were employed since 
then, which finally led to 
the current state-of-the-art 
i-vector approach [79]. In this section, we discuss these methods 
briefly to illustrate how the techniques have evolved.

Linear Distortion Model
In the discussions to follow, a speaker-dependent GMM supervec-
tor m s  is generally assumed to be a linear combination of four 
components. These components are as follows:

1)	speaker-/channel-/environment-independent component
)(m0

2)	speaker-dependent component ( )mspk

3)	channel-/environment-dependent component )(mchn

4)	residual .)(mres

Component 1 is usually obtained from the UBM and is a constant. 
Components 2–4 are random vectors and are responsible for vari-
ability in the supervectors due to different phenomena. Using this 
model, a GMM supervector obtained from speaker s  and session 
h is written as

	 .m m m m m,s h 0 spk chn res= + + + � (7)

For acoustic features of dimension d  and a UBM with M  mixture 
components, these GMM supervectors are of dimension ( ) .Md 1#  
As an example, the speaker- and channel-independent supervector 
m0  is the concatenation of the UBM mean vectors. We denote the 
subvectors of m0 for the gth mixture as m [ ],g0  which equals .gn  In 
the following sections, we discuss how well-known linear Gaussian 
models, including FA, can be used to develop methods based on this 
generic decomposition of the GMM supervectors. A summary of the 
various linear statistical models in speaker recognition is included 
in Table 1, which highlights both formulation and specifics on 
matrix/model traits.

Classical Map Adaptation
We revisit the MAP adaptation technique discussed previously in 
the GMM–UBM system. If we examine the adaptation equation (4), 
which is used to update the mean vectors, it is clear that this is a 
linear combination of two components: one is speaker dependent 
and the other is independent. In a more generalized way, MAP 
adaptation can be represented as an operation on the GMM mean 
supervector as: 

	 ,m m Dz ss 0= + � (8)

where D is ( )Md Md#  a diagonal matrix and z s  is a Md 1#  
standard normal random vector. We dropped the subscript 
due to session h  for simplicity. According to the linear 

distortion model of (7), 
.m Dz sspk =  As discussed 

in [113], in the special 
case when we set

      ( / ) ,D r12 R= �

the MAP adaptation equa-
tions given in (4) [6] arises 
from (8), where r  is the 
relevance factor in (6).

Eigenvoice Adaptation
Perhaps the first FA-related model used in speaker recognition was 
the eigenvoice method [105]. The eigenvoice method was initially 
proposed for speaker adaptation in speech recognition [114]. In 
essence, this method restricts the speaker model parameters to lie 
in a lower dimensional subspace, which is defined by the columns 
of the eigenvoice matrix. In this model, a speaker-dependent GMM 
mean supervector m s  is expressed as

	 ,mm Vys s0= + � (9)

where m0  is the speaker-independent supervector obtained from 
the UBM, the columns of the matrix V spans the speaker sub-
space, and y s  are the standard normal hidden variables known as 
speaker factors. Here, we dropped the subscript h for simplicity. 
In accordance with the linear distortion model in (7), the speaker-
dependent component is .m Vy sspk =  Note that this model does 
not have a residual noise term as in probabilistic PCA (PPCA) 
[115] or FA. This means that the eigenvoice model is essentially 
equivalent to PCA. The model covariance is .VVT  Since supervec-
tors are usually of a large dimension, a full rank sample covari-
ance matrix, i.e., the supercovariance matrix, is difficult to 
estimate with limited amount of data. Thus, EM algorithms 
[116], [117] are used to estimate the eigenvoices. The speaker fac-
tors need to be estimated for an enrollment speaker. Computation 

+

– –

–

–

–
–

–

+

+

+

+

+

+
+

+

+
+

+

–
–

–

–
–

–

+

Optimal
Linear

Separator

Maximum
Margin 

2
||w||

– x1

x2

Positive Examples 

Negative Examples 
W
T  x +

 b 
= 0

+

+
+

Support Vectors 

[FIG8]  A conceptual illustration of an SVM classifier: Positive (+) 
and negative (–) examples are correspondingly labeled, with the 
optimal linear separator and support vectors shown.

[TABLE 1] a sUMMARY OF THE LINEAR STATISTICAL MODELS  
IN SPEAKER RECOGNITION.

Model Formulation Remarks

Classical MAP m m Dzs s0= + d  is diagonal, ( )z 0, INs +

Eigenvoice m m Vys s0= + v  is low rank, ( )0, Iy Ns +

Eigenchannel m m UxDz,s h s h0= + + u  is low rank, ( , ) ( )z x 0 IN ,s h +

JFA m m Ux DzVy, ,s h h s s h0= + + + ,U V  are low rank, 
( , , ) ( )z 0 Iyx N ,,s hh s +

i-vector m m Tw, ,s h s h0= + t  is low rank, ( )0 Iw N ,,s h +

[Hansen15] J. H. L. Hansen and T. Hasan, “Speaker
Recognition by Machines and Humans: A tutorial
review,” IEEE Signal Processing Magazine, 2015

[Karabiber24] F. Karabiber, “Cosine Similarity,”
https://www.learndatasci.com/glossary/cosine-similarity/

Similitud coseno:

Sc (wtest ,wtarget) = cos(θ) =

wtest · wtarget

∥wtest∥∥wtarget∥
∈ [−1, 1]

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 22 / 46

https://www.learndatasci.com/glossary/cosine-similarity/


Introducción a la Verificación de Hablante

PLDA

PLDA (Probabilistic Linear Discriminant Analysis): Sigue supuestos de
modelado similares a los de JFA

Un i-vector ws,h se puede descomponer como:

ws,h = w0 +Φβs + Γαh + εs,h

1 w0 es un i-vector promedio independiente del hablante

2 Φ y Γ son matrices de bajo rango que caracterizan los subespacios de hablante y canal

3 (βs ,αh) ∼ N (0, I) son factores de hablante y canal

4 εs,h es un vector de residuo

Si ws,h ← ws,h/∥ws,h∥2, ws,h ∼ N (modelo PLDA gaussiano)

Usar un modelo de covarianza completa para εs,h ∼ N (0,Σε) nos permite
simplificar el modelo PLDA:

ws,h = w0 +Φβs + εs,h

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 23 / 46



Introducción a la Verificación de Hablante

PLDA

Extraemos wtest de una muestra para verificar y reclamamos la identidad
asociada a wtarget

Contraste de hipótesis:

1 H0: wtest y wtarget provienen del mismo hablante

2 H1: wtest y wtarget proceden de diferentes hablantes

LLR(wtest ,wtarget) = log

(
P(wtest ,wtarget |H0)

P(wtest |H1)P(wtarget |H1)

)

LLR(wtest ,wtarget) se puede aproximar como función de Φ y Σε

Si LLR(wtest ,wtarget) ≥ τ , se acepta que wtest y wtarget provienen del mismo
hablante

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 24 / 46



Introducción a la Verificación de Hablante

5º Generación: Redes Neuronales (2018)

Múltiples propuestas basadas en red neuronal, si bien fueron los x-vectors
los que rompieron la baraja

TDNN (Time-Delay Neural Network)

Figure 1: Diagram of the DNN. Segment-level embeddings (e.g.,
a or b) can be extracted from any layer of the network after the
statistics pooling layer.

2. Baseline i-vector system
The baseline is a traditional i-vector system that is based on the
GMM-UBM Kaldi recipe described in [11]. The front-end fea-
tures consist of 20 MFCCs with a frame-length of 25ms that
are mean-normalized over a sliding window of up to 3 seconds.
Delta and acceleration are appended to create 60 dimension fea-
ture vectors. An energy-based VAD selects features correspond-
ing to speech frames. The UBM is a 2048 component full-
covariance GMM. The system uses a 600 dimension i-vector
extractor. Prior to PLDA scoring, i-vectors are centered, di-
mensionality reduced to 150 using LDA, and length normalized.
PLDA scores are normalized using adaptive s-norm [24].

3. DNN embedding system
3.1. Overview

The proposed system is a feed-forward DNN (depicted in Fig-
ure 1) that computes speaker embeddings from variable-length
acoustic segments. The architecture is based on the end-to-end
system described in [23]. However, an end-to-end approach re-
quires a large amount of in-domain data to be effective. We
replace the end-to-end loss with a multiclass cross entropy ob-
jective. In addition, a separately trained PLDA backend is used
to compare pairs of embeddings. This enables the DNN and
similarity metric to be trained on potentially different datasets.
The network is implemented using the nnet3 neural network li-
brary in the Kaldi Speech Recognition Toolkit [25].

3.2. Features

The features are 20 dimensional MFCCs with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3
seconds. The same energy-based VAD from Section 2 filters
out nonspeech frames. Instead of stacking frames at the input,
short-term temporal context is handled by a time-delay DNN
architecture.

3.3. Neural network architecture

The network, illustrated in Figure 1, consists of layers that op-
erate on speech frames, a statistics pooling layer that aggregates
over the frame-level representations, additional layers that oper-
ate at the segment-level, and finally a softmax output layer. The
nonlinearities are rectified linear units (ReLUs).

The first 5 layers of the network work at the frame level,
with a time-delay architecture [26]. Suppose t is the current
time step. At the input, we splice together frames at {t− 2, t−
1, t, t+1, t+2}. The next two layers splice together the output
of the previous layer at times {t−2, t, t+2} and {t−3, t, t+3},
respectively. The next two layers also operate at the frame-level,
but without any added temporal context. In total, the frame-
level portion of the network has a temporal context of t − 8 to
t+ 8 frames. Layers vary in size, from 512 to 1536, depending
on the splicing context used.

The statistics pooling layer receives the output of the final
frame-level layer as input, aggregates over the input segment,
and computes its mean and standard deviation. These segment-
level statistics are concatenated together and passed to two ad-
ditional hidden layers with dimension 512 and 300 (either of
which may be used to compute embeddings) and finally the soft-
max output layer. Excluding the softmax output layer (because
it is not needed after training) there is a total of 4.4 million pa-
rameters.

3.4. Training

The network is trained to classify training speakers using a mul-
ticlass cross entropy objective function (Equation 1). The pri-
mary difference between this and training in [16, 17, 21] is that
our system is trained to predict speakers from variable-length
segments, rather than frames. Suppose there are K speakers in
N training segments. Then P (spkrk | x(n)

1:T ) is the probabil-
ity of speaker k given T input frames x

(n)
1 ,x

(n)
2 , ...x

(n)
T . The

quantity dnk is 1 if the speaker label for segment n is k, other-
wise it’s 0.

E = −
N∑

n=1

K∑
k=1

dnkln(P (spkrk | x(n)
1:T )) (1)

The DNN is trained on the combined SWBD and SRE data
described in Section 4.1. We refine the dataset by removing any
recordings that are less than 10 seconds long, and any speak-
ers with fewer than 4 recordings. This leaves a total of 4,733
speakers, which is the size of the softmax output layer.

To reduce sensitivity to utterance length, it is desirable to
train the DNN on speech chunks that capture the range of du-
rations we expect to encounter at test time (e.g., a few seconds
to a few minutes). However, GPU memory limitations force
a tradeoff between minibatch size and maximum training ex-
ample length. As a comprise, we pick examples that range
from 2 to 10 seconds (200 to 1000 frames) along with a mini-
batch size of 32 to 64. The example speech chunks are sampled
densely from the recordings, resulting in about 3,400 examples
per speaker. The network is trained for several epochs using
natural gradient stochastic gradient descent [27].

3.5. Speaker embeddings

Ultimately, the goal of training the network is to produce em-
beddings that generalize well to speakers that have not been
seen in the training data. We would like embeddings to capture
speaker characteristics over the entire utterance, rather than at

[Snyder17] D. Snyder et al., “Deep Neural Network Embeddings
for Text-Independent Speaker Verification,” in Proc. of

Interspeech 2017

2.2. Phonetic bottleneck i-vector

This i-vector system incorporates phonetic bottleneck features
(BNF) from an ASR DNN acoustic model and is similar to [9].
The DNN is a time-delay acoustic model with p-norm nonlineari-
ties. The ASR DNN is trained on the Fisher English corpus and uses
the same recipe and architecture as the system described in Section
2.2 of [11], except that the penultimate layer is replaced with a 60
dimensional linear bottleneck layer. Excluding the softmax output
layer, which is not needed to compute BNFs, the DNN has 9.2
million parameters.

The BNFs are concatenated with the same 20 dimensional
MFCCs described in Section 2.1 plus deltas to create 100 dimen-
sional features. The remaining components of the system (feature
processing, UBM, i-vector extractor, and PLDA classifier) are iden-
tical to the acoustic system in Section 2.1.

2.3. The x-vector system

This section describes the x-vector system. It is based on the DNN
embeddings in [1] and described in greater detail there.

Our software framework has been made available in the Kaldi
toolkit. An example recipe is in the main branch of Kaldi at https:
//github.com/kaldi-asr/kaldi/tree/master/egs/
sre16/v2 and a pretrained x-vector system can be downloaded
from http://kaldi-asr.org/models.html. The recipe
and model are similar to the x-vector system described in Section
4.4.

Layer Layer context Total context Input x output
frame1 [t− 2, t+ 2] 5 120x512
frame2 {t− 2, t, t+ 2} 9 1536x512
frame3 {t− 3, t, t+ 3} 15 1536x512
frame4 {t} 15 512x512
frame5 {t} 15 512x1500

stats pooling [0, T ) T 1500Tx3000
segment6 {0} T 3000x512
segment7 {0} T 512x512
softmax {0} T 512xN

Table 1. The embedding DNN architecture. x-vectors are extracted
at layer segment6, before the nonlinearity. The N in the softmax
layer corresponds to the number of training speakers.

The features are 24 dimensional filterbanks with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3 seconds.
The same energy SAD as used in the baseline systems filters out
nonspeech frames.

The DNN configuration is outlined in Table 1. Suppose an input
segment has T frames. The first five layers operate on speech frames,
with a small temporal context centered at the current frame t. For
example, the input to layer frame3 is the spliced output of frame2, at
frames t− 3, t and t+ 3. This builds on the temporal context of the
earlier layers, so that frame3 sees a total context of 15 frames.

The statistics pooling layer aggregates all T frame-level outputs
from layer frame5 and computes its mean and standard deviation.
The statistics are 1500 dimensional vectors, computed once for each
input segment. This process aggregates information across the time
dimension so that subsequent layers operate on the entire segment.
In Table 1, this is denoted by a layer context of {0} and a total con-
text of T . The mean and standard deviation are concatenated to-

gether and propagated through segment-level layers and finally the
softmax output layer. The nonlinearities are all rectified linear units
(ReLUs).

The DNN is trained to classify the N speakers in the training
data. A training example consists of a chunk of speech features
(about 3 seconds average), and the corresponding speaker label. Af-
ter training, embeddings are extracted from the affine component of
layer segment6. Excluding the softmax output layer and segment7
(because they are not needed after training) there is a total of 4.2
million parameters.

2.4. PLDA classifier

The same type of PLDA [3] classifier is used for the x-vector and
i-vector systems. The representations (x-vectors or i-vectors) are
centered, and projected using LDA. The LDA dimension was tuned
on the SITW development set to 200 for i-vectors and 150 for
x-vectors. After dimensionality reduction, the representations are
length-normalized and modeled by PLDA. The scores are normal-
ized using adaptive s-norm [22].

3. EXPERIMENTAL SETUP

3.1. Training data

The training data consists of both telephone and microphone speech,
the bulk of which is in English. All wideband audio is downsampled
to 8kHz.

The SWBD portion consists of Switchboard 2 Phases 1, 2, and 3
as well as Switchboard Cellular. In total, the SWBD dataset contains
about 28k recordings from 2.6k speakers. The SRE portion con-
sists of NIST SREs from 2004 to 2010 along with Mixer 6 and con-
tains about 63k recordings from 4.4k speakers. In the experiments
in Sections 4.1–4.4 the extractors (UBM/T or embedding DNN) are
trained on SWBD and SRE and the PLDA classifiers are trained on
just SRE. Data augmentation is described in Section 3.3 and is ap-
plied to these datasets as explained throughout Section 4.

In the last experiment in Section 4.5 we incorporate audio from
the new VoxCeleb dataset [19] into both extractor and PLDA train-
ing lists. The dataset consists of videos from 1,251 celebrity speak-
ers. Although SITW and VoxCeleb were collected independently,
we discovered an overlap of 60 speakers between the two datasets.
We removed the overlapping speakers from VoxCeleb prior to using
it for training. This reduces the size of the dataset to 1,191 speakers
and about 20k recordings.

The ASR DNN used in the i-vector (BNF) system was trained
on the Fisher English corpus. To achieve a limited form of domain
adaptation, the development data from SITW and SRE16 is pooled
and used for centering and score normalization. No augmentation is
applied to these lists.

3.2. Evaluation

Our evaluation consists of two distinct datasets: Speakers in the Wild
(SITW) Core [23] and the Cantonese portion of the NIST SRE 2016
evaluation (SRE16) [24]. SITW consists of unconstrained video au-
dio of English speakers, with naturally occurring noises, reverber-
ation, as well as device and codec variability. The SRE16 portion
consists of Cantonese conversational telephone speech. Both en-
roll and test SITW utterances vary in length form 6–240 seconds.
For SRE16, the enrollment utterances contain about 60 seconds of
speech while the test utterances vary from 10–60 seconds.

[Snyder18] D. Snyder et al., “X-Vectors: Robust DNN
Embeddings for Speaker Recognition,” in Proc. of ICASSP 2018

x-vectors: Salida de la capa segment6 (a
partir de espectrograma Mel)

La comparación de x-vectors se realiza
mediante PLDA

¡El aumento de datos de entrenamiento
es clave!

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 25 / 46



Introducción a la Verificación de Hablante

5º Generación: Redes Neuronales (2018)

Curva DET para el set cantonés de NIST SRE16

training list. On SITW, the x-vector system achieves lower error-
rates than i-vector (acoustic) and has now caught up to the i-vector
(BNF) system. On SRE16, the x-vectors are now 25% better than the
i-vectors in DCF10−2, which is almost double the improvement the
DNN embeddings had with PLDA augmentation alone. The findings
in this section indicate that data augmentation is only beneficial for
extractors trained with supervision.

4.4. PLDA and extractor augmentation

In the previous sections, we saw that PLDA augmentation was help-
ful in both i-vector and DNN embedding systems, although extractor
augmentation was only clearly beneficial in the embedding system.
In this experiment, we apply data augmentation to both the extractor
and PLDA training lists. We continue to use SWBD and SRE for
extractor training and only SRE for PLDA. On SITW the x-vectors
are now 10-25% better than i-vector (acoustic) and are slightly better
than i-vector (BNF) at all operating points. On SRE16 Cantonese,
the x-vectors continue to maintain the large lead over the i-vector
systems established in Section 4.3.

4.5. Including VoxCeleb

 0.01   0.1  0.5    1     2     5     10    20    40    60  

False Alarm probability (in %)

  0.1 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

  60  

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

i-vector (acoustic)

i-vector (BNF)

x-vector

Fig. 1. DET curve for the Cantonese portion of NIST SRE16 using
Section 4.5 systems.

The training data in Sections 4.1–4.4 is dominated by telephone
speech. In this experiment, we explore the effect of adding a large
amount of microphone speech to the systems in Section 4.4. The
VoxCeleb dataset [19] is augmented, and added to both the extractor
and PLDA lists. As noted in Section 3.1, we found 60 speakers
which overlap with SITW; all speech for these speakers was removed
from the training lists.

On SITW, both i-vector and x-vector systems improve signif-
icantly. However, the x-vector exploits the large increase in the
amount of in-domain data better than the i-vector systems. Com-
pared to i-vector (acoustic), the x-vectors are better by 44% in EER
and 29% in DCF10−2. Compared to the i-vector (BNF) system, it is
now better by 32% in EER and 17% in DCF10−2. On SRE16, the
i-vector systems remain roughly the same compared to Section 4.4,
but the x-vectors improve on all operating points by a small amount.

 0.01   0.1  0.5    1     2     5     10    20    40    60  

False Alarm probability (in %)

  0.1 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

  60  

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

i-vector (acoustic)

i-vector (BNF)

x-vector

Fig. 2. DET curve for the SITW Core using Section 4.5 systems.

These results are illustrated by detection error tradeoff (DET) plots
in Figures 1 and 2.

5. CONCLUSIONS

This paper studied DNN embeddings for speaker recognition. We
found that data augmentation is an easily implemented and effective
strategy for improving their performance. We also made the x-vector
system – our implementation of DNN embeddings – available in the
Kaldi toolkit. We found that the x-vector system significantly outper-
formed two standard i-vector baselines on SRE16 Cantonese. After
including a large amount of augmented microphone speech, the x-
vectors achieved much lower error-rates than our best baseline on
Speakers in the Wild. Bottleneck features from an ASR DNN are
used in our best i-vector system, and so it requires transcribed data
during training. On the other hand, the x-vector DNN needs only
speaker labels to train, making it potentially ideal for domains with
little transcribed speech. More generally, it appears that x-vectors
are now a strong contender for next-generation representations for
speaker recognition.

6. ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship under Grant No.
1232825. This work was partially supported by NSF Grant No CRI-
1513128. Any opinion, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors(s) and do not
necessarily reflect the views of the National Science Foundation.

7. REFERENCES

[1] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudan-
pur, “Deep neural network embeddings for text-independent
speaker verification,” Proc. Interspeech, pp. 999–1003, 2017.

[2] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouel-
let, “Front-end factor analysis for speaker verification,” IEEE
Transactions on Audio, Speech, and Language Processing, vol.
19, no. 4, pp. 788–798, 2011.

Curva DET para “Speakers In The Wild”

training list. On SITW, the x-vector system achieves lower error-
rates than i-vector (acoustic) and has now caught up to the i-vector
(BNF) system. On SRE16, the x-vectors are now 25% better than the
i-vectors in DCF10−2, which is almost double the improvement the
DNN embeddings had with PLDA augmentation alone. The findings
in this section indicate that data augmentation is only beneficial for
extractors trained with supervision.

4.4. PLDA and extractor augmentation

In the previous sections, we saw that PLDA augmentation was help-
ful in both i-vector and DNN embedding systems, although extractor
augmentation was only clearly beneficial in the embedding system.
In this experiment, we apply data augmentation to both the extractor
and PLDA training lists. We continue to use SWBD and SRE for
extractor training and only SRE for PLDA. On SITW the x-vectors
are now 10-25% better than i-vector (acoustic) and are slightly better
than i-vector (BNF) at all operating points. On SRE16 Cantonese,
the x-vectors continue to maintain the large lead over the i-vector
systems established in Section 4.3.

4.5. Including VoxCeleb

 0.01   0.1  0.5    1     2     5     10    20    40    60  

False Alarm probability (in %)

  0.1 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

  60  

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

i-vector (acoustic)

i-vector (BNF)

x-vector

Fig. 1. DET curve for the Cantonese portion of NIST SRE16 using
Section 4.5 systems.

The training data in Sections 4.1–4.4 is dominated by telephone
speech. In this experiment, we explore the effect of adding a large
amount of microphone speech to the systems in Section 4.4. The
VoxCeleb dataset [19] is augmented, and added to both the extractor
and PLDA lists. As noted in Section 3.1, we found 60 speakers
which overlap with SITW; all speech for these speakers was removed
from the training lists.

On SITW, both i-vector and x-vector systems improve signif-
icantly. However, the x-vector exploits the large increase in the
amount of in-domain data better than the i-vector systems. Com-
pared to i-vector (acoustic), the x-vectors are better by 44% in EER
and 29% in DCF10−2. Compared to the i-vector (BNF) system, it is
now better by 32% in EER and 17% in DCF10−2. On SRE16, the
i-vector systems remain roughly the same compared to Section 4.4,
but the x-vectors improve on all operating points by a small amount.

 0.01   0.1  0.5    1     2     5     10    20    40    60  

False Alarm probability (in %)

  0.1 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

  60  

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

i-vector (acoustic)

i-vector (BNF)

x-vector

Fig. 2. DET curve for the SITW Core using Section 4.5 systems.

These results are illustrated by detection error tradeoff (DET) plots
in Figures 1 and 2.

5. CONCLUSIONS

This paper studied DNN embeddings for speaker recognition. We
found that data augmentation is an easily implemented and effective
strategy for improving their performance. We also made the x-vector
system – our implementation of DNN embeddings – available in the
Kaldi toolkit. We found that the x-vector system significantly outper-
formed two standard i-vector baselines on SRE16 Cantonese. After
including a large amount of augmented microphone speech, the x-
vectors achieved much lower error-rates than our best baseline on
Speakers in the Wild. Bottleneck features from an ASR DNN are
used in our best i-vector system, and so it requires transcribed data
during training. On the other hand, the x-vector DNN needs only
speaker labels to train, making it potentially ideal for domains with
little transcribed speech. More generally, it appears that x-vectors
are now a strong contender for next-generation representations for
speaker recognition.

6. ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship under Grant No.
1232825. This work was partially supported by NSF Grant No CRI-
1513128. Any opinion, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors(s) and do not
necessarily reflect the views of the National Science Foundation.

7. REFERENCES

[1] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudan-
pur, “Deep neural network embeddings for text-independent
speaker verification,” Proc. Interspeech, pp. 999–1003, 2017.

[2] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouel-
let, “Front-end factor analysis for speaker verification,” IEEE
Transactions on Audio, Speech, and Language Processing, vol.
19, no. 4, pp. 788–798, 2011.

[Snyder18] D. Snyder et al., “X-Vectors: Robust DNN Embeddings for Speaker Recognition,” in Proc. of ICASSP 2018

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 26 / 46



Introducción a la Verificación de Hablante

5º Generación: Redes Neuronales (2018)

ECAPA-TDNN: TDNN mejorada para extracción de speaker embeddings

Figure 1: The SE-Res2Block of the ECAPA-TDNN architecture.
The standard Conv1D layers have a kernel size of 1. The central
Res2Net [16] Conv1D with scale dimension s = 8 expands the
temporal context through kernel size k and dilation spacing d.

3.3. Multi-layer feature aggregation and summation

The original x-vector system only uses the feature map of the
last frame-layer for calculating the pooled statistics. Given the
hierarchical nature of a TDNN, these deeper level features are
the most complex ones and should be strongly correlated with
the speaker identities. However, due to evidence in [17, 18] we
argue that the more shallow feature maps can also contribute
towards more robust speaker embeddings. For each frame, our
proposed system concatenates the output feature maps of all
the SE-Res2Blocks. After this Multi-layer Feature Aggregation
(MFA), a dense layer processes the concatenated information to
generate the features for the attentive statistics pooling.

Another, complementary way to exploit multi-layer infor-
mation is to use the output of all preceding SE-Res2Blocks
and initial convolutional layer as input for each frame layer
block [17, 19]. We implement this by defining the residual con-
nection in each SE-Res2Block as the sum of the outputs of all
the previous blocks. We opt for a summation of the feature maps
instead of concatenation to restrain the model parameter count.
The final architecture without the summed residual connections
is shown in Figure 2.

4. Experimental setup
4.1. Training the speaker embedding extractors

We apply the fixed-condition VoxSRC 2019 training restric-
tions [12] and only use the development part of the VoxCeleb2
dataset [11] with 5994 speakers as training data. A small subset
of about 2% of the data is reserved as a validation set for hy-
perparameter optimization. It is a well known fact that neural
networks benefit from data augmentation which generates ex-
tra training samples. We generate a total of 6 extra samples for
each utterance. The first set of augmentations follow the Kaldi
recipe [2] in combination with the publicly available MUSAN
dataset (babble, noise) [20] and the RIR dataset (reverb) pro-
vided in [21]. The remaining three augmentations are generated
with the open-source SoX (tempo up, tempo down) and FFm-
peg (alternating opus or aac compression) libraries.

Figure 2: Network topology of the ECAPA-TDNN. We denote k
for kernel size and d for dilation spacing of the Conv1D layers
or SE-Res2Blocks. C and T correspond to the channel and tem-
poral dimension of the intermediate feature-maps respectively.
S is the number of training speakers.

The input features are 80-dimensional MFCCs from a
25 ms window with a 10 ms frame shift. Two second random
crops of the MFCCs feature vectors are normalized through
cepstral mean subtraction and no voice activity detection is
applied. As a final augmentation step, we apply SpecAug-
ment [22] on the log mel spectrogram of the samples. The al-
gorithm randomly masks 0 to 5 frames in the time domain and
0 to 10 channels in the frequency domain.

All models are trained with a cyclical learning rate varying
between 1e-8 and 1e-3 using the triangular2 policy as described
in [23] in conjunction with the Adam optimizer [24]. The du-
ration of one cycle is set to 130k iterations. All systems are
trained using AAM-softmax [6, 25] with a margin of 0.2 and
softmax prescaling of 30 for 4 cycles. To prevent overfitting,
we apply a weight decay on all weights in the model of 2e-5,
except for the AAM-softmax weights, which uses 2e-4. The
mini-batch size for training is 128.

We study two setups of the proposed ECAPA-TDNN archi-
tecture with either 512 or 1024 channels in the convolutional
frame layers. The dimension of the bottleneck in the SE-Block
and the attention module is set to 128. The scale dimension s in
the Res2Block [16] is set to 8. The number of nodes in the final
fully-connected layer is 192. The performance of this system
will be compared to the baselines described in Section 2.

4.2. Speaker verification

Speaker embeddings are extracted from the final fully-
connected layer for all systems. Trial scores are produced us-
ing the cosine distance between embeddings. Subsequently, all
the scores are normalized using adaptive s-norm [26, 27]. The

[Desplanques20] B. Desplanques et
al., “ECAPA-TDNN: Emphasized

Channel Attention, Propagation and
Aggregation in TDNN Based Speaker
Verification,” in Proc. of Interspeech

2020

Attentive Stat Pooling

et,c = v⊤c f (Wht + b) + kc

αt,c =
exp (et,c)∑T
τ exp (eτ,c)

Figure 1: The SE-Res2Block of the ECAPA-TDNN architecture.
The standard Conv1D layers have a kernel size of 1. The central
Res2Net [16] Conv1D with scale dimension s = 8 expands the
temporal context through kernel size k and dilation spacing d.

3.3. Multi-layer feature aggregation and summation

The original x-vector system only uses the feature map of the
last frame-layer for calculating the pooled statistics. Given the
hierarchical nature of a TDNN, these deeper level features are
the most complex ones and should be strongly correlated with
the speaker identities. However, due to evidence in [17, 18] we
argue that the more shallow feature maps can also contribute
towards more robust speaker embeddings. For each frame, our
proposed system concatenates the output feature maps of all
the SE-Res2Blocks. After this Multi-layer Feature Aggregation
(MFA), a dense layer processes the concatenated information to
generate the features for the attentive statistics pooling.

Another, complementary way to exploit multi-layer infor-
mation is to use the output of all preceding SE-Res2Blocks
and initial convolutional layer as input for each frame layer
block [17, 19]. We implement this by defining the residual con-
nection in each SE-Res2Block as the sum of the outputs of all
the previous blocks. We opt for a summation of the feature maps
instead of concatenation to restrain the model parameter count.
The final architecture without the summed residual connections
is shown in Figure 2.

4. Experimental setup
4.1. Training the speaker embedding extractors

We apply the fixed-condition VoxSRC 2019 training restric-
tions [12] and only use the development part of the VoxCeleb2
dataset [11] with 5994 speakers as training data. A small subset
of about 2% of the data is reserved as a validation set for hy-
perparameter optimization. It is a well known fact that neural
networks benefit from data augmentation which generates ex-
tra training samples. We generate a total of 6 extra samples for
each utterance. The first set of augmentations follow the Kaldi
recipe [2] in combination with the publicly available MUSAN
dataset (babble, noise) [20] and the RIR dataset (reverb) pro-
vided in [21]. The remaining three augmentations are generated
with the open-source SoX (tempo up, tempo down) and FFm-
peg (alternating opus or aac compression) libraries.

Figure 2: Network topology of the ECAPA-TDNN. We denote k
for kernel size and d for dilation spacing of the Conv1D layers
or SE-Res2Blocks. C and T correspond to the channel and tem-
poral dimension of the intermediate feature-maps respectively.
S is the number of training speakers.

The input features are 80-dimensional MFCCs from a
25 ms window with a 10 ms frame shift. Two second random
crops of the MFCCs feature vectors are normalized through
cepstral mean subtraction and no voice activity detection is
applied. As a final augmentation step, we apply SpecAug-
ment [22] on the log mel spectrogram of the samples. The al-
gorithm randomly masks 0 to 5 frames in the time domain and
0 to 10 channels in the frequency domain.

All models are trained with a cyclical learning rate varying
between 1e-8 and 1e-3 using the triangular2 policy as described
in [23] in conjunction with the Adam optimizer [24]. The du-
ration of one cycle is set to 130k iterations. All systems are
trained using AAM-softmax [6, 25] with a margin of 0.2 and
softmax prescaling of 30 for 4 cycles. To prevent overfitting,
we apply a weight decay on all weights in the model of 2e-5,
except for the AAM-softmax weights, which uses 2e-4. The
mini-batch size for training is 128.

We study two setups of the proposed ECAPA-TDNN archi-
tecture with either 512 or 1024 channels in the convolutional
frame layers. The dimension of the bottleneck in the SE-Block
and the attention module is set to 128. The scale dimension s in
the Res2Block [16] is set to 8. The number of nodes in the final
fully-connected layer is 192. The performance of this system
will be compared to the baselines described in Section 2.

4.2. Speaker verification

Speaker embeddings are extracted from the final fully-
connected layer for all systems. Trial scores are produced us-
ing the cosine distance between embeddings. Subsequently, all
the scores are normalized using adaptive s-norm [26, 27]. The

µ̃c =
∑T

t αt,cht,c σ̃c =
√∑T

t αt,ch2t,c − µ̃2
c

µ̃ = (µ̃1, ..., µ̃c , ..., µ̃C ) σ̃ = (σ̃1, ..., σ̃c , ..., σ̃C )

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 27 / 46



Introducción a la Verificación de Hablante

5º Generación: Redes Neuronales (2018)

ECAPA-TDNN: TDNN mejorada para extracción de speaker embeddings

Figure 1: The SE-Res2Block of the ECAPA-TDNN architecture.
The standard Conv1D layers have a kernel size of 1. The central
Res2Net [16] Conv1D with scale dimension s = 8 expands the
temporal context through kernel size k and dilation spacing d.

3.3. Multi-layer feature aggregation and summation

The original x-vector system only uses the feature map of the
last frame-layer for calculating the pooled statistics. Given the
hierarchical nature of a TDNN, these deeper level features are
the most complex ones and should be strongly correlated with
the speaker identities. However, due to evidence in [17, 18] we
argue that the more shallow feature maps can also contribute
towards more robust speaker embeddings. For each frame, our
proposed system concatenates the output feature maps of all
the SE-Res2Blocks. After this Multi-layer Feature Aggregation
(MFA), a dense layer processes the concatenated information to
generate the features for the attentive statistics pooling.

Another, complementary way to exploit multi-layer infor-
mation is to use the output of all preceding SE-Res2Blocks
and initial convolutional layer as input for each frame layer
block [17, 19]. We implement this by defining the residual con-
nection in each SE-Res2Block as the sum of the outputs of all
the previous blocks. We opt for a summation of the feature maps
instead of concatenation to restrain the model parameter count.
The final architecture without the summed residual connections
is shown in Figure 2.

4. Experimental setup
4.1. Training the speaker embedding extractors

We apply the fixed-condition VoxSRC 2019 training restric-
tions [12] and only use the development part of the VoxCeleb2
dataset [11] with 5994 speakers as training data. A small subset
of about 2% of the data is reserved as a validation set for hy-
perparameter optimization. It is a well known fact that neural
networks benefit from data augmentation which generates ex-
tra training samples. We generate a total of 6 extra samples for
each utterance. The first set of augmentations follow the Kaldi
recipe [2] in combination with the publicly available MUSAN
dataset (babble, noise) [20] and the RIR dataset (reverb) pro-
vided in [21]. The remaining three augmentations are generated
with the open-source SoX (tempo up, tempo down) and FFm-
peg (alternating opus or aac compression) libraries.

Figure 2: Network topology of the ECAPA-TDNN. We denote k
for kernel size and d for dilation spacing of the Conv1D layers
or SE-Res2Blocks. C and T correspond to the channel and tem-
poral dimension of the intermediate feature-maps respectively.
S is the number of training speakers.

The input features are 80-dimensional MFCCs from a
25 ms window with a 10 ms frame shift. Two second random
crops of the MFCCs feature vectors are normalized through
cepstral mean subtraction and no voice activity detection is
applied. As a final augmentation step, we apply SpecAug-
ment [22] on the log mel spectrogram of the samples. The al-
gorithm randomly masks 0 to 5 frames in the time domain and
0 to 10 channels in the frequency domain.

All models are trained with a cyclical learning rate varying
between 1e-8 and 1e-3 using the triangular2 policy as described
in [23] in conjunction with the Adam optimizer [24]. The du-
ration of one cycle is set to 130k iterations. All systems are
trained using AAM-softmax [6, 25] with a margin of 0.2 and
softmax prescaling of 30 for 4 cycles. To prevent overfitting,
we apply a weight decay on all weights in the model of 2e-5,
except for the AAM-softmax weights, which uses 2e-4. The
mini-batch size for training is 128.

We study two setups of the proposed ECAPA-TDNN archi-
tecture with either 512 or 1024 channels in the convolutional
frame layers. The dimension of the bottleneck in the SE-Block
and the attention module is set to 128. The scale dimension s in
the Res2Block [16] is set to 8. The number of nodes in the final
fully-connected layer is 192. The performance of this system
will be compared to the baselines described in Section 2.

4.2. Speaker verification

Speaker embeddings are extracted from the final fully-
connected layer for all systems. Trial scores are produced us-
ing the cosine distance between embeddings. Subsequently, all
the scores are normalized using adaptive s-norm [26, 27]. The

[Desplanques20] B. Desplanques et
al., “ECAPA-TDNN: Emphasized

Channel Attention, Propagation and
Aggregation in TDNN Based Speaker
Verification,” in Proc. of Interspeech

2020

SE (Squeeze-and-Excitation)-
Block

Squeeze: z =
1

T

T∑
t

ht

Excitation:
s = σ(W2f (W1z+ b1) + b2)

h̃c = schc (sc ∈ [0, 1])
Figure 1: The SE-Res2Block of the ECAPA-TDNN architecture.
The standard Conv1D layers have a kernel size of 1. The central
Res2Net [16] Conv1D with scale dimension s = 8 expands the
temporal context through kernel size k and dilation spacing d.

3.3. Multi-layer feature aggregation and summation

The original x-vector system only uses the feature map of the
last frame-layer for calculating the pooled statistics. Given the
hierarchical nature of a TDNN, these deeper level features are
the most complex ones and should be strongly correlated with
the speaker identities. However, due to evidence in [17, 18] we
argue that the more shallow feature maps can also contribute
towards more robust speaker embeddings. For each frame, our
proposed system concatenates the output feature maps of all
the SE-Res2Blocks. After this Multi-layer Feature Aggregation
(MFA), a dense layer processes the concatenated information to
generate the features for the attentive statistics pooling.

Another, complementary way to exploit multi-layer infor-
mation is to use the output of all preceding SE-Res2Blocks
and initial convolutional layer as input for each frame layer
block [17, 19]. We implement this by defining the residual con-
nection in each SE-Res2Block as the sum of the outputs of all
the previous blocks. We opt for a summation of the feature maps
instead of concatenation to restrain the model parameter count.
The final architecture without the summed residual connections
is shown in Figure 2.

4. Experimental setup
4.1. Training the speaker embedding extractors

We apply the fixed-condition VoxSRC 2019 training restric-
tions [12] and only use the development part of the VoxCeleb2
dataset [11] with 5994 speakers as training data. A small subset
of about 2% of the data is reserved as a validation set for hy-
perparameter optimization. It is a well known fact that neural
networks benefit from data augmentation which generates ex-
tra training samples. We generate a total of 6 extra samples for
each utterance. The first set of augmentations follow the Kaldi
recipe [2] in combination with the publicly available MUSAN
dataset (babble, noise) [20] and the RIR dataset (reverb) pro-
vided in [21]. The remaining three augmentations are generated
with the open-source SoX (tempo up, tempo down) and FFm-
peg (alternating opus or aac compression) libraries.

Figure 2: Network topology of the ECAPA-TDNN. We denote k
for kernel size and d for dilation spacing of the Conv1D layers
or SE-Res2Blocks. C and T correspond to the channel and tem-
poral dimension of the intermediate feature-maps respectively.
S is the number of training speakers.

The input features are 80-dimensional MFCCs from a
25 ms window with a 10 ms frame shift. Two second random
crops of the MFCCs feature vectors are normalized through
cepstral mean subtraction and no voice activity detection is
applied. As a final augmentation step, we apply SpecAug-
ment [22] on the log mel spectrogram of the samples. The al-
gorithm randomly masks 0 to 5 frames in the time domain and
0 to 10 channels in the frequency domain.

All models are trained with a cyclical learning rate varying
between 1e-8 and 1e-3 using the triangular2 policy as described
in [23] in conjunction with the Adam optimizer [24]. The du-
ration of one cycle is set to 130k iterations. All systems are
trained using AAM-softmax [6, 25] with a margin of 0.2 and
softmax prescaling of 30 for 4 cycles. To prevent overfitting,
we apply a weight decay on all weights in the model of 2e-5,
except for the AAM-softmax weights, which uses 2e-4. The
mini-batch size for training is 128.

We study two setups of the proposed ECAPA-TDNN archi-
tecture with either 512 or 1024 channels in the convolutional
frame layers. The dimension of the bottleneck in the SE-Block
and the attention module is set to 128. The scale dimension s in
the Res2Block [16] is set to 8. The number of nodes in the final
fully-connected layer is 192. The performance of this system
will be compared to the baselines described in Section 2.

4.2. Speaker verification

Speaker embeddings are extracted from the final fully-
connected layer for all systems. Trial scores are produced us-
ing the cosine distance between embeddings. Subsequently, all
the scores are normalized using adaptive s-norm [26, 27]. The

Agregación de caracteŕısticas multicapa

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 28 / 46



Introducción a la Verificación de Hablante

5º Generación: Redes Neuronales (2018)

La comparación de speaker embeddings se lleva a cabo mediante
similitud coseno:

Table 1: EER and MinDCF performance of all systems on the standard VoxCeleb1 and VoxSRC 2019 test sets.

Architecture # Params VoxCeleb1 VoxCeleb1-E VoxCeleb1-H VoxSRC19

EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF EER(%)

E-TDNN 6.8M 1.49 0.1604 1.61 0.1712 2.69 0.2419 1.81
E-TDNN (large) 20.4M 1.26 0.1399 1.37 0.1487 2.35 0.2153 1.61

ResNet18 13.8M 1.47 0.1772 1.60 0.1789 2.88 0.2672 1.97
ResNet34 23.9M 1.19 0.1592 1.33 0.1560 2.46 0.2288 1.57

ECAPA-TDNN (C=512) 6.2M 1.01 0.1274 1.24 0.1418 2.32 0.2181 1.32
ECAPA-TDNN (C=1024) 14.7M 0.87 0.1066 1.12 0.1318 2.12 0.2101 1.22

imposter cohort consists of the speaker-wise averages of the
length-normalized embeddings of all training utterances. The
size of the imposter cohort was set to 1000 for the VoxCeleb
test sets and to a more robust value of 50 for the cross-dataset
VoxSRC 2019 evaluation.

4.3. Evaluation protocol

The system is evaluated on the popular VoxCeleb1 test sets [10]
and VoxSRC 2019 evaluation set [12]. Performance will be
measured by providing the Equal Error Rate (EER) and the min-
imum normalized detection cost MinDCF with Ptarget = 10−2

and CFA = CMiss = 1. A concise ablation study is used to
gain a deeper understanding how each of the proposed improve-
ments affects the performance.

5. Results
A performance overview of the baseline systems described in
Section 2 and our proposed ECAPA-TDNN system is given in
Table 1, together with the number of model parameters in the
embedding extractor. We implement two setups with the num-
ber of filters C in the convolutional layers either set to 512
or 1024. Our proposed architecture significantly outperforms
all baselines while using fewer model parameters. The larger
ECAPA-TDNN system gives an average relative improvement
of 18.7% in EER and 12.5% in MinDCF over the best scor-
ing baseline for each test set. We note that the performance
of the baselines supersedes the numbers reported in [3, 4] in
most cases. We continue with an ablation study of the individ-
ual components introduced in Section 3. An overview of these
results is given in Table 2.

Table 2: Ablation study of the ECAPA-TDNN architecture.

Systems EER(%) MinDCF

ECAPA-TDNN (C=512) 1.01 0.1274

A.1 Attentive Statistics [8] 1.12 0.1316
A.2 Channel Att. w/o Context 1.03 0.1288

B.1 No SE-Block 1.27 0.1446
B.2 No Res2Net-Block 1.07 0.1316

C.1 No MFA 1.10 0.1311
C.2 No Res. Connections 1.08 0.1310
C.3 No Sum Res. Connections 1.08 0.1217

To measure the impact of our proposed attention mod-
ule, we run an experiment A.1, that uses the attention module

from [8]. We also run a separate experiment A.2 that does
not supply the context vector to the proposed attention. The
channel- and context-dependent statistics pooling system im-
proves the EER and MinDCF metric with 9.8% and 3.2%, re-
spectively. This confirms the benefits of applying different tem-
poral attention to each channel. Addition of the context vector
results in very small performance gains with the system rel-
atively improving about 1.9% in EER and 1.1% in MinDCF.
Nonetheless, this strengthens our belief that a TDNN-based ar-
chitecture should try to exploit global context information.

This intuition is confirmed with experiment B.1 that clearly
shows the importance of the SE-blocks described in Section 3.2.
Incorporating the SE-modules in the Res2Blocks results in rela-
tive improvements of 20.5% in EER and 11.9% in the MinDCF
metric. This indicates that the limited temporal context of the
frame-level features is insufficient and should be complemented
with global utterance-based information. In experiment B.2 we
replaced the multi-scale features of the Res2Blocks with the
standard central dilated 1D convolutional of the ResNet coun-
terpart. Aside from a substantial 30% relative reduction in
model parameters, the multi-scale Res2Net approach also leads
towards a relative improvement of 5.6% in EER and 3.2% in
MinDCF.

In experiment C.1, we only use the output of the final SE-
Res2Block instead of aggregating the information of all SE-
Res2Blocks. Aggregation of the outputs leads to relative im-
provements of 8.2% in EER and 2.8% in the MinDCF value.
Removing all residual connections (experiment C.2) shows a
similar rate of degradation. Replacing a standard ResNet skip
connection in the SE-Res2Blocks by the sum of the outputs
of all previous SE-Res2Blocks improves the EER with 6.5%,
while slightly degrading the MinDCF score in experiment C.3.
However, experiments during the recently held Short-duration
Speaker Verification (SdSV) Challenge 2020 [28] convinced us
to incorporate summed residuals in the final ECAPA-TDNN ar-
chitecture. The strong results in this challenge show the archi-
tecture generalizes well to other domains [29].

6. Conclusion
In this paper we presented ECAPA-TDNN, a novel TDNN-
based speaker embedding extractor for speaker verification. We
built further upon the original x-vector architecture and put
more Emphasis on Channel Attention, Propagation and Aggre-
gation. The incorporation of Squeeze-Excitation blocks, multi-
scale Res2Net features, extra skip connections and channel-
dependent attentive statistics pooling, led to significant relative
improvements of 19% in EER on average over strong baseline
systems on the VoxCeleb and VoxSRC 2019 evaluation sets.

[Desplanques20] B. Desplanques et al., “ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in
TDNN Based Speaker Verification,” in Proc. of Interspeech 2020

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 29 / 46



Introducción a la Verificación de Hablante

Compensación de Embeddings

Necesidad de compensación de embeddings procedentes de habla con
fonación no neutra (p. ej., gritada y susurrada)

Funded by 

the European Union

Improved Vocal Effort Transfer Vector Estimation for
Vocal Effort-Robust Speaker Verification

Iván López-Espejo1,2, Santi Prieto3, Alfonso Ortega4 and Eduardo Lleida4

1Department of Electronic Systems, Aalborg University, Denmark
2Center for Robust Speech Systems (CRSS), The University of Texas at Dallas, USA

3VeriDas | das-Nano, Navarre, Spain
4ViVoLab, Aragón Institute for Engineering Research (I3A), University of Zaragoza, Spain

ivl@es.aau.dk, sprieto@veridas.com, {ortega,lleida}@unizar.es

Introduction

I Speaker verification performance tends to dra-
matically drop in the presence of non-neutrally-
phonated (e.g., shouted and whispered) speech

I Previous work explored a series of minimum
mean square error (MMSE) techniques estimat-
ing normal speaker embeddings from non-
neutrally-phonated ones

I MEMLIN (Multi-Environment Model-based LInear
Normalization) provided the best performance in
terms of equal error rate (EER) when dealing with
both shouted and whispered speech

I In this work we tackle a MEMLIN’s shortcom-
ing, which is explained in the next box

System Overview

I Speaker embedding compensation is applied only
in case that the embedding comes from non-
neutrally-phonated speech

I The ECAPA-TDNN back-end is trained on an aug-
mented version of the VoxCeleb2 dataset

where p(y|k) = N
(
y
∣∣∣µ{k}

y ,Σ{k}
yy

)
. On the other hand,

given that the joint density p(z = (v,y)|k) is Gaussian, the
conditional density p(v|y, k) is also Gaussian, and, therefore,
E (v |y, k) , i.e., the partial estimates in Eq. (7), can be ex-
pressed, ∀k ∈ {1, ...,K}, as [10]

E (v |y, k) = µ{k}
v +Σ{k}

vy

(
Σ{k}

yy

)−1 (
y − µ{k}

y

)
. (9)

Finally, an estimate of the normal embedding x̃ is achieved
by means of Eq. (2) along with the application of the inverse
PCA transform to the result of Eq. (7), namely,

ˆ̃x = ỹ −WLv̂︸ ︷︷ ︸
ˆ̃v

. (10)

Note that, in order to apply this method in Section 4, both
the PCA transform matrix WL and the GMM p(z) are calcu-
lated from a training set comprising paired normal and non-
neutrally-phonated embeddings (see Subsection 3.1).

For the sake of reproducibility, a Python implementation
of this speaker embedding compensation methodology has
been made publicly available3.

3. SYSTEM OVERVIEW

Figure 1 depicts a block diagram of the proposed vocal effort-
robust speaker verification system. First, the powerful self-
supervised pre-trained model WavLM [3] is used to compute
a high-level representation of the input speech signal. Based
on a Transformer structure, WavLM extends HuBERT [11]
to masked speech prediction and de-noising to allow the
pre-trained model to perform well in a variety of speech
processing tasks including speaker verification. Second, an
ECAPA-TDNN [1] back-end extracts a speaker embedding
from the representation outputted by WavLM. Then, the
speaker embedding compensation methodology of Section 2
is applied only in the case that the embedding comes from
non-neutrally-phonated speech. To detect this case, a simple,
yet virtually flawless logistic regression-based detector [4, 5]
can be used. That being said, note that the results reported
in Section 4 are obtained by oracle non-neutrally-phonated
speech detection for the sake of simplicity. Finally, the result-
ing embedding is compared with a reference embedding x̃ref
by cosine similarity to produce a score sc.

3.1. Shouted and Whispered Speech Corpora

For experimental purposes, we consider the vocal effort
modes shouted and whispered in addition to normal. To
this end, we employ two different (i.e., disjoint) corpora:
the speech corpus informed in [12], which comprises paired

3https://ilopezes.files.wordpress.com/2023/06/
mmsev.zip

ECAPA-TDNN
Frame Encoder

Attentive Statistics Pooling

Fully-Connected Layer

WavLM-Based Feature
Extractor

E
C

A
P

A
-T

D
N

N
 B

ac
k-

E
n

d
F

ro
n

t-
E

n
d

PCA

MMSE
Estimation

Inverse
PCA

Cosine
Similarity

+ -
ỹ

y
v̂

ˆ̃v

ỹ

ˆ̃x

x̃ref

sc

Fig. 1. Block diagram of the proposed vocal effort-robust
speaker verification system. See the text for further details.

shouted-normal speech utterances in Finnish from 22 speak-
ers, and CHAINS (CHAracterizing INdividual Speakers)
[13], which contains paired whispered-normal speech ut-
terances in English from 36 speakers. Due to speech data
scarcity, all the embedding compensation experiments in
Section 4 are performed —as in [5]— by following a leave-
one-speaker-out cross-validation strategy, which serves to
split the corpora into training and test sets.

We consider the following 4 test conditions (trial lists)
under the shouted-normal scenario: As-As (all shouted
and normal utterances vs. all shouted and normal utter-
ances; 557,040 trials), Ns-Ns (normal utterances vs. nor-
mal utterances; 139,128 trials), S-S (shouted utterances vs.
shouted utterances; 139,128 trials) and Ns-S (normal utter-
ances vs. shouted utterances; 278,784 trials). Furthermore,
we similarly examine 4 equivalent test conditions under the
whispered-normal scenario, namely, Aw-Aw (2,821,498 tri-
als), Nw-Nw (705,078 trials), W-W (704,950 trials) and
Nw-W (1,411,344 trials).

For further details about these corpora, the reader is re-
ferred to [12, 13] and [5].

3.2. System Implementation Details

The used ECAPA-TDNN back-end was trained, employing
the additive angular margin (AAM) loss [14], on an aug-

I Shouted-normal speech corpus: Paired utter-
ances in Finnish from 22 speakers

I Whispered-normal speech corpus: Paired ut-
terances in English from 36 speakers (CHAINS)

I Due to speech data scarcity, experiments are
performed by following a leave-one-speaker-out
cross-validation strategy

Normal Speaker Embedding Estimation
x̃ ∈ RD : Normal embedding | ỹ ∈ RD : Non-neutrally-phonated embedding | ṽ ∈ RD : Vocal effort transfer vector

Introduction
Motivation

MMSE Estimation

ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1

P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k|y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v

Iván López-Espejo (AAU) Multilayer Perceptrons Monday 2nd May, 2022 3 / 3

I Limitation of MEMLIN: The set of partial estimates
{

ˆ̃v{k}; k = 1, ..., K
}

is pre-computed (during an offline
training stage) and fixed

I To overcome MEMLIN’s shortcoming, we propose MMSEv:
1. We jointly model ṽ and ỹ by a K -component GMM p(z̃ = (ṽ, ỹ))
2. Estimation is carried out in a principal component analysis (PCA) domain to face data scarcity

Let WL be a D × L PCA transform matrix, where L� D = 256

v = W>L ṽ, y = W>L ỹ

p
(
z = (v, y) ∈ R2L) =

K∑
k=1

P(k )N
(

z
∣∣∣µ{k}z ,Σ{k}z

)
, µ{k}z =

(
µ
{k}
v

µ
{k}
y

)
, Σ{k}z =

(
Σ{k}vv Σ{k}vy

Σ{k}yv Σ{k}yy

)

Introduction
Motivation

MMSE Estimation

ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1

P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k |y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v

Iván López-Espejo (AAU) Multilayer Perceptrons Monday 2nd May, 2022 3 / 3

1. Combination weights: P(k |y) =
p(y|k )P(k )

K∑
k′=1

p(y|k ′)P(k ′)

2. Partial estimates: E(v|y, k ) = µ
{k}
v + Σ{k}vy

(
Σ{k}yy

)−1 (
y− µ

{k}
y

)
I Both WL and p(z) are calculated from paired normal and non-neutrally-phonated embeddings

Experimental Results and Discussion
I EER (%) is the chosen speaker verification metric | Use of K = 8-component GMMs
I Embedding compensation experiments are carried out by employing E-T+WavLM as the baseline system
I MMSEx: MMSE estimator equivalent to MMSEv that directly estimates x̃ from E(x|y)

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

Shouted and normal speech:

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

Fig. 2. Speaker verification results in terms of EER, in percentages, as a function of the dimensionality, after PCA application,
of the embeddings processed by MEMLIN, MMSEx and MMSEv. Bar plots are shown for shouted and normal speech (top
row), as well as for whispered and normal speech (bottom row).

Table 1. Speaker verification results in terms of EER, in percentages, when considering both shouted and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
As-As 19.96 17.11 15.62 31.50 28.72 15.22
Ns-Ns 9.73 7.25 7.25 7.25 7.25 7.25

S-S 11.58 9.94 10.44 27.46 25.53 5.91
Ns-S 25.28 21.76 20.74 41.00 35.56 17.74

mented version of the VoxCeleb2 [15] dataset to extract
D = 256-dimensional speaker embeddings. Considering an
AAM loss margin of 0.2, first, WavLM —which was pre-
trained on 94k hours of unlabeled speech data— was fixed
and the ECAPA-TDNN parameters were trained for a total of
20 epochs. Second, WavLM and the ECAPA-TDNN back-
end were jointly fine tuned for 5 epochs. Finally, by following
the large margin fine-tuning strategy reported in [16], WavLM
and the ECAPA-TDNN back-end were jointly trained for 2
more epochs by considering an AAM loss margin of 0.4.
Notice that, for the sake of reproducibility, the model cor-
responding to this speaker verification system is publicly
available4. The reader is referred to [3] for further informa-
tion on this speaker verification system.

4. EXPERIMENTAL RESULTS

In this section, EER is chosen as the speaker verification per-
formance metric. Besides, as in previous work [4, 5], all the

4https://github.com/microsoft/unilm/tree/master/
wavlm

embedding compensation techniques evaluated make use of
K = 8-component GMMs.

4.1. WavLM Performance

Tables 1 and 2 show speaker verification results in terms of
EER under the shouted-normal and whispered-normal scenar-
ios, respectively. The left part of these tables compare, when
no embedding compensation is considered, the use of WavLM
speech representations (as in Section 3), E-T+WavLM, with
the use of traditional speech features, E-T+MFCC (note that
E-T stands for ECAPA-TDNN). Specifically, the speaker
verification system E-T+MFCC, which is publicly avail-
able5, employs 80-dimensional Mel-frequency cepstral coef-
ficients [17]. In line with [3], we can see from these tables
that E-T+WavLM generally outperforms E-T+MFCC. That
being said, we can also observe that there is still a large room
for improvement in the presence of vocal effort mismatch (all
conditions except Ns-Ns and Nw-Nw) that will be addressed
by embedding compensation in the next subsections. Bear

5https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb

Whispered and normal speech:
Table 2. Speaker verification results in terms of EER, in percentages, when considering both whispered and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
Aw-Aw 16.54 11.24 8.25 31.87 23.95 8.27
Nw-Nw 1.21 0.62 0.62 0.62 0.62 0.62

W-W 4.38 5.26 4.00 19.31 19.77 2.87
Nw-W 12.81 9.81 11.47 44.38 30.59 8.86

in mind that all the embedding compensation experiments in
this section are carried out by employing E-T+WavLM as the
baseline system.

4.2. Effect of PCA Dimension

Figure 2 plots the EER performance of the estimation method-
ology proposed in Section 2, MMSEv, as a function of the
PCA dimension L. For comparison, these bar plots also show
results from MEMLIN (applied in the PCA domain) as well
as from an MMSE estimator equivalent to that of Section 2
that directly estimates the normal embedding x̃ from E[x|y],
MMSEx. From this figure, we can see that MEMLIN’s per-
formance tends to drop when decreasing L as a result of the
information loss caused by PCA compression, which can be
particularly harmful when the estimation relies on a small set
of pre-computed and fixed partial estimates.

On the other hand, MMSEv involves the computation of
2L × 2L covariance matrices, Σ{k}

z , under a data scarcity
scenario. Given our small sample size, reducing L helps to
achieve better-conditioned covariance matrices to be used in
Eqs. (8) and (9). This, together with the fact that MMSEv ex-
ploits the observed non-neutrally-phonated embedding ỹ for
partial estimate calculation, can explain why EER decreases
up to L = 16 for MMSEv (see Figure 2). Keeping decreasing
L beyond this point harms speaker verification performance
due to the information loss entailed by PCA compression.

In relation to MMSEx, an internal analysis revealed that
estimating the normal embedding x̃ from E[x|y] yields target
and non-target score probability masses that are poorly sep-
arated as a result of compensated embeddings ˆ̃x where the
specific-speaker information is significantly distorted. Inter-
estingly, we also observed that the vocal effort transfer vec-
tor ṽ has a weak speaker-dependence. Therefore, estimat-
ing x̃ as ỹ − ˆ̃v according to MMSEv better preserves the
specific-speaker information contained in ỹ, which, in turn,
leads to better-separated target and non-target score probabil-
ity masses.

4.3. Embedding Compensation Performance Summary

The right part of Tables 1 and 2 compare standard MEMLIN
(i.e., without PCA) with MMSEv, MMSEx and MEMLIN

applied in the PCA domain (MEMLIN+PCA). Note that, in
these tables, the three latter techniques process, after PCA
application, L = 16-dimensional embeddings. Under the
shouted-normal scenario (Table 1), MMSEv outperforms
MEMLIN in the presence of vocal effort mismatch (i.e., in
As-As, S-S and Ns-S). Furthermore, while MEMLIN is on
par with MMSEv in Aw-Aw under the whispered-normal
scenario (Table 2), MMSEv achieves in Nw-W a 22.7% EER
relative improvement with respect to MEMLIN which actu-
ally worsens the baseline system E-T+WavLM (as in the S-S
condition).

5. CONCLUDING REMARKS

In this work, we have shown that embedding compensation
can significantly mitigate the speaker verification perfor-
mance drop caused by vocal effort mismatch when a state-of-
the-art speaker verification system integrating a cutting-edge
self-supervised pre-trained model for speech representation
is used. With the aim of improving a reference embedding
compensation method —i.e., MEMLIN—, we have proposed
an MMSE estimator of the vocal effort transfer vector that,
unlike MEMLIN, exploits the non-neutrally-phonated em-
beddings observed at test time for partial estimate calculation
and performs in a PCA domain to cope with non-neutrally-
phonated speech data scarcity. Compared with MEMLIN, the
proposed MMSE estimator has shown superior and compet-
itive EER performance when processing shouted and whis-
pered speech, respectively.

6. REFERENCES

[1] Brecht Desplanques, Jenthe Thienpondt, and Kris De-
muynck, “ECAPA-TDNN: Emphasized channel at-
tention, propagation and aggregation in TDNN based
speaker verification,” in Proceedings of INTERSPEECH
2020 – 21st Annual Conference of the International
Speech Communication Association, October 25-29,
Shanghai, China, 2020, pp. 3830–3834.

[2] Zhengyang Chen, Sanyuan Chen, Yu Wu, Yao Qian,
Chengyi Wang, Shujie Liu, Yanmin Qian, and Michael

[Espejo23] I. López-Espejo et al., “Improved
Vocal Effort Transfer Vector Estimation for
Vocal Effort-Robust Speaker Verification,” in

Proc. of MLSP 2023

x̃ ∈ RD : Embedding normal
ỹ ∈ RD : Embedding de fonación no neutra
ṽ ∈ RD : Vector de transferencia de esfuerzo vocal

ỹ = x̃+ ṽ ⇒ ˆ̃x = ỹ − ˆ̃v

v = W⊤
L ṽ e y = W⊤

L ỹ, donde WL ∈ RD×L, L ≪ D, es
una matriz de transformación PCA

p(z = (v, y) ∈ R2L) se modela mediante un GMM

ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v

v̂ = E[v|y] (estimación MMSE)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 30 / 46



Introducción a la Verificación de Hablante

Compensación de Embeddings

Necesidad de compensación de embeddings procedentes de habla con
fonación no neutra (p. ej., gritada y susurrada)

Funded by 

the European Union

Improved Vocal Effort Transfer Vector Estimation for
Vocal Effort-Robust Speaker Verification

Iván López-Espejo1,2, Santi Prieto3, Alfonso Ortega4 and Eduardo Lleida4

1Department of Electronic Systems, Aalborg University, Denmark
2Center for Robust Speech Systems (CRSS), The University of Texas at Dallas, USA

3VeriDas | das-Nano, Navarre, Spain
4ViVoLab, Aragón Institute for Engineering Research (I3A), University of Zaragoza, Spain

ivl@es.aau.dk, sprieto@veridas.com, {ortega,lleida}@unizar.es

Introduction

I Speaker verification performance tends to dra-
matically drop in the presence of non-neutrally-
phonated (e.g., shouted and whispered) speech

I Previous work explored a series of minimum
mean square error (MMSE) techniques estimat-
ing normal speaker embeddings from non-
neutrally-phonated ones

I MEMLIN (Multi-Environment Model-based LInear
Normalization) provided the best performance in
terms of equal error rate (EER) when dealing with
both shouted and whispered speech

I In this work we tackle a MEMLIN’s shortcom-
ing, which is explained in the next box

System Overview

I Speaker embedding compensation is applied only
in case that the embedding comes from non-
neutrally-phonated speech

I The ECAPA-TDNN back-end is trained on an aug-
mented version of the VoxCeleb2 dataset

where p(y|k) = N
(
y
∣∣∣µ{k}

y ,Σ{k}
yy

)
. On the other hand,

given that the joint density p(z = (v,y)|k) is Gaussian, the
conditional density p(v|y, k) is also Gaussian, and, therefore,
E (v |y, k) , i.e., the partial estimates in Eq. (7), can be ex-
pressed, ∀k ∈ {1, ...,K}, as [10]

E (v |y, k) = µ{k}
v +Σ{k}

vy

(
Σ{k}

yy

)−1 (
y − µ{k}

y

)
. (9)

Finally, an estimate of the normal embedding x̃ is achieved
by means of Eq. (2) along with the application of the inverse
PCA transform to the result of Eq. (7), namely,

ˆ̃x = ỹ −WLv̂︸ ︷︷ ︸
ˆ̃v

. (10)

Note that, in order to apply this method in Section 4, both
the PCA transform matrix WL and the GMM p(z) are calcu-
lated from a training set comprising paired normal and non-
neutrally-phonated embeddings (see Subsection 3.1).

For the sake of reproducibility, a Python implementation
of this speaker embedding compensation methodology has
been made publicly available3.

3. SYSTEM OVERVIEW

Figure 1 depicts a block diagram of the proposed vocal effort-
robust speaker verification system. First, the powerful self-
supervised pre-trained model WavLM [3] is used to compute
a high-level representation of the input speech signal. Based
on a Transformer structure, WavLM extends HuBERT [11]
to masked speech prediction and de-noising to allow the
pre-trained model to perform well in a variety of speech
processing tasks including speaker verification. Second, an
ECAPA-TDNN [1] back-end extracts a speaker embedding
from the representation outputted by WavLM. Then, the
speaker embedding compensation methodology of Section 2
is applied only in the case that the embedding comes from
non-neutrally-phonated speech. To detect this case, a simple,
yet virtually flawless logistic regression-based detector [4, 5]
can be used. That being said, note that the results reported
in Section 4 are obtained by oracle non-neutrally-phonated
speech detection for the sake of simplicity. Finally, the result-
ing embedding is compared with a reference embedding x̃ref
by cosine similarity to produce a score sc.

3.1. Shouted and Whispered Speech Corpora

For experimental purposes, we consider the vocal effort
modes shouted and whispered in addition to normal. To
this end, we employ two different (i.e., disjoint) corpora:
the speech corpus informed in [12], which comprises paired

3https://ilopezes.files.wordpress.com/2023/06/
mmsev.zip

ECAPA-TDNN
Frame Encoder

Attentive Statistics Pooling

Fully-Connected Layer

WavLM-Based Feature
Extractor

E
C

A
P

A
-T

D
N

N
 B

ac
k-

E
n

d
F

ro
n

t-
E

n
d

PCA

MMSE
Estimation

Inverse
PCA

Cosine
Similarity

+ -
ỹ

y
v̂

ˆ̃v

ỹ

ˆ̃x

x̃ref

sc

Fig. 1. Block diagram of the proposed vocal effort-robust
speaker verification system. See the text for further details.

shouted-normal speech utterances in Finnish from 22 speak-
ers, and CHAINS (CHAracterizing INdividual Speakers)
[13], which contains paired whispered-normal speech ut-
terances in English from 36 speakers. Due to speech data
scarcity, all the embedding compensation experiments in
Section 4 are performed —as in [5]— by following a leave-
one-speaker-out cross-validation strategy, which serves to
split the corpora into training and test sets.

We consider the following 4 test conditions (trial lists)
under the shouted-normal scenario: As-As (all shouted
and normal utterances vs. all shouted and normal utter-
ances; 557,040 trials), Ns-Ns (normal utterances vs. nor-
mal utterances; 139,128 trials), S-S (shouted utterances vs.
shouted utterances; 139,128 trials) and Ns-S (normal utter-
ances vs. shouted utterances; 278,784 trials). Furthermore,
we similarly examine 4 equivalent test conditions under the
whispered-normal scenario, namely, Aw-Aw (2,821,498 tri-
als), Nw-Nw (705,078 trials), W-W (704,950 trials) and
Nw-W (1,411,344 trials).

For further details about these corpora, the reader is re-
ferred to [12, 13] and [5].

3.2. System Implementation Details

The used ECAPA-TDNN back-end was trained, employing
the additive angular margin (AAM) loss [14], on an aug-

I Shouted-normal speech corpus: Paired utter-
ances in Finnish from 22 speakers

I Whispered-normal speech corpus: Paired ut-
terances in English from 36 speakers (CHAINS)

I Due to speech data scarcity, experiments are
performed by following a leave-one-speaker-out
cross-validation strategy

Normal Speaker Embedding Estimation
x̃ ∈ RD : Normal embedding | ỹ ∈ RD : Non-neutrally-phonated embedding | ṽ ∈ RD : Vocal effort transfer vector

Introduction
Motivation

MMSE Estimation

ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1

P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k|y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v

Iván López-Espejo (AAU) Multilayer Perceptrons Monday 2nd May, 2022 3 / 3

I Limitation of MEMLIN: The set of partial estimates
{

ˆ̃v{k}; k = 1, ..., K
}

is pre-computed (during an offline
training stage) and fixed

I To overcome MEMLIN’s shortcoming, we propose MMSEv:
1. We jointly model ṽ and ỹ by a K -component GMM p(z̃ = (ṽ, ỹ))
2. Estimation is carried out in a principal component analysis (PCA) domain to face data scarcity

Let WL be a D × L PCA transform matrix, where L� D = 256

v = W>L ṽ, y = W>L ỹ

p
(
z = (v, y) ∈ R2L) =

K∑
k=1

P(k )N
(

z
∣∣∣µ{k}z ,Σ{k}z

)
, µ{k}z =

(
µ
{k}
v

µ
{k}
y

)
, Σ{k}z =

(
Σ{k}vv Σ{k}vy

Σ{k}yv Σ{k}yy

)

Introduction
Motivation

MMSE Estimation

ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1

P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k |y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v

Iván López-Espejo (AAU) Multilayer Perceptrons Monday 2nd May, 2022 3 / 3

1. Combination weights: P(k |y) =
p(y|k )P(k )

K∑
k′=1

p(y|k ′)P(k ′)

2. Partial estimates: E(v|y, k ) = µ
{k}
v + Σ{k}vy

(
Σ{k}yy

)−1 (
y− µ

{k}
y

)
I Both WL and p(z) are calculated from paired normal and non-neutrally-phonated embeddings

Experimental Results and Discussion
I EER (%) is the chosen speaker verification metric | Use of K = 8-component GMMs
I Embedding compensation experiments are carried out by employing E-T+WavLM as the baseline system
I MMSEx: MMSE estimator equivalent to MMSEv that directly estimates x̃ from E(x|y)

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

Shouted and normal speech:

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

Fig. 2. Speaker verification results in terms of EER, in percentages, as a function of the dimensionality, after PCA application,
of the embeddings processed by MEMLIN, MMSEx and MMSEv. Bar plots are shown for shouted and normal speech (top
row), as well as for whispered and normal speech (bottom row).

Table 1. Speaker verification results in terms of EER, in percentages, when considering both shouted and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
As-As 19.96 17.11 15.62 31.50 28.72 15.22
Ns-Ns 9.73 7.25 7.25 7.25 7.25 7.25

S-S 11.58 9.94 10.44 27.46 25.53 5.91
Ns-S 25.28 21.76 20.74 41.00 35.56 17.74

mented version of the VoxCeleb2 [15] dataset to extract
D = 256-dimensional speaker embeddings. Considering an
AAM loss margin of 0.2, first, WavLM —which was pre-
trained on 94k hours of unlabeled speech data— was fixed
and the ECAPA-TDNN parameters were trained for a total of
20 epochs. Second, WavLM and the ECAPA-TDNN back-
end were jointly fine tuned for 5 epochs. Finally, by following
the large margin fine-tuning strategy reported in [16], WavLM
and the ECAPA-TDNN back-end were jointly trained for 2
more epochs by considering an AAM loss margin of 0.4.
Notice that, for the sake of reproducibility, the model cor-
responding to this speaker verification system is publicly
available4. The reader is referred to [3] for further informa-
tion on this speaker verification system.

4. EXPERIMENTAL RESULTS

In this section, EER is chosen as the speaker verification per-
formance metric. Besides, as in previous work [4, 5], all the

4https://github.com/microsoft/unilm/tree/master/
wavlm

embedding compensation techniques evaluated make use of
K = 8-component GMMs.

4.1. WavLM Performance

Tables 1 and 2 show speaker verification results in terms of
EER under the shouted-normal and whispered-normal scenar-
ios, respectively. The left part of these tables compare, when
no embedding compensation is considered, the use of WavLM
speech representations (as in Section 3), E-T+WavLM, with
the use of traditional speech features, E-T+MFCC (note that
E-T stands for ECAPA-TDNN). Specifically, the speaker
verification system E-T+MFCC, which is publicly avail-
able5, employs 80-dimensional Mel-frequency cepstral coef-
ficients [17]. In line with [3], we can see from these tables
that E-T+WavLM generally outperforms E-T+MFCC. That
being said, we can also observe that there is still a large room
for improvement in the presence of vocal effort mismatch (all
conditions except Ns-Ns and Nw-Nw) that will be addressed
by embedding compensation in the next subsections. Bear

5https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb

Whispered and normal speech:
Table 2. Speaker verification results in terms of EER, in percentages, when considering both whispered and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
Aw-Aw 16.54 11.24 8.25 31.87 23.95 8.27
Nw-Nw 1.21 0.62 0.62 0.62 0.62 0.62

W-W 4.38 5.26 4.00 19.31 19.77 2.87
Nw-W 12.81 9.81 11.47 44.38 30.59 8.86

in mind that all the embedding compensation experiments in
this section are carried out by employing E-T+WavLM as the
baseline system.

4.2. Effect of PCA Dimension

Figure 2 plots the EER performance of the estimation method-
ology proposed in Section 2, MMSEv, as a function of the
PCA dimension L. For comparison, these bar plots also show
results from MEMLIN (applied in the PCA domain) as well
as from an MMSE estimator equivalent to that of Section 2
that directly estimates the normal embedding x̃ from E[x|y],
MMSEx. From this figure, we can see that MEMLIN’s per-
formance tends to drop when decreasing L as a result of the
information loss caused by PCA compression, which can be
particularly harmful when the estimation relies on a small set
of pre-computed and fixed partial estimates.

On the other hand, MMSEv involves the computation of
2L × 2L covariance matrices, Σ{k}

z , under a data scarcity
scenario. Given our small sample size, reducing L helps to
achieve better-conditioned covariance matrices to be used in
Eqs. (8) and (9). This, together with the fact that MMSEv ex-
ploits the observed non-neutrally-phonated embedding ỹ for
partial estimate calculation, can explain why EER decreases
up to L = 16 for MMSEv (see Figure 2). Keeping decreasing
L beyond this point harms speaker verification performance
due to the information loss entailed by PCA compression.

In relation to MMSEx, an internal analysis revealed that
estimating the normal embedding x̃ from E[x|y] yields target
and non-target score probability masses that are poorly sep-
arated as a result of compensated embeddings ˆ̃x where the
specific-speaker information is significantly distorted. Inter-
estingly, we also observed that the vocal effort transfer vec-
tor ṽ has a weak speaker-dependence. Therefore, estimat-
ing x̃ as ỹ − ˆ̃v according to MMSEv better preserves the
specific-speaker information contained in ỹ, which, in turn,
leads to better-separated target and non-target score probabil-
ity masses.

4.3. Embedding Compensation Performance Summary

The right part of Tables 1 and 2 compare standard MEMLIN
(i.e., without PCA) with MMSEv, MMSEx and MEMLIN

applied in the PCA domain (MEMLIN+PCA). Note that, in
these tables, the three latter techniques process, after PCA
application, L = 16-dimensional embeddings. Under the
shouted-normal scenario (Table 1), MMSEv outperforms
MEMLIN in the presence of vocal effort mismatch (i.e., in
As-As, S-S and Ns-S). Furthermore, while MEMLIN is on
par with MMSEv in Aw-Aw under the whispered-normal
scenario (Table 2), MMSEv achieves in Nw-W a 22.7% EER
relative improvement with respect to MEMLIN which actu-
ally worsens the baseline system E-T+WavLM (as in the S-S
condition).

5. CONCLUDING REMARKS

In this work, we have shown that embedding compensation
can significantly mitigate the speaker verification perfor-
mance drop caused by vocal effort mismatch when a state-of-
the-art speaker verification system integrating a cutting-edge
self-supervised pre-trained model for speech representation
is used. With the aim of improving a reference embedding
compensation method —i.e., MEMLIN—, we have proposed
an MMSE estimator of the vocal effort transfer vector that,
unlike MEMLIN, exploits the non-neutrally-phonated em-
beddings observed at test time for partial estimate calculation
and performs in a PCA domain to cope with non-neutrally-
phonated speech data scarcity. Compared with MEMLIN, the
proposed MMSE estimator has shown superior and compet-
itive EER performance when processing shouted and whis-
pered speech, respectively.

6. REFERENCES

[1] Brecht Desplanques, Jenthe Thienpondt, and Kris De-
muynck, “ECAPA-TDNN: Emphasized channel at-
tention, propagation and aggregation in TDNN based
speaker verification,” in Proceedings of INTERSPEECH
2020 – 21st Annual Conference of the International
Speech Communication Association, October 25-29,
Shanghai, China, 2020, pp. 3830–3834.

[2] Zhengyang Chen, Sanyuan Chen, Yu Wu, Yao Qian,
Chengyi Wang, Shujie Liu, Yanmin Qian, and Michael

[Espejo23] I. López-Espejo et al., “Improved
Vocal Effort Transfer Vector Estimation for
Vocal Effort-Robust Speaker Verification,” in

Proc. of MLSP 2023

La ECAPA-TDNN se entrena sobre una versión
aumentada de VoxCeleb2

La métrica de evaluación es EER (%) (cuanto
menor, mejor)

Funded by 

the European Union

Improved Vocal Effort Transfer Vector Estimation for
Vocal Effort-Robust Speaker Verification

Iván López-Espejo1,2, Santi Prieto3, Alfonso Ortega4 and Eduardo Lleida4

1Department of Electronic Systems, Aalborg University, Denmark
2Center for Robust Speech Systems (CRSS), The University of Texas at Dallas, USA

3VeriDas | das-Nano, Navarre, Spain
4ViVoLab, Aragón Institute for Engineering Research (I3A), University of Zaragoza, Spain

ivl@es.aau.dk, sprieto@veridas.com, {ortega,lleida}@unizar.es

Introduction

I Speaker verification performance tends to dra-
matically drop in the presence of non-neutrally-
phonated (e.g., shouted and whispered) speech

I Previous work explored a series of minimum
mean square error (MMSE) techniques estimat-
ing normal speaker embeddings from non-
neutrally-phonated ones

I MEMLIN (Multi-Environment Model-based LInear
Normalization) provided the best performance in
terms of equal error rate (EER) when dealing with
both shouted and whispered speech

I In this work we tackle a MEMLIN’s shortcom-
ing, which is explained in the next box

System Overview

I Speaker embedding compensation is applied only
in case that the embedding comes from non-
neutrally-phonated speech

I The ECAPA-TDNN back-end is trained on an aug-
mented version of the VoxCeleb2 dataset

where p(y|k) = N
(
y
∣∣∣µ{k}

y ,Σ{k}
yy

)
. On the other hand,

given that the joint density p(z = (v,y)|k) is Gaussian, the
conditional density p(v|y, k) is also Gaussian, and, therefore,
E (v |y, k) , i.e., the partial estimates in Eq. (7), can be ex-
pressed, ∀k ∈ {1, ...,K}, as [10]

E (v |y, k) = µ{k}
v +Σ{k}

vy

(
Σ{k}

yy

)−1 (
y − µ{k}

y

)
. (9)

Finally, an estimate of the normal embedding x̃ is achieved
by means of Eq. (2) along with the application of the inverse
PCA transform to the result of Eq. (7), namely,

ˆ̃x = ỹ −WLv̂︸ ︷︷ ︸
ˆ̃v

. (10)

Note that, in order to apply this method in Section 4, both
the PCA transform matrix WL and the GMM p(z) are calcu-
lated from a training set comprising paired normal and non-
neutrally-phonated embeddings (see Subsection 3.1).

For the sake of reproducibility, a Python implementation
of this speaker embedding compensation methodology has
been made publicly available3.

3. SYSTEM OVERVIEW

Figure 1 depicts a block diagram of the proposed vocal effort-
robust speaker verification system. First, the powerful self-
supervised pre-trained model WavLM [3] is used to compute
a high-level representation of the input speech signal. Based
on a Transformer structure, WavLM extends HuBERT [11]
to masked speech prediction and de-noising to allow the
pre-trained model to perform well in a variety of speech
processing tasks including speaker verification. Second, an
ECAPA-TDNN [1] back-end extracts a speaker embedding
from the representation outputted by WavLM. Then, the
speaker embedding compensation methodology of Section 2
is applied only in the case that the embedding comes from
non-neutrally-phonated speech. To detect this case, a simple,
yet virtually flawless logistic regression-based detector [4, 5]
can be used. That being said, note that the results reported
in Section 4 are obtained by oracle non-neutrally-phonated
speech detection for the sake of simplicity. Finally, the result-
ing embedding is compared with a reference embedding x̃ref
by cosine similarity to produce a score sc.

3.1. Shouted and Whispered Speech Corpora

For experimental purposes, we consider the vocal effort
modes shouted and whispered in addition to normal. To
this end, we employ two different (i.e., disjoint) corpora:
the speech corpus informed in [12], which comprises paired

3https://ilopezes.files.wordpress.com/2023/06/
mmsev.zip

ECAPA-TDNN
Frame Encoder

Attentive Statistics Pooling

Fully-Connected Layer

WavLM-Based Feature
Extractor

E
C

A
P

A
-T

D
N

N
 B

ac
k-

E
n

d
F

ro
n

t-
E

n
d

PCA

MMSE
Estimation

Inverse
PCA

Cosine
Similarity

+ -
ỹ

y
v̂

ˆ̃v

ỹ

ˆ̃x

x̃ref

sc

Fig. 1. Block diagram of the proposed vocal effort-robust
speaker verification system. See the text for further details.

shouted-normal speech utterances in Finnish from 22 speak-
ers, and CHAINS (CHAracterizing INdividual Speakers)
[13], which contains paired whispered-normal speech ut-
terances in English from 36 speakers. Due to speech data
scarcity, all the embedding compensation experiments in
Section 4 are performed —as in [5]— by following a leave-
one-speaker-out cross-validation strategy, which serves to
split the corpora into training and test sets.

We consider the following 4 test conditions (trial lists)
under the shouted-normal scenario: As-As (all shouted
and normal utterances vs. all shouted and normal utter-
ances; 557,040 trials), Ns-Ns (normal utterances vs. nor-
mal utterances; 139,128 trials), S-S (shouted utterances vs.
shouted utterances; 139,128 trials) and Ns-S (normal utter-
ances vs. shouted utterances; 278,784 trials). Furthermore,
we similarly examine 4 equivalent test conditions under the
whispered-normal scenario, namely, Aw-Aw (2,821,498 tri-
als), Nw-Nw (705,078 trials), W-W (704,950 trials) and
Nw-W (1,411,344 trials).

For further details about these corpora, the reader is re-
ferred to [12, 13] and [5].

3.2. System Implementation Details

The used ECAPA-TDNN back-end was trained, employing
the additive angular margin (AAM) loss [14], on an aug-

I Shouted-normal speech corpus: Paired utter-
ances in Finnish from 22 speakers

I Whispered-normal speech corpus: Paired ut-
terances in English from 36 speakers (CHAINS)

I Due to speech data scarcity, experiments are
performed by following a leave-one-speaker-out
cross-validation strategy

Normal Speaker Embedding Estimation
x̃ ∈ RD : Normal embedding | ỹ ∈ RD : Non-neutrally-phonated embedding | ṽ ∈ RD : Vocal effort transfer vector

Introduction
Motivation

MMSE Estimation

ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1

P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k|y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v

Iván López-Espejo (AAU) Multilayer Perceptrons Monday 2nd May, 2022 3 / 3

I Limitation of MEMLIN: The set of partial estimates
{

ˆ̃v{k}; k = 1, ..., K
}

is pre-computed (during an offline
training stage) and fixed

I To overcome MEMLIN’s shortcoming, we propose MMSEv:
1. We jointly model ṽ and ỹ by a K -component GMM p(z̃ = (ṽ, ỹ))
2. Estimation is carried out in a principal component analysis (PCA) domain to face data scarcity

Let WL be a D × L PCA transform matrix, where L� D = 256

v = W>L ṽ, y = W>L ỹ

p
(
z = (v, y) ∈ R2L) =

K∑
k=1

P(k )N
(

z
∣∣∣µ{k}z ,Σ{k}z

)
, µ{k}z =

(
µ
{k}
v

µ
{k}
y

)
, Σ{k}z =

(
Σ{k}vv Σ{k}vy

Σ{k}yv Σ{k}yy

)

Introduction
Motivation

MMSE Estimation

ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1

P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k |y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
ˆ̃v

Iván López-Espejo (AAU) Multilayer Perceptrons Monday 2nd May, 2022 3 / 3

1. Combination weights: P(k |y) =
p(y|k )P(k )

K∑
k′=1

p(y|k ′)P(k ′)

2. Partial estimates: E(v|y, k ) = µ
{k}
v + Σ{k}vy

(
Σ{k}yy

)−1 (
y− µ

{k}
y

)
I Both WL and p(z) are calculated from paired normal and non-neutrally-phonated embeddings

Experimental Results and Discussion
I EER (%) is the chosen speaker verification metric | Use of K = 8-component GMMs
I Embedding compensation experiments are carried out by employing E-T+WavLM as the baseline system
I MMSEx: MMSE estimator equivalent to MMSEv that directly estimates x̃ from E(x|y)

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

Shouted and normal speech:

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

8  16 32 64 128

0

20

40

Fig. 2. Speaker verification results in terms of EER, in percentages, as a function of the dimensionality, after PCA application,
of the embeddings processed by MEMLIN, MMSEx and MMSEv. Bar plots are shown for shouted and normal speech (top
row), as well as for whispered and normal speech (bottom row).

Table 1. Speaker verification results in terms of EER, in percentages, when considering both shouted and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
As-As 19.96 17.11 15.62 31.50 28.72 15.22
Ns-Ns 9.73 7.25 7.25 7.25 7.25 7.25

S-S 11.58 9.94 10.44 27.46 25.53 5.91
Ns-S 25.28 21.76 20.74 41.00 35.56 17.74

mented version of the VoxCeleb2 [15] dataset to extract
D = 256-dimensional speaker embeddings. Considering an
AAM loss margin of 0.2, first, WavLM —which was pre-
trained on 94k hours of unlabeled speech data— was fixed
and the ECAPA-TDNN parameters were trained for a total of
20 epochs. Second, WavLM and the ECAPA-TDNN back-
end were jointly fine tuned for 5 epochs. Finally, by following
the large margin fine-tuning strategy reported in [16], WavLM
and the ECAPA-TDNN back-end were jointly trained for 2
more epochs by considering an AAM loss margin of 0.4.
Notice that, for the sake of reproducibility, the model cor-
responding to this speaker verification system is publicly
available4. The reader is referred to [3] for further informa-
tion on this speaker verification system.

4. EXPERIMENTAL RESULTS

In this section, EER is chosen as the speaker verification per-
formance metric. Besides, as in previous work [4, 5], all the

4https://github.com/microsoft/unilm/tree/master/
wavlm

embedding compensation techniques evaluated make use of
K = 8-component GMMs.

4.1. WavLM Performance

Tables 1 and 2 show speaker verification results in terms of
EER under the shouted-normal and whispered-normal scenar-
ios, respectively. The left part of these tables compare, when
no embedding compensation is considered, the use of WavLM
speech representations (as in Section 3), E-T+WavLM, with
the use of traditional speech features, E-T+MFCC (note that
E-T stands for ECAPA-TDNN). Specifically, the speaker
verification system E-T+MFCC, which is publicly avail-
able5, employs 80-dimensional Mel-frequency cepstral coef-
ficients [17]. In line with [3], we can see from these tables
that E-T+WavLM generally outperforms E-T+MFCC. That
being said, we can also observe that there is still a large room
for improvement in the presence of vocal effort mismatch (all
conditions except Ns-Ns and Nw-Nw) that will be addressed
by embedding compensation in the next subsections. Bear

5https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb

Whispered and normal speech:
Table 2. Speaker verification results in terms of EER, in percentages, when considering both whispered and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
Aw-Aw 16.54 11.24 8.25 31.87 23.95 8.27
Nw-Nw 1.21 0.62 0.62 0.62 0.62 0.62

W-W 4.38 5.26 4.00 19.31 19.77 2.87
Nw-W 12.81 9.81 11.47 44.38 30.59 8.86

in mind that all the embedding compensation experiments in
this section are carried out by employing E-T+WavLM as the
baseline system.

4.2. Effect of PCA Dimension

Figure 2 plots the EER performance of the estimation method-
ology proposed in Section 2, MMSEv, as a function of the
PCA dimension L. For comparison, these bar plots also show
results from MEMLIN (applied in the PCA domain) as well
as from an MMSE estimator equivalent to that of Section 2
that directly estimates the normal embedding x̃ from E[x|y],
MMSEx. From this figure, we can see that MEMLIN’s per-
formance tends to drop when decreasing L as a result of the
information loss caused by PCA compression, which can be
particularly harmful when the estimation relies on a small set
of pre-computed and fixed partial estimates.

On the other hand, MMSEv involves the computation of
2L × 2L covariance matrices, Σ{k}

z , under a data scarcity
scenario. Given our small sample size, reducing L helps to
achieve better-conditioned covariance matrices to be used in
Eqs. (8) and (9). This, together with the fact that MMSEv ex-
ploits the observed non-neutrally-phonated embedding ỹ for
partial estimate calculation, can explain why EER decreases
up to L = 16 for MMSEv (see Figure 2). Keeping decreasing
L beyond this point harms speaker verification performance
due to the information loss entailed by PCA compression.

In relation to MMSEx, an internal analysis revealed that
estimating the normal embedding x̃ from E[x|y] yields target
and non-target score probability masses that are poorly sep-
arated as a result of compensated embeddings ˆ̃x where the
specific-speaker information is significantly distorted. Inter-
estingly, we also observed that the vocal effort transfer vec-
tor ṽ has a weak speaker-dependence. Therefore, estimat-
ing x̃ as ỹ − ˆ̃v according to MMSEv better preserves the
specific-speaker information contained in ỹ, which, in turn,
leads to better-separated target and non-target score probabil-
ity masses.

4.3. Embedding Compensation Performance Summary

The right part of Tables 1 and 2 compare standard MEMLIN
(i.e., without PCA) with MMSEv, MMSEx and MEMLIN

applied in the PCA domain (MEMLIN+PCA). Note that, in
these tables, the three latter techniques process, after PCA
application, L = 16-dimensional embeddings. Under the
shouted-normal scenario (Table 1), MMSEv outperforms
MEMLIN in the presence of vocal effort mismatch (i.e., in
As-As, S-S and Ns-S). Furthermore, while MEMLIN is on
par with MMSEv in Aw-Aw under the whispered-normal
scenario (Table 2), MMSEv achieves in Nw-W a 22.7% EER
relative improvement with respect to MEMLIN which actu-
ally worsens the baseline system E-T+WavLM (as in the S-S
condition).

5. CONCLUDING REMARKS

In this work, we have shown that embedding compensation
can significantly mitigate the speaker verification perfor-
mance drop caused by vocal effort mismatch when a state-of-
the-art speaker verification system integrating a cutting-edge
self-supervised pre-trained model for speech representation
is used. With the aim of improving a reference embedding
compensation method —i.e., MEMLIN—, we have proposed
an MMSE estimator of the vocal effort transfer vector that,
unlike MEMLIN, exploits the non-neutrally-phonated em-
beddings observed at test time for partial estimate calculation
and performs in a PCA domain to cope with non-neutrally-
phonated speech data scarcity. Compared with MEMLIN, the
proposed MMSE estimator has shown superior and compet-
itive EER performance when processing shouted and whis-
pered speech, respectively.

6. REFERENCES

[1] Brecht Desplanques, Jenthe Thienpondt, and Kris De-
muynck, “ECAPA-TDNN: Emphasized channel at-
tention, propagation and aggregation in TDNN based
speaker verification,” in Proceedings of INTERSPEECH
2020 – 21st Annual Conference of the International
Speech Communication Association, October 25-29,
Shanghai, China, 2020, pp. 3830–3834.

[2] Zhengyang Chen, Sanyuan Chen, Yu Wu, Yao Qian,
Chengyi Wang, Shujie Liu, Yanmin Qian, and Michael

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 31 / 46



Implementación de un Sistema de Verificación de Hablante

Tabla de Contenidos

1 Introducción a la Verificación de Hablante

2 Implementación de un Sistema de Verificación de Hablante

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 32 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Cálculo del
Espectrograma Mel

ECAPA-TDNN Frame
Encoder

Attentive Statistics Pooling

Fully-Connected Layer Similitud
Coseno

xref

y
Extractor de embeddings ECAPA-TDNN

Sc
Implementación de un sistema de
verificación de hablante:

Cálculo del espectrograma Mel

Extractor de embeddings
y, xref ∈ R192 basado en
ECAPA-TDNN

Comparación de embeddings
mediante similitud coseno (si
Sc ≥ τ , y y xref proceden del
mismo hablante)

https://huggingface.co/yangwang825/

ecapa-tdnn-vox2

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 33 / 46

https://huggingface.co/yangwang825/ecapa-tdnn-vox2
https://huggingface.co/yangwang825/ecapa-tdnn-vox2


Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Instalación de Anaconda y Spyder:

1 Ir a https://www.anaconda.com/download y
descargar e instalar Anaconda Distribution

2 Iniciar anaconda-navigator

3 En Environments, crear el entorno de trabajo
cursoVoz

4 Seleccionar el nuevo entorno, ver los paquetes Not
Installed y marcar e instalar Spyder

5 En Home, seleccionar el entorno cursoVoz y lanzar
Spyder

6 En Spyder, ir a Tools→Preferences→iPython
Console→Graphics→Backend y elegir Automatic
como el modo en que se muestran los gráficos

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 34 / 46

https://www.anaconda.com/download


Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Necesitamos instalar algunas libreŕıas de
trabajo:

PyTorch: Construcción de modelos de aprendizaje
profundo
SpeechBrain: Desarrollo de tecnoloǵıa de voz, audio,
etc.
Numpy: Cálculo cient́ıfico
Sounddevice: Grabación y reproducción de sonido
Matplotlib: Creación de visualizaciones

1 Abrir Anaconda Prompt y activar el entorno de
trabajo mediante el comando conda activate

cursoVoz

2 Instalar los anteriores módulos haciendo uso de pip:
pip install torch speechbrain numpy

sounddevice matplotlib

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 35 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Creamos un fichero de código Python llamado spkverif lib.py

Importamos los módulos que vamos a necesitar:

1 

 

PRÁCTICA DÍA 2: INTRODUCCIÓN A LA VERIFICACIÓN DE HA-

BLANTE CON PYTORCH 
 

Iván López Espejo, Dpto. de TSTC, UGR 

Introducción a las Tecnologías del Habla 

 

import torch 
from speechbrain.pretrained.interfaces import Pretrained 
import numpy as np 

 

class EmbeddingExtractor(Pretrained): 
 
    # Módulos necesarios. 
    MODULES_NEEDED = [ 
        "compute_features", 
        "mean_var_norm", 
        "embedding_model" 
    ] 
 
    def __init__(self, *args, **kwargs): 
        super().__init__(*args, **kwargs) 
         
    # Método que realiza la extracción de embeddings en sí. 
    # wav: Muestras de audio. 
    def embedding_extractor(self, wav): 
         
        wav = torch.tensor(wav)  # Convertimos el array de numpy en un tensor. 
         
        wav = wav.unsqueeze(0)  # Añadimos una dimensión por la izquierda al segmento so-
noro. 
 
        # Extracción de características Mel. 
        feats = self.mods.compute_features(wav) 
        feats = self.mods.mean_var_norm(feats, torch.ones(1))  # Normalización de media y va-
rianza. 
         
        # Extracción del embedding a partir de las características Mel. 
        embedding = self.mods.embedding_model(feats, torch.ones(1)) 
         
        # Convertimos el embedding en un array de numpy. 
        embedding = embedding.numpy() 
        embedding = embedding[0,0,:] 
 
        return embedding 

 

def cosineDist(x, y): 
     
    # Calculamos las normas de los vectores. 
    nx = np.sqrt(np.sum(x**2)) 
    ny = np.sqrt(np.sum(y**2)) 
     
    # Normalizamos los vectores. 
    x /= nx 
    y /= ny 
     
    # Calculamos la similitud coseno. 
    Sc = np.dot(x,y) 
     
    return Sc 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 36 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Creamos la clase que define nuestro extractor de embeddings basado
en el espectrograma Mel:

1 

 

PRÁCTICA DÍA 2: INTRODUCCIÓN A LA VERIFICACIÓN DE HA-

BLANTE CON PYTORCH 
 

Iván López Espejo, Dpto. de TSTC, UGR 

Introducción a las Tecnologías del Habla 

 

import torch 
from speechbrain.pretrained.interfaces import Pretrained 
import numpy as np 

 

class EmbeddingExtractor(Pretrained): 
 
    # Módulos necesarios. 
    MODULES_NEEDED = [ 
        "compute_features", 
        "mean_var_norm", 
        "embedding_model" 
    ] 
 
    def __init__(self, *args, **kwargs): 
        super().__init__(*args, **kwargs) 
         
    # Método que realiza la extracción de embeddings en sí. 
    # wav: Muestras de audio. 
    def embedding_extractor(self, wav): 
         
        wav = torch.tensor(wav)  # Convertimos el array de numpy en un tensor. 
         
        wav = wav.unsqueeze(0)  # Añadimos una dimensión por la izquierda al segmento so-
noro. 
 
        # Extracción de características Mel. 
        feats = self.mods.compute_features(wav) 
        feats = self.mods.mean_var_norm(feats, torch.ones(1))  # Normalización de media y va-
rianza. 
         
        # Extracción del embedding a partir de las características Mel. 
        embedding = self.mods.embedding_model(feats, torch.ones(1)) 
         
        # Convertimos el embedding en un array de numpy. 
        embedding = embedding.numpy() 
        embedding = embedding[0,0,:] 
 
        return embedding 

 

def cosineDist(x, y): 
     
    # Calculamos las normas de los vectores. 
    nx = np.sqrt(np.sum(x**2)) 
    ny = np.sqrt(np.sum(y**2)) 
     
    # Normalizamos los vectores. 
    x /= nx 
    y /= ny 
     
    # Calculamos la similitud coseno. 
    Sc = np.dot(x,y) 
     
    return Sc 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 37 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Incluimos un método para calcular la similitud coseno de cara a
determinar si dos embeddings dados proceden o no del mismo
hablante:

1 

 

PRÁCTICA DÍA 2: INTRODUCCIÓN A LA VERIFICACIÓN DE HA-

BLANTE CON PYTORCH 
 

Iván López Espejo, Dpto. de TSTC, UGR 

Introducción a las Tecnologías del Habla 

 

import torch 
from speechbrain.pretrained.interfaces import Pretrained 
import numpy as np 

 

class EmbeddingExtractor(Pretrained): 
 
    # Módulos necesarios. 
    MODULES_NEEDED = [ 
        "compute_features", 
        "mean_var_norm", 
        "embedding_model" 
    ] 
 
    def __init__(self, *args, **kwargs): 
        super().__init__(*args, **kwargs) 
         
    # Método que realiza la extracción de embeddings en sí. 
    # wav: Muestras de audio. 
    def embedding_extractor(self, wav): 
         
        wav = torch.tensor(wav)  # Convertimos el array de numpy en un tensor. 
         
        wav = wav.unsqueeze(0)  # Añadimos una dimensión por la izquierda al segmento so-
noro. 
 
        # Extracción de características Mel. 
        feats = self.mods.compute_features(wav) 
        feats = self.mods.mean_var_norm(feats, torch.ones(1))  # Normalización de media y va-
rianza. 
         
        # Extracción del embedding a partir de las características Mel. 
        embedding = self.mods.embedding_model(feats, torch.ones(1)) 
         
        # Convertimos el embedding en un array de numpy. 
        embedding = embedding.numpy() 
        embedding = embedding[0,0,:] 
 
        return embedding 

 

def cosineDist(x, y): 
     
    # Calculamos las normas de los vectores. 
    nx = np.sqrt(np.sum(x**2)) 
    ny = np.sqrt(np.sum(y**2)) 
     
    # Normalizamos los vectores. 
    x /= nx 
    y /= ny 
     
    # Calculamos la similitud coseno. 
    Sc = np.dot(x,y) 
     
    return Sc 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 38 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Implementamos un código muy básico con el que podremos grabar
dos muestras de voz y determinar si proceden o no del mismo
hablante

Creamos un nuevo fichero de código Python llamado Demo Live.py e
importamos los módulos que vamos a requerir:

2 

 

import spkverif_lib 
import sounddevice as sd 
import matplotlib.pyplot as plt 
import numpy as np 

 

fs = 16000  # Frecuencia de muestreo de trabajo en Hz: 16 kHz. 
seconds = 5  # Duración en segundos de las muestras sonoras. 
# --------------------------------------------------------------------------- # 
input('Presiona una tecla para comenzar a grabar la muestra de referencia...') 
print('Grabando...') 
samp1 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Grabación de la muestra de referencia concluida!') 
# --------------------------------------------------------------------------- # 
input('Presiona una tecla para comenzar a grabar la muestra de comparación...') 
print('Grabando...') 
samp2 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Grabación de la muestra de comparación concluida!') 
# --------------------------------------------------------------------------- # 
plt.figure() 
plt.plot(samp1) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('x(n)') 
plt.title('Muestra de referencia') 
plt.figure() 
plt.plot(samp2) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('y(n)') 
plt.title('Muestra de comparación') 

 

# Instanciamos el extractor de embeddings. 
emb_extractor = spkverif_lib.EmbeddingExtractor.from_hparams( 
    source='yangwang825/ecapa-tdnn-vox2' 
) 
embedding_1 = emb_extractor.embedding_extractor(samp1[:,0])  # Embedding de referencia. 
embedding_2 = emb_extractor.embedding_extractor(samp2[:,0])  # Embedding de compara-
ción. 
plt.figure() 
plt.plot(embedding_1) 
plt.plot(embedding_2) 
plt.legend(['Embedding de referencia', 'Embedding de comparación']) 
plt.xlabel('k') 
plt.ylabel('e(k)') 
plt.grid(True) 
plt.title('Embeddings (representaciones de hablante)') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 39 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Grabamos dos muestras de voz de 5 segundos de duración cada
una a 16 kHz de frecuencia de muestreo y las representamos:

2 

 

import spkverif_lib 
import sounddevice as sd 
import matplotlib.pyplot as plt 
import numpy as np 

 

fs = 16000  # Frecuencia de muestreo de trabajo en Hz: 16 kHz. 
seconds = 5  # Duración en segundos de las muestras sonoras. 
# --------------------------------------------------------------------------- # 
input('Presiona una tecla para comenzar a grabar la muestra de referencia...') 
print('Grabando...') 
samp1 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Grabación de la muestra de referencia concluida!') 
# --------------------------------------------------------------------------- # 
input('Presiona una tecla para comenzar a grabar la muestra de comparación...') 
print('Grabando...') 
samp2 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Grabación de la muestra de comparación concluida!') 
# --------------------------------------------------------------------------- # 
plt.figure() 
plt.plot(samp1) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('x(n)') 
plt.title('Muestra de referencia') 
plt.figure() 
plt.plot(samp2) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('y(n)') 
plt.title('Muestra de comparación') 

 

# Instanciamos el extractor de embeddings. 
emb_extractor = spkverif_lib.EmbeddingExtractor.from_hparams( 
    source='yangwang825/ecapa-tdnn-vox2' 
) 
embedding_1 = emb_extractor.embedding_extractor(samp1[:,0])  # Embedding de referencia. 
embedding_2 = emb_extractor.embedding_extractor(samp2[:,0])  # Embedding de compara-
ción. 
plt.figure() 
plt.plot(embedding_1) 
plt.plot(embedding_2) 
plt.legend(['Embedding de referencia', 'Embedding de comparación']) 
plt.xlabel('k') 
plt.ylabel('e(k)') 
plt.grid(True) 
plt.title('Embeddings (representaciones de hablante)') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 40 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Ejemplo de dos muestras de voz grabadas por ḿı usando la presente
implementación

De la muestra de la izquierda se extraerá xref , y, de la de la derecha,
y:

0 10000 20000 30000 40000 50000 60000 70000 80000
n

0.2

0.1

0.0

0.1

0.2

x(
n)

Muestra de referencia

0 10000 20000 30000 40000 50000 60000 70000 80000
n

0.2

0.1

0.0

0.1

0.2

y(
n)

Muestra de comparación

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 41 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Instanciamos, desde un repositorio, nuestro extractor de embeddings
basado en un modelo ECAPA-TDNN pre-entrenado usando SpeechBrain

Extraemos los embeddings xref e y y los representamos:

2 

 

import spkverif_lib 
import sounddevice as sd 
import matplotlib.pyplot as plt 
import numpy as np 

 

fs = 16000  # Frecuencia de muestreo de trabajo en Hz: 16 kHz. 
seconds = 5  # Duración en segundos de las muestras sonoras. 
# --------------------------------------------------------------------------- # 
input('Presiona una tecla para comenzar a grabar la muestra de referencia...') 
print('Grabando...') 
samp1 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Grabación de la muestra de referencia concluida!') 
# --------------------------------------------------------------------------- # 
input('Presiona una tecla para comenzar a grabar la muestra de comparación...') 
print('Grabando...') 
samp2 = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Grabación de la muestra de comparación concluida!') 
# --------------------------------------------------------------------------- # 
plt.figure() 
plt.plot(samp1) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('x(n)') 
plt.title('Muestra de referencia') 
plt.figure() 
plt.plot(samp2) 
plt.grid(True) 
plt.xlabel('n') 
plt.ylabel('y(n)') 
plt.title('Muestra de comparación') 

 

# Instanciamos el extractor de embeddings. 
emb_extractor = spkverif_lib.EmbeddingExtractor.from_hparams( 
    source='yangwang825/ecapa-tdnn-vox2' 
) 
embedding_1 = emb_extractor.embedding_extractor(samp1[:,0])  # Embedding de referencia. 
embedding_2 = emb_extractor.embedding_extractor(samp2[:,0])  # Embedding de compara-
ción. 
plt.figure() 
plt.plot(embedding_1) 
plt.plot(embedding_2) 
plt.legend(['Embedding de referencia', 'Embedding de comparación']) 
plt.xlabel('k') 
plt.ylabel('e(k)') 
plt.grid(True) 
plt.title('Embeddings (representaciones de hablante)') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 42 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

A continuación vemos los embeddings de referencia, xref , y
comparación, y, correspondientes a nuestro ejemplo anterior:

0 25 50 75 100 125 150 175 200
k

40

30

20

10

0

10

20

e(
k)

Embeddings (representaciones de hablante)

Embedding de referencia
Embedding de comparación

Su similitud salta a la vista, consistente con el hecho de que
proceden de muestras de voz de una misma persona

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 43 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Calculamos la similitud coseno Sc entre xref e y, y, si Sc ≥ τ = 0, 5, decimos
que las dos muestras de voz proceden del mismo hablante

Representamos en el espacio de coordenadas polares los dos embeddings:

3 

 

sc = spkverif_lib.cosineDist(embedding_1, embedding_2)  # Similitud coseno. 
thr = 0.5  # Umbral de decisión. 
if sc >= thr: 
    print('Las dos muestras provienen del mismo hablante') 
else: 
    print('Las muestras provienen de hablantes diferentes') 
print('Similitud coseno: ' + str(sc)) 
# Representamos el resultado en términos del ángulo entre el embedding de 
# referencia y el de comparación. 
angle_ref = 0  # Referencia. 
angle_com = np.acos(sc)  # Comparación (arcocoseno de la similitud coseno). 
arrow_length = 1.0  # Longitud del embedding. 
fig, ax = plt.subplots(subplot_kw={'projection': 'polar'}) 
# Mostramos sólo el semicírculo de interés. 
ax.set_thetamin(0) 
ax.set_thetamax(180) 
# Embedding de referencia. 
ax.annotate("",  # Anotación sin texto. 
            xy=(angle_ref, arrow_length),  # Punta del embedding. 
            xytext=(0, 0),  # Origen del embedding. 
            arrowprops=dict(facecolor='blue', edgecolor='blue', width=2, headwidth=8, head-
length=10, shrink=0), 
            annotation_clip=False)  # Evita que la flecha se recorte. 
# Embedding de comparación. 
ax.annotate("", 
            xy=(angle_com, arrow_length), 
            xytext=(0, 0), 
            arrowprops=dict(facecolor='orange', edgecolor='orange', width=1, headwidth=6, 
headlength=10, shrink=0), 
            annotation_clip=False) 
ax.plot([0, np.acos(thr)], [0, arrow_length], linestyle='--', color='gray')  # Representamos el 
umbral de decisión también. 
ax.set_title('Comparativa de embeddings') 
ax.grid(True) 
plt.show() 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 44 / 46



Implementación de un Sistema de Verificación de Hablante

Implementación de un Sistema de Verificación de Hablante

Los embeddings que forman un ángulo θ < θτ = arccos(τ = 0, 5) = 60◦

(umbral de decisión≡ĺınea discontinua) proceden del mismo hablante

El embedding de comparación y forma un ángulo θ = arccos(Sc) con el
embedding de referencia xref

0°

30°

60°
90°

120°

150°

180°
0.0 0.2 0.4 0.6 0.8 1.0

Comparativa de embeddings

Se determina correctamente que las dos muestras de voz del ejemplo
proceden de un mismo hablante

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 45 / 46



Introducción a las Tecnoloǵıas del Habla

Dr. Iván López-Espejo

DÍA 2: INTRODUCCIÓN A LA VERIFICACIÓN DE HABLANTE

iloes@ugr.es

Tuesday 3rd June, 2025

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Tuesday 3rd June, 2025 46 / 46



Introducción a las Tecnoloǵıas del Habla

Dr. Iván López-Espejo

DÍA 3: INTRODUCCIÓN AL RECONOCIMIENTO DEL HABLA

iloes@ugr.es

Wednesday 4th June, 2025

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 1 / 62



Tabla de Contenidos

1 Introducción al Reconocimiento del Habla

2 Implementación de un Sistema de Control por Voz

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 2 / 62



Introducción al Reconocimiento del Habla

Tabla de Contenidos

1 Introducción al Reconocimiento del Habla

2 Implementación de un Sistema de Control por Voz

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 3 / 62



Introducción al Reconocimiento del Habla

Introducción

Renacimiento del reconocimiento automático del habla (RAH) a
lo largo de la última década: ¡El aprendizaje profundo ha
revolucionado el RAH!

1 Disponibilidad de una gran cantidad de datos de voz
2 Potentes recursos computacionales (GPUs)

[IWSDS] IWSDS, http://www.iwsds.org/

Multitud de aplicaciones:
1 Búsqueda por voz, asistentes de voz, videojuegos, dictado...
2 Detección de palabras clave (KWS) con bajos requerimientos

computacionales para dispositivos de asistencia auditiva ([Espejo20] I.
López-Espejo et al., “Improved External Speaker-Robust Keyword Spotting for Hearing Assistive Devices”.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 4 / 62

http://www.iwsds.org/


Introducción al Reconocimiento del Habla

Introducción

Small
Vocabulary

Constraint
Task

Clean Speech

Read Speech

Single
Language

Large
Vocabulary

Flexible Task

Close-talk
Speech

Carefully
Spoken
Speech

Multiple
Languages

Huge
Vocabulary

Free-style
Task

Noisy Far-field
Speech

Spontaneous
Speech

Mixed
Languages

[Yu15] D. Yu and L. Deng, “Automatic Speech Recognition: A Deep Learning Approach”. Springer, 2015

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 5 / 62



Introducción al Reconocimiento del Habla

Panorama General del RAH

Panorama general de la arquitectura de los sistemas de RAH:

SIGNAL PROCESSING &
FEATURE EXTRACTION ACOUSTIC MODEL HYPOTHESIS SEARCH

LANGUAGE MODEL

Speech
Features

Acoustic
Model Score

Language
Model Score

Recognition
Result

Speech Signal
FRONT-END BACK-END

Componentes básicos del RAH:
1 Procesamiento de la señal y extracción de caracteŕısticas: Espectro log-Mel,

coeficientes cepstrales en escala Mel (MFCCs)...
2 Modelo acústico (AM): Integra información acústica y fonética
3 Modelo de lenguaje (LM): Estima la probabilidad de una secuencia de palabras

(puntuación LM) gracias a que aprende, a partir de corpus de texto, correlaciones
entre palabras

4 Búsqueda de hipótesis: Devuelve la secuencia de palabras con la puntuación más
alta como resultado del reconocimiento

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 6 / 62



Introducción al Reconocimiento del Habla

Panorama General del RAH: Front-end

[Liao07] H. Liao, “Uncertainty Decoding for Noise Robust Speech Recognition”. Ph.D. thesis (University of Cambridge), 2007

Propiedades deseables de las caracteŕısticas del habla: Discriminativas,
compactas y robustas a distorsiones acústicas (p. ej., ruido ambiente)

Dependiendo del modelado acústico...
1 Modelos de mezcla de gaussianas (GMMs): Utilización de derivadas de coeficientes
2 Redes neuronales profundas (DNNs): Utilización de contexto temporal

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 7 / 62



Introducción al Reconocimiento del Habla

Panorama General del RAH: Front-end

[Liao07] H. Liao, “Uncertainty Decoding for Noise Robust Speech Recognition”. Ph.D. thesis (University of Cambridge), 2007

Los MFCCs se ajustan bien a los modelos acústicos basados en GMM
(matrices de covarianza diagonales, menor complejidad)

El espectro log-Mel se ajusta bien a los modelos acústicos basados en DNN
(aprovechamiento de correlaciones espectro-temporales)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 8 / 62



Introducción al Reconocimiento del Habla

Panorama General del RAH: Back-end

El objetivo del RAH es encontrar la secuencia de palabras
W = (w1,w2, ...,wm) más probable a partir de un conjunto de vectores de
caracteŕısticas X = (x1, ..., xT )

Problema de estimación maximum a posteriori (MAP):
Ŵ = argmaxW P(W|X) = argmaxW p(X|W)P(W)

El algoritmo de Viterbi nos permite decodificar W a partir de las
observaciones X

SIGNAL PROCESSING &
FEATURE EXTRACTION ACOUSTIC MODEL HYPOTHESIS SEARCH

LANGUAGE MODEL

Speech
Features

Acoustic
Model Score

Language
Model Score

Recognition
Result

Speech Signal
FRONT-END BACK-END

Para encontrar p(X|W), requerimos tanto el léxico (i.e., la correspondencia
entre las palabras escritas que pueden ser reconocidas y sus transcripciones
fonéticas) como el modelo acústico

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 9 / 62



Introducción al Reconocimiento del Habla

Panorama General del RAH: Back-end

El modelo acústico es el responsable de proporcionar p(X|W)

Cada palabra wi ∈W, i = 1, ...,m, normalmente se descompone en unidades acústicas
más simples (i.e., monofonemas o trifonemas) a partir del léxico

Cada una de estas unidades acústicas se modela mediante un modelo oculto de Márkov
(HMM) con funciones de densidad continuas (velocidad variable del habla)

Recuerda: Los parámetros de un HMM se obtienen mediante estimación de máxima
verosimilitud empleando el algoritmo de Baum-Welch (EM)

[Young06] S. Young et al., “The HTK Book (for HTK Version 3.4)”. Cambridge University Engineering Department, 2006

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 10 / 62



Introducción al Reconocimiento del Habla

Panorama General del RAH: Back-end

Cada distribución bj (o = xt) expresa la probabilidad de que el vector de caracteŕısticas xt
sea observado en el estado sj

Modelado de las distribuciones de observaciones de salida de los estados del HMM
1 Usando GMMs: bj (xt |sj ) =

∑K
k=1 P(k|sj )N

(
xt

∣∣∣µ(k)
sj ,Σ

(k)
sj

)
2 ¡Es mucho mejor usar DNNs para producir las probabilidades de emisión de los

estados!

[Young06] S. Young et al., “The HTK Book (for HTK Version 3.4)”. Cambridge University Engineering Department, 2006

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 11 / 62



Introducción al Reconocimiento del Habla

Panorama General del RAH: Back-end

p(X|W) se puede calcular sumando todas las posibles secuencias de estados
q = (q1, ..., qT ) que pueden producir W:

p(X|W) =
∑

q

∏T
t=1 p(xt |qt)P(qt |qt−1)

P(W) depende de la tarea lingǘıstica. Para N-gramas (usualmente, N = 2 o
N = 3): P(W) =

∏m
i=1 P(wi |wi−1, ...,wi−N+1)

De N-gramas a aproximaciones conexionistas: Las redes neuronales
recurrentes (RNNs) son ampliamente utilizadas para ajustar un modelo de
P(W)

El macromodelo λ integra los modelos acústico y de lenguaje

La secuencia óptima de estados q̂ a partir de la cual se obtiene W, se estima
mediante el algoritmo de Viterbi:
q̂ = argmaxq p(q,X|λ)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 12 / 62



Introducción al Reconocimiento del Habla

RAH H́ıbrido DNN-HMM

Los sistemas DNN-HMM dependientes del contexto (CD) rinden
significativamente mejor que los sistemas clásicos GMM-HMM en muchas
tareas de reconocimiento continuo de voz de gran vocabulario (LVCSR):

Los nodos de salida de la DNN son senones (i.e., estados de trifonemas ligados) en
lugar de estados de monofonemas

[Yu15] D. Yu and L. Deng, “Automatic Speech Recognition: A Deep Learning Approach”. Springer, 2015

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 13 / 62



Introducción al Reconocimiento del Habla

RAH H́ıbrido DNN-HMM

¡Importante! No utilizamos una DNN por estado: se entrena una sola DNN
para estimar la probabilidad a posteriori p(qt = sj |xt) para todos los estados
{sj ; j = 1, ...,S}

[Yu15] D. Yu and L. Deng, “Automatic Speech Recognition: A Deep Learning Approach”. Springer, 2015

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 14 / 62



Introducción al Reconocimiento del Habla

RAH H́ıbrido DNN-HMM

Decodificación en sistemas DNN-HMM:

Como en GMM-HMM, Ŵ = argmaxW p(X|W)P(W), donde la

puntuación AM es p(X|W) =
∑

q

∏T
t=1 p(xt |qt)P(qt |qt−1)

En DNN-HMM,

p(xt |qt = sj) =
p(qt = sj |xt)P(xt)

P(sj)
⇒ p̄(xt |qt = sj) =

p(qt = sj |xt)
P(sj)

La probabilidad a priori de cada senón, P(sj) = Tsj/T , se estima a
partir del conjunto de entrenamiento

¡p(qt = sj |xt) es dada por la DNN!

SIGNAL PROCESSING &
FEATURE EXTRACTION ACOUSTIC MODEL HYPOTHESIS SEARCH

LANGUAGE MODEL

Speech
Features

Acoustic
Model Score

Language
Model Score

Recognition
Result

Speech Signal
FRONT-END BACK-END

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 15 / 62



Introducción al Reconocimiento del Habla

RAH H́ıbrido DNN-HMM

Entrenando sistemas DNN-HMM (I):

Algoritmo de Viterbi embebido (S es el conjunto de entrenamiento):
1 hmm0 ← TrainCD-GMM-HMM(S);
2 stateAlignment ← ForcedAlignmentWithGMMHMM(S,hmm0);
3 stateToSenoneIDMap ← GenerateStateToSenoneIDMap(hmm0);
4 featureSenoneIDPairs ←

GenerateDNNTrainingSet(stateToSenoneIDMap,stateAlignment);
5 ptdnn ← PretrainDNN(S);
6 hmm ← ConvertGMMHMMToDNNHMM(hmm0,stateToSenoneIDMap);
7 prior ← EstimatePriorProbability(featureSenoneIDPairs);
8 dnn ← Backpropagate(ptdnn,featureSenoneIDPairs);
9 Return dnnhmm = {dnn,hmm,prior}

El algoritmo de Viterbi embebido minimiza la entroṕıa cruzada
promedio para cada segmento de voz con T tramas:

LCE(θ) = −
T∑
t=1

log p(qt |xt ; θ)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 16 / 62



Introducción al Reconocimiento del Habla

RAH H́ıbrido DNN-HMM

Entrenando sistemas DNN-HMM (II):

El criterio de entroṕıa cruzada trata cada trama de forma independiente
Sin embargo, ¡el RAH es un problema de clasificación de secuencias!
Técnicas de entrenamiento discriminativas de la secuencia:

1 Maximum mutual information (MMI)
2 Boosted maximum mutual information (BMMI)
3 Minimum phone error (MPE)
4 State minimum Bayes risk (sMBR)

Ejemplo: MMI
MMI busca maximizar la información mutua entre las distribuciones de las
secuencias de observaciones y palabras (altamente correlacionado con
minimizar el error de frase esperado)

JMMI(θ; S) =
U∑

u=1

logP (Wu |Xu ; θ) =
U∑

u=1

log
p (Xu |su ; θ)κ P(Wu)∑
W p (Xu |sw ; θ)κ P(W)

[Mohri] M. Mohri, cs.nyu.edu/~mohri/asr12/lecture_12.pdf

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 17 / 62

cs.nyu.edu/~mohri/asr12/lecture_12.pdf


Introducción al Reconocimiento del Habla

RAH H́ıbrido DNN-HMM

Entrenando sistemas DNN-HMM (II):

El criterio de entroṕıa cruzada trata cada trama de forma independiente
Sin embargo, ¡el RAH es un problema de clasificación de secuencias!
Técnicas de entrenamiento discriminativas de la secuencia:

1 Maximum mutual information (MMI)
2 Boosted maximum mutual information (BMMI)
3 Minimum phone error (MPE)
4 State minimum Bayes risk (sMBR)

Criterio de entrenamiento WER (%)

GMM-BMMI 18,6
DNN-CE 14,2
DNN-MMI 12,9
DNN-BMMI 12,9
DNN-MPE 12,9
DNN-sMBR 12,6

Tasa de error de palabras (WER, %) sobre el conjunto de datos Switchboard, [Veselỳ13] K. Veselỳ et al.,
“Sequence-discriminative training of deep neural networks”. In Proc. of Interspeech 2013

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 18 / 62



Introducción al Reconocimiento del Habla

RAH H́ıbrido DNN-HMM: Cuestiones Clave

Directamente modelar senones es clave (reducción del sobreajuste):

Modelo Monofonemas Senones

CD-GMM-HMM — 23,6
CD-DNN-HMM (7x2k) 34,9 17,1

Tasa de error de palabras (%) sobre el conjunto de datos Switchboard, [Seide11] F. Seide et al., “Conversational Speech
Transcription Using Context-Dependent Deep Neural Networks”. In Proc. of Interspeech 2011

¡A mayor profundidad, mejor!

L× N WER (%) 1× N WER (%)

1x2k 24,2 — —
3x2k 18,4 — —
5x2k 17,2 1x3.772 22,5
7x2k 17,1 1x4.634 22,6
— — 1x16k 22,1

Tasa de error de palabras (WER, %) sobre el conjunto de datos Switchboard, [Seide11]

Uso de contexto temporal:

Modelo 1 trama 11 tramas

CD-DNN-HMM (7x2k) 23,2 17,1

Tasa de error de palabras (WER, %) sobre el conjunto de datos Switchboard, [Seide11]

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 19 / 62



Introducción al Reconocimiento del Habla

RAH Robusto

Brecha de rendimiento entre humanos y máquinas debido a la discrepancia
entre las condiciones de entrenamiento y evaluación de los sistemas de RAH:

1 Variabilidades debidas al locutor: Intra-locutor (estado de ánimo,
enfermedad...) e inter-locutor (longitud del tracto vocal, timbre...)

2 Variabilidades ambientales: Ruido de fondo, reverberación...

Compensación de la variabilidad debida al locutor:

1 Normalización de la longitud del tracto vocal (VTLN)
2 Regresión lineal de máxima verosimilitud en el espacio de las

caracteŕısticas (fMLLR)

Modelo Sin compensación VTLN fMLLR

CD-GMM-HMM 23,6 21,5 20,4
CD-MLP-HMM (1x2.048) 24,2 22,5 21,5
CD-DNN-HMM (7x2.048) 17,1 16,8 16,4

Tasa de error de palabras (%) sobre el conjunto de datos Switchboard, [Seide11b] F. Seide et al., “Feature engineering
in context-dependent deep neural networks for conversational speech transcription”. In Proc. of ASRU 2011

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 20 / 62



Introducción al Reconocimiento del Habla

RAH Robusto

Compensación de la variabilidad ambiental:
Ejemplo: Modelos acústicos que se entrenan con datos de voz limpia pero se
reconoce habla ruidosa → La discrepancia causará una transcripción errónea

La distribución estad́ıstica de la enerǵıa de voz se ve afectada en presencia de ruido
de fondo (cuando h = 0):

y(m) = h(m) ∗ x(m) + n(m)→ y = x + h + log (1 + exp{n− x− h})

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 21 / 62



Introducción al Reconocimiento del Habla

RAH Robusto

Compensación de la variabilidad ambiental:

¡HAY MULTITUD DE APROXIMACIONES!

Aproximaciones del espacio de las caracteŕısticas: Caracteŕısticas robustas al ruido
(RASTA-PLP, TANDEM...), normalización de momentos estad́ısticos de las
caracteŕısticas (CMN, HEQ...) y realce de voz/caracteŕısticas (filtrado de Wiener,
realce de voz basado en red neuronal, beamforming...)

Aproximaciones basadas en modelo: Adaptación de modelos (CMLLR...) y
entrenamiento adaptativo (fNAT, SAT...)

Compensación con modelado expĺıcito de la distorsión: Adaptación de modelos o
compensación de caracteŕısticas (VTS...)

Aproximaciones de datos perdidos: Ignorar elementos no fiables durante el
reconocimiento (marginalización, SFD...) e imputación de datos (TGI...)

...

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 22 / 62



Introducción al Reconocimiento del Habla

RAH Robusto

Compensación de la variabilidad ambiental:

Entrenamiento multicondición: Entrenar el modelo acústico con
datos distorsionados de voz procedentes de diferentes condiciones
acústicas (¡muy efectivo si podemos cubrir las condiciones acústicas de
evaluación!)

Noise-aware training (NAT):

[Abe15] A. Abe et al., “Robust Speech Recognition
using DNN-HMM Acoustic Model Combining Noise-
aware Training with Spectral Subtraction”. In Proc.
of Interspeech 2015

Sistema DNN-HMM (7x2.048) WER (%)

Entrenamiento multicondición (MC) 13.4
MC+Realce de caracteŕısticas 13.8
MC+NAT 13.1
MC+Dropout 12.9
MC+NAT+Dropout 12.4

Tasa de error de palabras (WER, %) sobre el conjunto
de datos Aurora-4, [Seltzer13] M. Seltzer et al., “An
Investigation of Deep Neural Networks for Noise
Robust Speech Recognition”. In Proc. of ICASSP
2013

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 23 / 62



Introducción al Reconocimiento del Habla

RAH de Extremo a Extremo

RAH de extremo a extremo: Se entrena un modelo de aprendizaje profundo para,
directamente, mapear una secuencia de entrada de caracteŕısticas de voz a una secuencia
de caracteres/tokens

Los sistemas de RAH de extremo a extremo son más “simples”/limpios: No hay necesidad
de modelos acústicos y de lenguaje espećıficos con diccionarios de pronunciación

Reto CHiME-6: RAH conversacional usando micrófonos distantes en entornos domésticos
cotidianos (https://chimechallenge.github.io/chime6/overview.html)

En CHiME-6, los sistemas de RAH h́ıbridos DNN-HMM aún superaban a las
aproximaciones de RAH de extremo a extremo (¡en 2020!)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 24 / 62

https://chimechallenge.github.io/chime6/overview.html


Introducción al Reconocimiento del Habla

RAH de Extremo a Extremo: Conceptos Básicos

Redes neuronales recurrentes (RNNs)
RNNs estándar (idea general):
ht = σ (Wihxt +Whhht−1 + bh)
yt = Whoht + bo

RNNs bidireccionales:−→
h t = σ

(
W

i
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h

) ←−
h t = σ

(
W

i
←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h

)
yt = W−→

h o

−→
h t +W←−

h o

←−
h t + bo

Long short-term memory (LSTM), LSTM bidireccional (BiLSTM), unidades recurrentes
cerradas (GRUs)

[Graves14] A. Graves and N. Jaitly, “Towards End-to-End Speech Recognition with Recurrent Neural Networks”. In Proc. of
ICML 2014

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 25 / 62



Introducción al Reconocimiento del Habla

RAH de Extremo a Extremo: CTC

[Hannun] A. Hannun, https://distill.

pub/2017/ctc/

Sea C = (c1, ..., cm) la secuencia de
caracteres/tokens correspondiente a
X = (x1, ..., xT )

Desconocemos un alineamiento preciso entre
C y X, y, además, m < T

Clasificación temporal conexionista (CTC) es
un algoritmo que no requiere alineamiento

CTC define el token vaćıo (ϵ)

Objetivo de CTC: Maximizar
P(C|X) =

∑
A∈AX,C

∏T
t=1 Pt(c|X) (p. ej.,

c = {h,e,l,o,ϵ})

Decodificación como de costumbre,
Ĉ = argmaxC P(C|X)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 26 / 62

https://distill.pub/2017/ctc/
https://distill.pub/2017/ctc/


Introducción al Reconocimiento del Habla

RAH de Extremo a Extremo: Codificador-Decodificador

Arquitectura codificador-decodificador

El codificador es normalmente una BiLSTM, mientras que el decodificador,
una LSTM:
ht = Encoder (xt ,ht−1)
si = Decoder (si−1, yi−1)

I. López-Espejo et al.: Deep Spoken KWS: An Overview

3) Residual connections [126] to fast and effectively train
deeper models providing enhanced KWS performance.

C. RECURRENT AND TIME-DELAY NEURAL
NETWORKS
Speech is a temporal sequence with strong time depen-
dencies. Therefore, the utilization of RNNs for acoustic
modeling —and also time-delay neural networks (TDNNs),
which are shaped by a set of layers performing on different
time scales— naturally arises. For example, LSTM neural
networks [137], which overcome the exploding and van-
ishing gradient problems suffered by standard RNNs, are
used for KWS acoustic modeling in, e.g., [4], [29], [76],
[78], [84], clearly outperforming FFNNs [29]. When latency
is not a strong constraint, bidirectional LSTMs (BiLSTMs)
can be used instead to capture both causal and anticausal
dependencies for improved KWS performance [76], [138].
Alternatively, bidirectional GRUs are explored in [32] for
KWS acoustic modeling. When there is no need to model
very long time dependencies, as it is the case in KWS, GRUs
might be preferred over LSTMs since the former demand less
memory and are faster to train while performing similarly or
even better [93].

Besides, [58] studies a two-stage TDNN consisting of
an LVCSR acoustic model followed by a keyword classi-
fier. The authors of [58] also investigate the integration of
frame skipping and caching to decrease computation, thereby
outperforming classical CNN acoustic modeling [28] while
halving the number of multiplications.

As we already suggested in Subsection IV-B, CNNs might
have difficulties to model long time dependencies. To over-
come this point, they can be combined with RNNs to build
the so-called CRNNs. Thus, it may be stated that CRNNs
bring the best of two worlds: first, convolutional layers
model local spectro-temporal correlations of speech and,
then, recurrent layers follow suit by modeling long-term time
dependencies in the speech signal. Some works explore the
use of CRNNs for acoustic modeling in deep spoken KWS
using either unidirectional or bidirectional LSTMs or GRUs
[32], [48], [76], [93], [109], [118]. Generally, the use of
CRNNs allows us for outperforming standalone CNNs and
RNNs [48].

1) Connectionist Temporal Classification
As for the majority of acoustic models, the above-reviewed
RNN acoustic models are typically trained to produce frame-
level posterior probabilities. At training time, in case of em-
ploying, e.g., cross-entropy loss, frame-level annotated data
are required, which may be cumbersome to get. In the context
of RNN acoustic modeling, connectionist temporal classifi-
cation (CTC) [63] is an attractive alternative letting the model
unsupervisedly locate and align the phonetic unit labels at
training time [4]. In other words, frame-level alignments of
the target label sequences are not required for training.

Mathematically speaking, let C = (c0, ..., cm−1) be the
sequence of phonetic units or, e.g., characters corresponding

RNN RNN RNN

RNN RNN RNN

E
nc

od
er

D
ecoder

x0 x1 xT-1

hT-1

. . .

. . .

. . .

y{0} y{1} y{T-1}

. . . . . .
y{T-2}

SoftmaxSoftmax Softmax

<sos>

y{0}

FIGURE 7. Example of sequence-to-sequence (Seq2Seq) model. Here,
“<sos>” stands for “start of sequence”. See the text for further details.

to the sequence of feature vectors X = (x0, ...,xT−1), where
m < T and the accurate alignment between C and X is
unknown. CTC is an alignment-free algorithm whose goal
is to maximize [63]

P (C|X) =
∑

A∈AX,C

T−1∏
t=0

Pt (c|x0, ...,xt) , (5)

where c is the whole set of recognizable phonetic units
or characters plus a blank symbol (modeling confusion in-
formation of the speech signal [4]), and the summation is
performed over the set of all valid alignments AX,C . From
Eq. (5), the acoustic model outputs can be understood as the
probability distribution over all the possible label sequences
given the sequence of input features X [46].

The very first attempt to apply CTC to KWS was carried
out by Fernández et al. [46] using a BiLSTM for acoustic
modeling. At training time, this system just needs, along with
the training speech signals, the list of training words in order
of occurrence. After this first attempt, several works have
explored variants of this approach using different RNN ar-
chitectures like LSTMs [4], [60], [61], [139], BiLSTMs [84],
[98] and GRUs [61], [140], as well as considering different
phonetic units such as phonemes [60], [84] and Mandarin
syllables [8], [139]. In general, these systems are shown to
be superior to both LVCSR- and keyword/filler HMM-based
KWS systems with less or no additional computational cost
[4], [8], [139]. Notice that since CTC requires searching
for the keyword phonetic unit sequence on a lattice, this
approach is also suitable for open-vocabulary KWS.

2) Sequence-to-Sequence Models
CTC assumes conditional label independence, i.e., past
model outputs do not influence current predictions (see Eq.
(5)). Hence, in the context of KWS and ASR in general, CTC
may need an external language model to perform well. There-
fore, a more convenient approach for KWS acoustic mod-
eling might be the use of sequence-to-sequence (Seq2Seq)
models, first proposed in [141] for language translation.
Figure 7 illustrates an example of Seq2Seq model. In short,
Seq2Seq models are comprised of an RNN encoder7 sum-

7In [9], Shan et al. show, for KWS, the superiority of CRNN encoders
with respect to GRU ones, which, in turn, are better than LSTM encoders.

8 VOLUME 4, 2016

[Espejo21] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE Access, 2021

Problema potencial: El codificador necesita condensar toda la información
requerida (independientemente de la longitud de la secuencia de entrada) en
un vector de dimensión fija

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 27 / 62



Introducción al Reconocimiento del Habla

RAH de Extremo a Extremo: Atención

Podemos prestar atención a un subconjunto de {h1, ...,hT} relevante al
contexto en lugar de a hT para “ayudar” al decodificador:
si = Decoder (si−1, yi−1,Ci )

[Nadig] S. Nadig, https:
//medium.com/intel-student-ambassadors/attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21

Ci =
∑T

t=1 αitht αit = softmax (AttentionFunction (si−1,ht))

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 28 / 62

https://medium.com/intel-student-ambassadors/attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21
https://medium.com/intel-student-ambassadors/attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21


Introducción al Reconocimiento del Habla

RAH de Extremo a Extremo: Cod.-Dec. con Atención

[Chan16] W. Chan et al., “Lis-
ten, Attend and Spell: A Neu-
ral Network for Large Vocabulary
Conversational Speech Recogni-
tion”. In Proc. of ICASSP 2016

Problema con CTC: Independencia de las etiquetas condicionales
durante la decodificación → CTC requiere de un modelo de
lenguaje externo para funcionar bien

RAH codificador-decodificador basado en atención: El
alineamiento entre C y X se aprende usando atención
P(C|X) =

∏m
i=1 P(ci |X, c1, ..., ci−1)

El RAH codificador-decodificador basado en atención es menos
robusto al ruido que el RAH basado en CTC → El RAH basado
en CTC y atención es efectivo para mejorar el reconocimiento:

[Nadig] S. Nadig, https://medium.com/intel-student-ambassadors/
attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 29 / 62

https://medium.com/intel-student-ambassadors/attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21
https://medium.com/intel-student-ambassadors/attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21


Introducción al Reconocimiento del Habla

Whisper

Robust Speech Recognition via Large-Scale Weak Supervision 4

⋯

⋯

2 × Conv1D + GELU

⋮

cr
os

s 
at

te
nt

io
n

Log-Mel Spectrogram

~
SOT EN TRANS-


CRIBE 0.0 The quick

Tokens in Multitask Training Format

Transformer

Encoder Blocks
 Transformer


Decoder Blocks


EN 0.0 The quick brown

⋮ ⋮

next-token

prediction

Sinusoidal

Positional

Encoding

Learned

Positional

Encoding

Multitask training data (680k hours) Sequence-to-sequence learning

Multitask training format

English transcription

Any-to-English speech translation

Non-English transcription

No speech

🗣️  “Ask not what your country can do for ⋯”


📝  Ask not what your country can do for ⋯

🗣️  “El rápido zorro marrón salta sobre ⋯”


📝  The quick brown fox jumps over ⋯

🗣️ “언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯”


📝  언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯

🔊 (background music playing)


📝  ∅

PREV

special
tokens

text

tokens

timestamp
tokens

START OF

TRANSCRIPT

LANGUAGE

TAG

NO

SPEECH

EOT

TRANSCRIBE

TRANSLATE

begin

time

NO

TIMESTAMPS

⋯end

timetext tokens begin


time
end

timetext tokens

text tokens

Voice activity

detection


(VAD)

Custom vocabulary /
prompting

Time-aligned transcription

Text-only transcription

(allows dataset-specific fine-tuning)

X → English

Translation 

previous

text tokens

X → X

Transcription 

Language

identification

MLP

self attention

MLP

self attention

MLP

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

TRANS-

CRIBE

Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.

[Radford23] A. Radford et al., “Robust Speech Recognition via Large-Scale Weak Supervision”. In Proc. of ICML 2023

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 30 / 62



Introducción al Reconocimiento del Habla

Detección de Palabras Clave

"Left"

"Right"

"Left"

Other speech

Silence/noise

:

:

:

:

0.1

0.1

0.8

0.0

KWS
+

ASR
KWS

Client
Server

HEY
ASSISTANT!

Wake-up word
+ Query

[Espejo21] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”.
IEEE Access, 2021

El control por voz se
implementa t́ıpicamente
mediante tecnoloǵıa de
detección de palabras
clave (KWS)

KWS se puede definir
como la tarea de
identificar palabras clave
en flujos de audio que
contienen voz
(subproblema del RAH)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 31 / 62



Introducción al Reconocimiento del Habla

Google Speech Commands Dataset

Google Speech Commands Dataset[Warden18], disponible públicamente, se
convirtió en el punto de referencia abierto de facto para el desarrollo y la
evaluación de KWS
- Frecuencia de muestreo de 16 kHz
- Grabada mediante micrófonos de ordenadores portátiles y teléfonos
- Ruidosa hasta cierto punto

Segmentos de voz de un segundo de
duración que contienen una palabra

cada uno

Versión Locutores Palabras Segmentos
v1 1.881 30 64.727
v2 2.618 35 105.829

[Warden18] P. Warden, “Speech Commands: A dataset for limited-vocabulary speech recognition”. arXiv:1804.03209v1, 2018

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 32 / 62



Introducción al Reconocimiento del Habla

Google Speech Commands Dataset

I. López-Espejo et al.: Deep Spoken KWS: An Overview

TABLE 1. A selection of the most significant speech datasets employed for training and validating deep KWS systems. “P.A.” stands for “publicly available”, while
“Y” and “N” mean “yes” and “no”, respectively. Furthermore, “+ sampl.” (“- sampl.”) refers to the size of the positive/keyword (negative/non-keyword) subset, and “Size”
denotes the magnitude of the whole set. Such sizes are given, depending on the available information, in terms of either the number of samples or time length in
hours (h). Unknown information is indicated by hyphens.

Ref. Name Developer P.A.? Language Noisy? No. of KW Training set Test set
Size + sampl. - sampl. Size + sampl. - sampl.

[193] - Alibaba N Mandarin Y 1 24k h - - - 12k 600 h
[93] - Baidu N English Y 1 12k - - 2k - -

[42] -
Chinese
Academy
of Sciences

N Mandarin Y 2 47.8k 8.8k 39k - 1.7k -

[58] - Fluent.ai N English Y 1 50 h 5.9k - 22 h 1.6k -
[22] - Google N English Y 10 >3k h 60.7k 133k 81.2k 11.2k 70k
[28] - Google N English Y 14 326.8k 10k 316.8k 61.3k 1.9k 59.4k

[61] -
Harbin
Institute
of Technology

N Mandarin - 1 115.2k 19.2k 96k 28.8k 4.8k 24k

[103] - Logitech N English - 14 - - - - - -
[26] - Mobvoi N Mandarin Y 1 67 h 20k 54k 7 h 2k 5.9k
[169] - Sonos Y English Y 16 0 0 0 1.1k 1.1k 0
[96] - Tencent N Mandarin Y 1 339 h 224k 100k - - -
[45] - Tencent N Mandarin Y 1 65.9 h 6.9 h 59 h 8.7 h 0.9 h 7.8 h
[56] - Tencent N Mandarin Y 42 22.2k 15.4k 6.8k 10.8k 7.4k 3.4k
[9] - Xiaomi N Mandarin - 1 1.7k h 188.9k 1M 52.2 h 28.8k 32.8k

[194] AISHELL-2 (13) AISHELL Y Mandarin N 13 24.8 h >24k - 16.7 h >8.4k -
[194] AISHELL-2 (20) AISHELL Y Mandarin N 20 35 h >34k - 23.9 h >12k -
[108] “Alexa” Amazon N English Y 1 495 h - - 100 h - -

[153] Google Speech
Commands Dataset v1 Google Y English Y 10 51.7k 18.9k 32.8k 6.5k 2.4k 4.1k

[154] Google Speech
Commands Dataset v2 Google Y English Y 10 84.6k 30.8k 53.8k 10.6k 3.9k 6.7k

[59] “Hey Siri” Apple N English Y 1 500k 250k 250k - 6.5k 2.7k h

[195] Hey Snapdragon
Keyword Dataset Qualcomm Y English N 4 - - - 4.3k 4.3k -

[78] Hey Snips Snips Y English Y 1 50.5 h 5.9k 45.3k 23.1 h 2.6k 20.8k
[152] “Narc Ya” Netmarble N Korean Y 1 130k 50k 80k 800 400 400
[31] “Ok/Hey Google” Google N English Y 2 - 1M - >3k h 434k 213k
[122] “Ok/Hey Google” Google N English Y 2 - - - 247 h 4.8k 7.5k
[17] Ticmini2 Mobvoi N Mandarin Y 2 157.5k 43.6k 113.9k 72.9k 21.3k 51.6k

tion for voice assistants.
Finally, the right part of Table 1 tells some informa-

tion about the sizes of the training and test sets14 of the
different corpora in terms of either the number of sam-
ples (i.e., words, normally) or time length in hours (h) —
depending on the available information—. Specifically, “+
sampl.” (“- sampl.”) refers to the size of the positive/keyword
(negative/non-keyword) subset, and “Size” denotes the mag-
nitude of the whole set. Unknown information is indicated by
hyphens. From this table, we note that, as a trend, publicly
available datasets tend to be smaller than in-house ones.
Furthermore, while the ratio between the sizes of the training
and test sets is greater than 1 in all the reported cases except
[169], ratio values tend to differ from one corpus to another.
Also, mainly, the ratio between the sizes of the correspond-
ing negative/non-keyword and positive/keyword subsets is
greater than 1, that is, - sampl.

+ sampl. > 1. This is purposely done

14Many of these corpora also include a development set. However, this
part has been omitted for the sake of clarity.

TABLE 2. List of the words included in the Google Speech Commands
Dataset v1 (first six rows) and v2 (all the rows). Words are broken down by the
standardized 10 keywords (first two rows) and non-keywords (last five rows).

V
er

si
on

1
(v

1)

V
er

si
on

2
(v

2)

yes no up down left

K
W

right on off stop go
zero one two three four

N
on

-K
Wfive six seven eight nine

bed bird cat dog happy
house Marvin Sheila tree wow

backward forward follow learn visual

to accurately reflect potential scenarios of use consisting of
always-on KWS applications like wake-up word detection,
in which KWS systems, most of the time, will be exposed to
other types of words instead of keywords.

A. GOOGLE SPEECH COMMANDS DATASET
The publicly available Google Speech Commands Dataset
[153], [154] has become the de facto open benchmark for

VOLUME 4, 2016 17

Este punto de referencia también estandariza...

...los conjuntos de entrenamiento, desarrollo y evaluación

...un procedimiento de aumento de datos de entrenamiento que involucra
ruidos de fondo

...

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 33 / 62



Introducción al Reconocimiento del Habla

Métricas de Evaluación: Precisión

Precisión: Cociente entre el número de predicciones correctas y el total de
predicciones

Precisión ≡ TP + TN

TP + TN + FP + FN
∈ [0, 1]

La precisión suele ser una métrica de evaluación inapropiada, pues puede
conducir a conclusiones eqúıvocas

I. López-Espejo et al.: Deep Spoken KWS: An Overview

(deep) KWS development and evaluation. This crowdsourced
database was captured at a sampling rate of 16 kHz by means
of phone and laptop microphones, being, to some extent,
noisy. Its first version, v1 [153], was released in August 2017
under a Creative Commons BY 4.0 license [211]. Recorded
by 1,881 speakers, this first version consists of 64,727 one-
second (or less) long speech segments covering one word
each out of 30 possible different words. The main difference
between the first version and the second version —which was
made publicly available in 2018— is that the latter incorpo-
rates 5 more words (i.e., a total of 35 words), more speech
segments, 105,829, and more speakers, 2,618. Table 2 lists
the words included in the Google Speech Commands Dataset
v1 (first six rows) and v2 (all the rows). In this table, words
are broken down by the standardized 10 keywords (first two
rows) and non-keywords (last five rows). To facilitate KWS
technology reproducibility and comparison, this benchmark
also standardizes the training, development and test sets, as
well as other crucial aspects of the experimental framework,
including a training data augmentation procedure involving
background noises (see, e.g., [30] for further details). Mul-
tiple recent deep KWS works have employed either the first
version [16], [30], [32], [43], [48]–[52], [57], [58], [67], [69],
[70], [86], [90], [100], [125] or the second version [32], [47],
[48], [53], [70], [82], [89], [90], [99], [100], [109], [128]–
[130], [159], [175] of the Google Speech Commands Dataset.

Despite how valuable this open reference is for KWS
research and development, we can raise two relevant points
of criticism:

1) Class balancing: The different keyword and non-
keyword classes are rather balanced (i.e., they ap-
pear with comparable frequencies) in this benchmark,
which, as we know, is generally not realistic. See Sub-
section IX-A for further comments on this question.

2) Non-streaming mode: Most of the above-referred
works using the Google Speech Commands Dataset
performs, due to the nature of this corpus, KWS eval-
uations in non-streaming mode, namely, multi-class
classification of independent short input segments. In
this mode, a full keyword or non-keyword is surely
present within every segment. However, real-life KWS
involves the continuous processing of an input audio
stream.

A few deep KWS research works [43], [58], [129], [130]
have proposed to overcome the above two limitations by
generating more realistic streaming versions of the Google
Speech Commands Dataset by concatenation of one-second
long utterances in such a manner that the resulting word class
distribution is unbalanced. Even though the author of the
Google Speech Commands Dataset reports some streaming
evaluations in the database description manuscript [154],
still, we think that this point should be standardized for the
sake of reproducibility and comparison, thereby enhancing
the usefulness of this valuable corpus.

Lastly, we wish to draw attention to the fact that we pro-

NK NK NK KW NK NKKWNK NKNK

NK NK NK NK NK NK NK NK NK NK

NK NK KW NK NK KW NK NK NK NKGround truth

SYS1

SYS2

FIGURE 11. Example of two different KWS systems SYS1 and SYS2
recognizing a sequence of keywords (KW) and non-keywords (NK). The
ground truth sequence is also shown on top.

duced three outcomes revolving around the Google Speech
Commands Dataset v2: 1) a variant of it emulating hearing
aids as a capturing device (employed, as mentioned in Sub-
section VII-C, for KWS for hearing assistive devices robust
to external speakers) [128], [129], 2) another noisier variant
with a diversity of noisy conditions15 (i.e., types of noise
and SNR levels) [130], and 3) manually-annotated speaker
gender labels16.

IX. EVALUATION METRICS
Obviously, the gold plate test of any speech communication
system is a test with relevant end-users. However, such tests
tend to be costly and time-consuming. Instead (or in addition
to subjective tests), one adheres to objective performance
metrics for estimating system performance. It is important to
choose a meaningful objective evaluation metric that allows
us to determine the goodness of a system and is highly
correlated to the subjective user experience. In what follows,
we review and provide some criticism of the most common
metrics considered in the field of KWS. These metrics are
rather intended for binary classification —e.g., keyword/non-
keyword— tasks. In the event of having multiple keywords, a
common approach consists of applying the metric computa-
tion for every keyword and, then, the result is averaged, e.g.,
see [30], [129], [130].

A. ACCURACY
Accuracy can be defined as the ratio between the number
of correct predictions/classifications and the total number
of them [212]. In the context of binary classification (e.g.,
keyword/non-keyword), accuracy can also be expressed from
the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) as follows [213]:

Accuracy =
TP + TN

TP + TN + FP + FN
. (14)

Accuracy ∈ [0, 1], where 0 and 1 indicate, respectively,
worst and perfect classification.

It is reasonable to expect that, in real-life applications like
wake-up word detection, KWS systems will hear other word
types rather than keywords most of the time. In other words,
KWS is a task in which, in principle, the keyword and non-
keyword classes are quite unbalanced. Under these circum-

15Tools to create this noisy dataset can be freely downloaded from http:
//ilopez.es.mialias.net/misc/NoisyGSCD.zip

16These labels are publicly available at https://ilopezes.files.wordpress.
com/2019/10/gscd_spk_gender.zip

18 VOLUME 4, 2016

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 34 / 62



Introducción al Reconocimiento del Habla

Detección de Palabras Clave (II)

Rendimiento sobre Google Speech Commands Dataset:

El modelado acústico del estado del arte está
basado en redes neuronales convolucionales (CNNs)

Para alcanzar un alto

rendimiento con una pequeña

huella computacional, un

modelo acústico basado en

CNN debeŕıa considerar...
1 Un mecanismo para explotar

dependencias de T-F a largo plazo
(p. ej., convoluciones dilatadas)

2 Convoluciones separables en
profundidad

3 Conexiones residuales

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 35 / 62



Implementación de un Sistema de Control por Voz

Tabla de Contenidos

1 Introducción al Reconocimiento del Habla

2 Implementación de un Sistema de Control por Voz

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 36 / 62



Implementación de un Sistema de Control por Voz

Redes Neuronales Convolucionales: Introducción

Del perceptrón multicapa a las redes neuronales convolucionales −→ Un
paso natural dado en 2015 para KWS[Sainath15]

- Explotación de correlaciones locales de tiempo-frecuencia, menos parámetros

words in the keyword phrase to be detected, plus a single ad-
ditional output target which represents all frames that do not
belong to any of the words in the keyword (denoted as ‘filler’
in Figure 1). The network weights are trained to optimize a
cross-entropy criterion using distributed asynchronous gradient
descent [10]. Finally, in the posterior handling module, individ-
ual frame-level posterior scores from the DNN are combined
into a single score corresponding to the keyword. We refer the
reader to [2] for more details about the three modules.

Figure 1: Framework of Deep KWS system, components from
left to right: (i) Feature Extraction (ii) Deep Neural Network
(iii) Posterior Handling

3. CNN Architectures
In this section, we describe CNN architectures as an alternative
to the DNN described in Section 2. The feature extraction and
posterior handling stages remain the same as Section 2.

3.1. CNN Description

A typical CNN architecture is shown in Figure 2. First, we are
given an input signal V ∈ <t×f , where t and f are the input
feature dimension in time and frequency respectively. A weight
matrix W ∈ <(m×r)×n is convolved with the full input V . The
weight matrix spans across a small local time-frequency patch
of size m×r, where m <= t and r <= f . This weight sharing
helps to model local correlations in the input signal. The weight
matrix has n hidden units (i.e., feature maps). The filter can
stride by a non-zero amount s in time and v in frequency. Thus,
overall the convolutional operation produces n feature maps of
size (t−m+1)

s
× (f−r+1)

v
.

After performing convolution, a max-pooling layer helps to
remove variability in the time-frequency space that exists due
to speaking styles, channel distortions, etc. Given a pooling
size of p × q, pooling performs a sub-sampling operation to
reduce the time-frequency space. For the purposes of this paper,
we consider non-overlapping pooling as it has not shown to be
helpful for speech [8]. After pooling, the time-frequency space
has dimension (t−m+1)

s·p × (f−r+1)
v·q .

W
n ⇥ m ⇥ r

m ⇥ r
convolutions

t ⇥ f
input layer

n feature maps
t � m + 1

s
⇥ f � r + 1

v

n feature maps
t � m + 1

s · p
⇥ f � r + 1

v · q

p ⇥ q
subsampling

Figure 2: Diagram showing a typical convolutional network ar-
chitecture consisting of a convolutional and max-pooling layer.

3.2. Typical Convolutional Architecture

An typical convolutional architecture that has been heavily
tested and shown to work well on many LVCSR tasks [6, 11]

is to use two convolutional layers. Assuming that the log-mel
input into the CNN is t × f = 32 × 40, then typically the first
layer has a filter size in frequency of r = 9. The architecture is
less sensitive to the filter size in time, though a common practice
is to choose a filter size in time which spans 2/3 of the overall
input size in time, i.e. m = 20. Convolutional multiplication
is performed by striding the filter by s = 1 and v = 1 across
both time and frequency. Next, non-overlapping max-pooling
in frequency only is performed, with a pooling region of q = 3.
The second convolutional filter has a filter size of r = 4 in fre-
quency, and no max-pooling is performed.

For example, in our task if we want to keep the number
of parameters below 250K, a typical architecture CNN archi-
tecture is shown in Table 1. We will refer to this architecture
as cnn-trad-fpool3 in this paper. The architecture has 2
convolutional, one linear low-rank and one DNN layer. In Sec-
tion 5, we will show the benefit of this architecture for KWS,
particularly the pooling in frequency, compared to a DNN.

However, a main issue with this architecture is the huge
number of multiplies in the convolutional layers, which get ex-
acerbated in the second layer because of the 3-dimensional in-
put, spanning across time, frequency and feature maps. This
type of architecture is infeasible for power-constrained small-
footprint KWS tasks where multiplies are limited. Furthermore,
even if our application is limited by parameters and not mul-
tiplies, other architectures which pool in time might be better
suited for KWS. Below we present alternative CNN architec-
tures to address the tasks of limiting parameters or multiplies.

type m r n p q Par. Mul.
conv 20 8 64 1 3 10.2K 4.4M
conv 10 4 64 1 1 164.8K 5.2M
lin - - 32 - - 65.5K 65.5K
dnn - - 128 - - 4.1K 4.1K

softmax - - 4 - - 0.5K 0.5K
Total - - - - - 244.2K 9.7M

Table 1: CNN Architecture for cnn-trad-fpool3

3.3. Limiting Multiplies

Our first problem is to find a suitable CNN architecture where
we limit the number of multiplies to 500K. After experiment-
ing with several architectures, one solution to limit the num-
ber of multiplies is to have one convolutional layer rather than
two, and also have the time filter span all of time. The output
of this convolutional layer is then passed to a linear low-rank
layer and then 2 DNN layers. Table 2, show a CNN architec-
ture with only one convolutional layer, which we refer to as
cnn-one-fpool3. For simplicity, we have omitted s = 1
and v = 1 from the Table. Notice by using one convolutional
layer, the number of multiplies after the first convolutional layer
is cut by a factor of 10, compared to cnn-trad-fpool3.

type m r n p q Params Mult
conv 32 8 54 1 3 13.8K 456.2K
linear - - 32 - - 19.8K 19.8K
dnn - - 128 - - 4.1K 4.1K
dnn - - 128 - - 16.4K 16.4K

softmax - - 4 - - 0.5K 0.5K
Total - - 4 - - 53.8K 495.6K

Table 2: CNN Architecture for cnn-one-fpool3

[Sainath15] T. N. Sainath and C. Parada, “Convolutional neural networks for small-footprint keyword spotting”. In Proc. of
Interspeech 2015

El número de multiplicaciones del modelo se puede limitar fácilmente para
cumplir con las restricciones computacionales:
- Stride del filtro, tamaño del kernel, tamaño del pooling...

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 37 / 62



Implementación de un Sistema de Control por Voz

Redes Neuronales Convolucionales: Introducción

Apropiadas para procesar datos con una topoloǵıa reticular

Datos de series temporales como la forma de onda de la voz (1D)
Imágenes (2D o 3D)
...

s(t) = (x ∗ w)(t) =

∫
x(a)w(t − a)da

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t − a)

S(i , j) = (I ∗ K )(i , j) =
∑

m

∑
n I (m, n)K (i −m, j − n)

=
∑

m

∑
n I (i −m, j − n)K (m, n)

(convolución 2D)

S(i , j) = (I ∗ K )(i , j) =
∑

m

∑
n I (i +m, j + n)K (m, n) (correlación cruzada 2D)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 38 / 62



Implementación de un Sistema de Control por Voz

Redes Neuronales Convolucionales: Convolución 2D

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 39 / 62



Implementación de un Sistema de Control por Voz

Redes Neuronales Convolucionales: Arquitectura General

words in the keyword phrase to be detected, plus a single ad-
ditional output target which represents all frames that do not
belong to any of the words in the keyword (denoted as ‘filler’
in Figure 1). The network weights are trained to optimize a
cross-entropy criterion using distributed asynchronous gradient
descent [10]. Finally, in the posterior handling module, individ-
ual frame-level posterior scores from the DNN are combined
into a single score corresponding to the keyword. We refer the
reader to [2] for more details about the three modules.

Figure 1: Framework of Deep KWS system, components from
left to right: (i) Feature Extraction (ii) Deep Neural Network
(iii) Posterior Handling

3. CNN Architectures
In this section, we describe CNN architectures as an alternative
to the DNN described in Section 2. The feature extraction and
posterior handling stages remain the same as Section 2.

3.1. CNN Description

A typical CNN architecture is shown in Figure 2. First, we are
given an input signal V ∈ <t×f , where t and f are the input
feature dimension in time and frequency respectively. A weight
matrix W ∈ <(m×r)×n is convolved with the full input V . The
weight matrix spans across a small local time-frequency patch
of size m×r, where m <= t and r <= f . This weight sharing
helps to model local correlations in the input signal. The weight
matrix has n hidden units (i.e., feature maps). The filter can
stride by a non-zero amount s in time and v in frequency. Thus,
overall the convolutional operation produces n feature maps of
size (t−m+1)

s
× (f−r+1)

v
.

After performing convolution, a max-pooling layer helps to
remove variability in the time-frequency space that exists due
to speaking styles, channel distortions, etc. Given a pooling
size of p × q, pooling performs a sub-sampling operation to
reduce the time-frequency space. For the purposes of this paper,
we consider non-overlapping pooling as it has not shown to be
helpful for speech [8]. After pooling, the time-frequency space
has dimension (t−m+1)

s·p × (f−r+1)
v·q .

W
n ⇥ m ⇥ r

m ⇥ r
convolutions

t ⇥ f
input layer

n feature maps
t � m + 1

s
⇥ f � r + 1

v

n feature maps
t � m + 1

s · p
⇥ f � r + 1

v · q

p ⇥ q
subsampling

Figure 2: Diagram showing a typical convolutional network ar-
chitecture consisting of a convolutional and max-pooling layer.

3.2. Typical Convolutional Architecture

An typical convolutional architecture that has been heavily
tested and shown to work well on many LVCSR tasks [6, 11]

is to use two convolutional layers. Assuming that the log-mel
input into the CNN is t × f = 32 × 40, then typically the first
layer has a filter size in frequency of r = 9. The architecture is
less sensitive to the filter size in time, though a common practice
is to choose a filter size in time which spans 2/3 of the overall
input size in time, i.e. m = 20. Convolutional multiplication
is performed by striding the filter by s = 1 and v = 1 across
both time and frequency. Next, non-overlapping max-pooling
in frequency only is performed, with a pooling region of q = 3.
The second convolutional filter has a filter size of r = 4 in fre-
quency, and no max-pooling is performed.

For example, in our task if we want to keep the number
of parameters below 250K, a typical architecture CNN archi-
tecture is shown in Table 1. We will refer to this architecture
as cnn-trad-fpool3 in this paper. The architecture has 2
convolutional, one linear low-rank and one DNN layer. In Sec-
tion 5, we will show the benefit of this architecture for KWS,
particularly the pooling in frequency, compared to a DNN.

However, a main issue with this architecture is the huge
number of multiplies in the convolutional layers, which get ex-
acerbated in the second layer because of the 3-dimensional in-
put, spanning across time, frequency and feature maps. This
type of architecture is infeasible for power-constrained small-
footprint KWS tasks where multiplies are limited. Furthermore,
even if our application is limited by parameters and not mul-
tiplies, other architectures which pool in time might be better
suited for KWS. Below we present alternative CNN architec-
tures to address the tasks of limiting parameters or multiplies.

type m r n p q Par. Mul.
conv 20 8 64 1 3 10.2K 4.4M
conv 10 4 64 1 1 164.8K 5.2M
lin - - 32 - - 65.5K 65.5K
dnn - - 128 - - 4.1K 4.1K

softmax - - 4 - - 0.5K 0.5K
Total - - - - - 244.2K 9.7M

Table 1: CNN Architecture for cnn-trad-fpool3

3.3. Limiting Multiplies

Our first problem is to find a suitable CNN architecture where
we limit the number of multiplies to 500K. After experiment-
ing with several architectures, one solution to limit the num-
ber of multiplies is to have one convolutional layer rather than
two, and also have the time filter span all of time. The output
of this convolutional layer is then passed to a linear low-rank
layer and then 2 DNN layers. Table 2, show a CNN architec-
ture with only one convolutional layer, which we refer to as
cnn-one-fpool3. For simplicity, we have omitted s = 1
and v = 1 from the Table. Notice by using one convolutional
layer, the number of multiplies after the first convolutional layer
is cut by a factor of 10, compared to cnn-trad-fpool3.

type m r n p q Params Mult
conv 32 8 54 1 3 13.8K 456.2K
linear - - 32 - - 19.8K 19.8K
dnn - - 128 - - 4.1K 4.1K
dnn - - 128 - - 16.4K 16.4K

softmax - - 4 - - 0.5K 0.5K
Total - - 4 - - 53.8K 495.6K

Table 2: CNN Architecture for cnn-one-fpool3

El pooling genera invarianza a la traslación local

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 40 / 62



Implementación de un Sistema de Control por Voz

Redes Neuronales Convolucionales: Ejemplo de Operación

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 41 / 62



Implementación de un Sistema de Control por Voz

Reconocedor Simple de Voz

PyTorch para el desarrollo de modelos de aprendizaje máquina y redes
neuronales

Construiremos un reconocedor simple de palabras basado en red neuronal
convolucional:

ReLUReLUReLU

C
O
N
VO

LU
TI
O
N
A
L

FU
LL
Y-
C
O
N
N
EC

TE
D

FU
LL
Y-
C
O
N
N
EC

TE
D

O
U
TP
U
T

INPUT
M
A
X-

PO
O
LI
N
G

ReLU

C
O
N
VO

LU
TI
O
N
A
L

M
A
X-

PO
O
LI
N
G

Primera y segunda capas convolucionales usan 32 y 16 mapas de caracteŕısticas,
respectivamente

Capas convolucionales: Kernel de 5×5, stride de 1×1 y no se emplea relleno

Max-pooling: Pooling de 2×2 y stride de 2×2

Capas completamente conectadas: 128 neuronas cada una a excepción de la de salida
(3, pues reconoceremos “YES”, “NO” y otra palabra)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 42 / 62



Implementación de un Sistema de Control por Voz

Datos de Trabajo

Datos.zip contiene los ficheros pickle de Python siguientes:

1 X train.pkl: 3.426 matrices de caracteŕısticas log-Mel para entrenamiento
2 Y train.pkl: Etiquetas de referencia para X train.pkl en codificación one-hot
3 X valid.pkl: 393 matrices de caracteŕısticas log-Mel para validación
4 Y valid.pkl: Etiquetas de referencia para X valid.pkl en codificación one-hot
5 X test.pkl: 486 matrices de caracteŕısticas log-Mel para evaluación
6 Y test.pkl: Etiquetas de referencia para X test.pkl en codificación one-hot

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 43 / 62



Implementación de un Sistema de Control por Voz

Datos de Trabajo

2 

 

• X_train.pkl: 3.426 matrices de características log-Mel para entrenamiento. 

• Y_train.pkl: Etiquetas de referencia para X_train.pkl en codificación one-hot. 

• X_valid.pkl: 393 matrices de características log-Mel para validación. 

• Y_valid.pkl: Etiquetas de referencia para X_valid.pkl en codificación one-hot. 

• X_test.pkl: 486 matrices de características log-Mel para evaluación. 

• Y_test.pkl: Etiquetas de referencia para X_test.pkl en codificación one-hot. 

 

En la siguiente tabla, puedes comprobar cuántas muestras de las diferentes clases/palabras tienes 

disponibles para trabajar y cómo se distribuyen por conjunto de datos: 

 
Clase / Conjunto de datos Entrenamiento Validación Evaluación 

“YES” 1.137 130 155 

“NO” 1.147 132 169 

Otra palabra 1.142 131 162 

TOTAL 3.426 393 486 

 

 

2. PONIENDO A PUNTO EL ENTORNO DE TRABAJO 

 

Para la anterior práctica sobre verificación de locutor, instalaste librerías/módulos de utilidad 

como numpy (para cálculo científico), scipy (para cálculo técnico y científico) y matplotlib (para 

la creación de visualizaciones). Antes de comenzar, necesitaremos instalar librerías adicionales, 

siendo la más importante, como no podía ser de otra manera, PyTorch. Para ello, te recomiendo 

abrir Anaconda Prompt y activar tu entorno de trabajo con el comando conda activate cur-

soVoz, suponiendo que tu entorno conda de trabajo se denomine “cursoVoz”. Una vez activado, 

instala, haciendo uso de pip (p. ej., pip install numpy) los siguientes módulos: torch (es decir, 

PyTorch), pickle (para serialización y deserialización de estructuras objeto de Python), sound-

device (para reproducir y grabar audio) y librosa (para análisis de audio). 

 

 

3. ENTRENAMIENTO Y EVALUACIÓN DEL RECONOCEDOR DE PALABRAS 

 

Vamos a crear un fichero de código Python llamado Ej_CNN_CPU.py donde vamos a implementar 

el entrenamiento y evaluación de nuestro reconocedor simple de palabras. Para empezar, im-

portamos los módulos que vamos a necesitar: 

 

import torch 
from torch.utils.data import TensorDataset 
from torch.utils.data import DataLoader 
import pickle 
import numpy as np 
import matplotlib.pyplot as plt 
import scipy.io as sio 

 

Seguidamente, necesitamos crear la clase que definirá nuestro modelo de red neuronal, 

en nuestro caso, la red neuronal convolucional presentada en la primera página de este guion. 

Dejamos como variables el número de mapas de características de la primera capa convolucional, 

el tamaño del kernel, el tamaño del pooling, la dimensión del vector de entrada a la primera capa 

completamente conectada, el número de neuronas de las capas ocultas completamente conec-

tadas y el número de neuronas de la capa de salida. De este modo, podríamos, a partir de esta 

misma clase, crear diferentes modelos de red neuronal, por ejemplo, destinados a reconocer un 

número de palabras distinto cada uno. 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 44 / 62



Implementación de un Sistema de Control por Voz

Poniendo a Punto el Entorno de Trabajo

Ya instalaste torch (es decir, PyTorch), numpy (para cálculo
cient́ıfico), matplotlib (para la creación de visualizaciones), etc.

Necesitamos instalar libreŕıas adicionales:

1 Abre Anaconda Prompt y activa tu entorno de trabajo con el comando
conda activate cursoVoz

2 Instala los siguientes módulos haciendo uso de pip: pickle (para
serialización y deserialización de estructuras objeto de Python),
librosa (para análisis de audio) y scipy (para cálculo técnico y
cient́ıfico)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 45 / 62



Implementación de un Sistema de Control por Voz

Entrenamiento y Evaluación del Reconocedor de Palabras

Creamos un fichero de código Python Ej CNN CPU.py

Importamos los módulos que vamos a necesitar:

2 

 

• X_train.pkl: 3.426 matrices de características log-Mel para entrenamiento. 

• Y_train.pkl: Etiquetas de referencia para X_train.pkl en codificación one-hot. 

• X_valid.pkl: 393 matrices de características log-Mel para validación. 

• Y_valid.pkl: Etiquetas de referencia para X_valid.pkl en codificación one-hot. 

• X_test.pkl: 486 matrices de características log-Mel para evaluación. 

• Y_test.pkl: Etiquetas de referencia para X_test.pkl en codificación one-hot. 

 

En la siguiente tabla, puedes comprobar cuántas muestras de las diferentes clases/palabras tienes 

disponibles para trabajar y cómo se distribuyen por conjunto de datos: 

 
Clase / Conjunto de datos Entrenamiento Validación Evaluación 

“YES” 1.137 130 155 

“NO” 1.147 132 169 

Otra palabra 1.142 131 162 

TOTAL 3.426 393 486 

 

 

2. PONIENDO A PUNTO EL ENTORNO DE TRABAJO 

 

Para la anterior práctica sobre verificación de locutor, instalaste librerías/módulos de utilidad 

como numpy (para cálculo científico), scipy (para cálculo técnico y científico) y matplotlib (para 

la creación de visualizaciones). Antes de comenzar, necesitaremos instalar librerías adicionales, 

siendo la más importante, como no podía ser de otra manera, PyTorch. Para ello, te recomiendo 

abrir Anaconda Prompt y activar tu entorno de trabajo con el comando conda activate cur-

soVoz, suponiendo que tu entorno conda de trabajo se denomine “cursoVoz”. Una vez activado, 

instala, haciendo uso de pip (p. ej., pip install numpy) los siguientes módulos: torch (es decir, 

PyTorch), pickle (para serialización y deserialización de estructuras objeto de Python), sound-

device (para reproducir y grabar audio) y librosa (para análisis de audio). 

 

 

3. ENTRENAMIENTO Y EVALUACIÓN DEL RECONOCEDOR DE PALABRAS 

 

Vamos a crear un fichero de código Python llamado Ej_CNN_CPU.py donde vamos a implementar 

el entrenamiento y evaluación de nuestro reconocedor simple de palabras. Para empezar, im-

portamos los módulos que vamos a necesitar: 

 

import torch 
from torch.utils.data import TensorDataset 
from torch.utils.data import DataLoader 
import pickle 
import numpy as np 
import matplotlib.pyplot as plt 
import scipy.io as sio 

 

Seguidamente, necesitamos crear la clase que definirá nuestro modelo de red neuronal, 

en nuestro caso, la red neuronal convolucional presentada en la primera página de este guion. 

Dejamos como variables el número de mapas de características de la primera capa convolucional, 

el tamaño del kernel, el tamaño del pooling, la dimensión del vector de entrada a la primera capa 

completamente conectada, el número de neuronas de las capas ocultas completamente conec-

tadas y el número de neuronas de la capa de salida. De este modo, podríamos, a partir de esta 

misma clase, crear diferentes modelos de red neuronal, por ejemplo, destinados a reconocer un 

número de palabras distinto cada uno. 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 46 / 62



Implementación de un Sistema de Control por Voz

Entrenamiento y Evaluación del Reconocedor de Palabras

Creamos la clase que definirá nuestro modelo de red neuronal:

3 

 

class Convolutional(torch.nn.Module): 
     
    def __init__(self, no_channels, kernel_size, pooling_size, flattened_size, hidden_size, out-
put_size): 
        super(Convolutional, self).__init__() 
        self.no_channels = no_channels 
        self.kernel_size = kernel_size 
        self.pooling_size = pooling_size 
        self.flattened_size = flattened_size 
        self.hidden_size = hidden_size 
        self.output_size = output_size 
        self.conv1 = torch.nn.Conv2d(1, self.no_channels, self.kernel_size) 
        self.conv2 = torch.nn.Conv2d(self.no_channels, int(self.no_channels/2), self.kernel_size) 
        self.pool = torch.nn.MaxPool2d(self.pooling_size, self.pooling_size) 
        self.fc1 = torch.nn.Linear(self.flattened_size, self.hidden_size) 
        self.fc2 = torch.nn.Linear(self.hidden_size, self.hidden_size) 
        self.fc3 = torch.nn.Linear(self.hidden_size, self.output_size) 
        self.relu = torch.nn.ReLU() 
     
    def forward(self, x): 
        out = self.conv1(x) 
        out = self.relu(out) 
        out = self.pool(out) 
        out = self.conv2(out) 
        out = self.relu(out) 
        out = self.pool(out) 
        out = out.view(out.size(0),1, self.flattened_size) 
        out = self.fc1(out) 
        out = self.relu(out) 
        out = self.fc2(out) 
        out = self.relu(out) 
        out = self.fc3(out) 
        return out 

 

También incluiremos en nuestro fichero de código un método que nos servirá para calcular la 

precisión de reconocimiento de palabra (es decir, el porcentaje de palabras correctamente 

reconocidas sobre el total de palabras) de cara a evaluar el rendimiento de nuestra red neuronal: 

 

def compute_accuracy(y_pred, y_labels): 
    y_pred = y_pred.data.numpy() 
    y_pred = y_pred.argmax(axis=2) 
    acc = y_pred[:,0] - y_labels.data.numpy() 
    return 100*np.sum(acc==0)/len(acc) 

 

A continuación, preparamos los datos para entrenar el modelo de forma discriminativa: 

1) cargamos, usando pickle, tanto las matrices de características log-Mel como sus correspon-

dientes etiquetas; 2) definimos la dimensión de los canales o mapas de características; 3) nor-

malizamos el conjunto de datos de entrenamiento sustrayéndole su media global y dividiendo 

por su desviación típica también global; 4) transformamos la codificación de las etiquetas de 

referencia de one-hot a números enteros; 5) convertimos a tensores los vectores de caracterís-

ticas y etiquetas, y usamos las clases TensorDataset() y DataLoader() para estructurar apropia-

damente el conjunto de datos de entrenamiento particionándolo en mini-batches de composición 

aleatoria (128 ejemplos por mini-batch). 

 

 

 

 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 47 / 62



Implementación de un Sistema de Control por Voz

Entrenamiento y Evaluación del Reconocedor de Palabras

Incluimos un método para calcular la precisión de reconocimiento
de palabra de cara a evaluar el rendimiento de nuestra red neuronal:

3 

 

class Convolutional(torch.nn.Module): 
     
    def __init__(self, no_channels, kernel_size, pooling_size, flattened_size, hidden_size, out-
put_size): 
        super(Convolutional, self).__init__() 
        self.no_channels = no_channels 
        self.kernel_size = kernel_size 
        self.pooling_size = pooling_size 
        self.flattened_size = flattened_size 
        self.hidden_size = hidden_size 
        self.output_size = output_size 
        self.conv1 = torch.nn.Conv2d(1, self.no_channels, self.kernel_size) 
        self.conv2 = torch.nn.Conv2d(self.no_channels, int(self.no_channels/2), self.kernel_size) 
        self.pool = torch.nn.MaxPool2d(self.pooling_size, self.pooling_size) 
        self.fc1 = torch.nn.Linear(self.flattened_size, self.hidden_size) 
        self.fc2 = torch.nn.Linear(self.hidden_size, self.hidden_size) 
        self.fc3 = torch.nn.Linear(self.hidden_size, self.output_size) 
        self.relu = torch.nn.ReLU() 
     
    def forward(self, x): 
        out = self.conv1(x) 
        out = self.relu(out) 
        out = self.pool(out) 
        out = self.conv2(out) 
        out = self.relu(out) 
        out = self.pool(out) 
        out = out.view(out.size(0),1, self.flattened_size) 
        out = self.fc1(out) 
        out = self.relu(out) 
        out = self.fc2(out) 
        out = self.relu(out) 
        out = self.fc3(out) 
        return out 

 

También incluiremos en nuestro fichero de código un método que nos servirá para calcular la 

precisión de reconocimiento de palabra (es decir, el porcentaje de palabras correctamente 

reconocidas sobre el total de palabras) de cara a evaluar el rendimiento de nuestra red neuronal: 

 

def compute_accuracy(y_pred, y_labels): 
    y_pred = y_pred.data.numpy() 
    y_pred = y_pred.argmax(axis=2) 
    acc = y_pred[:,0] - y_labels.data.numpy() 
    return 100*np.sum(acc==0)/len(acc) 

 

A continuación, preparamos los datos para entrenar el modelo de forma discriminativa: 

1) cargamos, usando pickle, tanto las matrices de características log-Mel como sus correspon-

dientes etiquetas; 2) definimos la dimensión de los canales o mapas de características; 3) nor-

malizamos el conjunto de datos de entrenamiento sustrayéndole su media global y dividiendo 

por su desviación típica también global; 4) transformamos la codificación de las etiquetas de 

referencia de one-hot a números enteros; 5) convertimos a tensores los vectores de caracterís-

ticas y etiquetas, y usamos las clases TensorDataset() y DataLoader() para estructurar apropia-

damente el conjunto de datos de entrenamiento particionándolo en mini-batches de composición 

aleatoria (128 ejemplos por mini-batch). 

 

 

 

 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 48 / 62



Implementación de un Sistema de Control por Voz

Entrenamiento y Evaluación del Reconocedor de Palabras

Preparación de los datos para entrenamiento discriminativo:
1 Carga de las matrices log-Mel y sus etiquetas
2 Definición de la dimensión de los canales/mapas de caracteŕısticas
3 Normalización de los datos de entrenamiento
4 Etiquetas: de one-hot a números enteros
5 Conversión a tensores y estructuración del conjunto de entrenamiento

4 

 

print('Preparando datos...') 
# Cargamos los datos de entrenamiento. 
X_train = pickle.load(open('X_train.pkl', 'rb')) 
Y_train_oh = pickle.load(open('Y_train.pkl', 'rb')) 
# Reorganizando los datos. 
no_ts = X_train.shape[0]  # No. de muestras de entrenamiento. 
no_fb = X_train.shape[1]  # No. de bins de frecuencia. 
no_tf = X_train.shape[2]  # No. de tramas de tiempo. 
X_train = np.expand_dims(X_train,axis=1)  # Definimos la dimensión de los canales. 
# Normalización de los datos. 
uX = np.mean(X_train) 
sX = np.std(X_train) 
X_train = (X_train - uX) / sX 
# De one-hot encoding a enteros. 
Y_train = np.zeros(no_ts) 
for i in range(no_ts): 
    Y_train[i] = np.where(Y_train_oh[i]==1)[0][0] 
# A tensores de PyTorch. 
X_train = torch.FloatTensor(X_train) 
Y_train = torch.LongTensor(Y_train) 
train_data = TensorDataset(X_train, Y_train) 
train_loader = DataLoader(dataset=train_data, batch_size=128, shuffle=True) 

 

Llevamos a cabo un procedimiento similar para el conjunto de validación salvo por que no 

es necesario estructurarlo en mini-batches de composición aleatoria debido a su finalidad. El con-

junto de validación tiene la utilidad de monitorizar, durante la fase de entrenamiento, el rendi-

miento del modelo sobre un conjunto de datos que no interviene en su optimización (por ejem-

plo, para prevenir el sobreajuste de la red al conjunto de entrenamiento y así mejorar su capa-

cidad de generalización). 

 

# Datos de validación. 
X_valid = pickle.load(open('X_valid.pkl', 'rb')) 
Y_valid_oh = pickle.load(open('Y_valid.pkl', 'rb')) 
no_vs = X_valid.shape[0]  # No. de muestras de validación. 
X_valid = np.expand_dims(X_valid,axis=1) 
X_valid = (X_valid - uX) / sX 
Y_valid = np.zeros(no_vs) 
for i in range(no_vs): 
    Y_valid[i] = np.where(Y_valid_oh[i]==1)[0][0] 
X_valid = torch.FloatTensor(X_valid) 
Y_valid = torch.LongTensor(Y_valid) 

 

Y hacemos lo propio para el conjunto de evaluación, sobre el cual caracterizaremos el ren-

dimiento del modelo en términos de la precisión de reconocimiento de palabra: 

 

# Datos de test. 
X_test = pickle.load(open('X_test.pkl', 'rb')) 
Y_test_oh = pickle.load(open('Y_test.pkl', 'rb')) 
no_es = X_test.shape[0]  # No. de muestras de test. 
X_test = np.expand_dims(X_test,axis=1) 
X_test = (X_test - uX) / sX 
Y_test = np.zeros(no_es) 
for i in range(no_es): 
    Y_test[i] = np.where(Y_test_oh[i]==1)[0][0] 
X_test = torch.FloatTensor(X_test) 
Y_test = torch.FloatTensor(Y_test) 

 

Creamos una instancia u objeto de nuestra clase Convolutional() que define la arquitectura de 

nuestra red neuronal, especificando que el número de mapas de características de la primera 

capa convolucional es 32, el tamaño del kernel, 5, el tamaño del pooling, 2, la dimensión del 

vector de entrada a la primera capa completamente conectada, un número a determinar 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 49 / 62



Implementación de un Sistema de Control por Voz

Entrenamiento y Evaluación del Reconocedor de Palabras

Procedimiento similar para los conjuntos de validación y evaluación:

4 

 

print('Preparando datos...') 
# Cargamos los datos de entrenamiento. 
X_train = pickle.load(open('X_train.pkl', 'rb')) 
Y_train_oh = pickle.load(open('Y_train.pkl', 'rb')) 
# Reorganizando los datos. 
no_ts = X_train.shape[0]  # No. de muestras de entrenamiento. 
no_fb = X_train.shape[1]  # No. de bins de frecuencia. 
no_tf = X_train.shape[2]  # No. de tramas de tiempo. 
X_train = np.expand_dims(X_train,axis=1)  # Definimos la dimensión de los canales. 
# Normalización de los datos. 
uX = np.mean(X_train) 
sX = np.std(X_train) 
X_train = (X_train - uX) / sX 
# De one-hot encoding a enteros. 
Y_train = np.zeros(no_ts) 
for i in range(no_ts): 
    Y_train[i] = np.where(Y_train_oh[i]==1)[0][0] 
# A tensores de PyTorch. 
X_train = torch.FloatTensor(X_train) 
Y_train = torch.LongTensor(Y_train) 
train_data = TensorDataset(X_train, Y_train) 
train_loader = DataLoader(dataset=train_data, batch_size=128, shuffle=True) 

 

Llevamos a cabo un procedimiento similar para el conjunto de validación salvo por que no 

es necesario estructurarlo en mini-batches de composición aleatoria debido a su finalidad. El con-

junto de validación tiene la utilidad de monitorizar, durante la fase de entrenamiento, el rendi-

miento del modelo sobre un conjunto de datos que no interviene en su optimización (por ejem-

plo, para prevenir el sobreajuste de la red al conjunto de entrenamiento y así mejorar su capa-

cidad de generalización). 

 

# Datos de validación. 
X_valid = pickle.load(open('X_valid.pkl', 'rb')) 
Y_valid_oh = pickle.load(open('Y_valid.pkl', 'rb')) 
no_vs = X_valid.shape[0]  # No. de muestras de validación. 
X_valid = np.expand_dims(X_valid,axis=1) 
X_valid = (X_valid - uX) / sX 
Y_valid = np.zeros(no_vs) 
for i in range(no_vs): 
    Y_valid[i] = np.where(Y_valid_oh[i]==1)[0][0] 
X_valid = torch.FloatTensor(X_valid) 
Y_valid = torch.LongTensor(Y_valid) 

 

Y hacemos lo propio para el conjunto de evaluación, sobre el cual caracterizaremos el ren-

dimiento del modelo en términos de la precisión de reconocimiento de palabra: 

 

# Datos de test. 
X_test = pickle.load(open('X_test.pkl', 'rb')) 
Y_test_oh = pickle.load(open('Y_test.pkl', 'rb')) 
no_es = X_test.shape[0]  # No. de muestras de test. 
X_test = np.expand_dims(X_test,axis=1) 
X_test = (X_test - uX) / sX 
Y_test = np.zeros(no_es) 
for i in range(no_es): 
    Y_test[i] = np.where(Y_test_oh[i]==1)[0][0] 
X_test = torch.FloatTensor(X_test) 
Y_test = torch.FloatTensor(Y_test) 

 

Creamos una instancia u objeto de nuestra clase Convolutional() que define la arquitectura de 

nuestra red neuronal, especificando que el número de mapas de características de la primera 

capa convolucional es 32, el tamaño del kernel, 5, el tamaño del pooling, 2, la dimensión del 

vector de entrada a la primera capa completamente conectada, un número a determinar 
4 

 

print('Preparando datos...') 
# Cargamos los datos de entrenamiento. 
X_train = pickle.load(open('X_train.pkl', 'rb')) 
Y_train_oh = pickle.load(open('Y_train.pkl', 'rb')) 
# Reorganizando los datos. 
no_ts = X_train.shape[0]  # No. de muestras de entrenamiento. 
no_fb = X_train.shape[1]  # No. de bins de frecuencia. 
no_tf = X_train.shape[2]  # No. de tramas de tiempo. 
X_train = np.expand_dims(X_train,axis=1)  # Definimos la dimensión de los canales. 
# Normalización de los datos. 
uX = np.mean(X_train) 
sX = np.std(X_train) 
X_train = (X_train - uX) / sX 
# De one-hot encoding a enteros. 
Y_train = np.zeros(no_ts) 
for i in range(no_ts): 
    Y_train[i] = np.where(Y_train_oh[i]==1)[0][0] 
# A tensores de PyTorch. 
X_train = torch.FloatTensor(X_train) 
Y_train = torch.LongTensor(Y_train) 
train_data = TensorDataset(X_train, Y_train) 
train_loader = DataLoader(dataset=train_data, batch_size=128, shuffle=True) 

 

Llevamos a cabo un procedimiento similar para el conjunto de validación salvo por que no 

es necesario estructurarlo en mini-batches de composición aleatoria debido a su finalidad. El con-

junto de validación tiene la utilidad de monitorizar, durante la fase de entrenamiento, el rendi-

miento del modelo sobre un conjunto de datos que no interviene en su optimización (por ejem-

plo, para prevenir el sobreajuste de la red al conjunto de entrenamiento y así mejorar su capa-

cidad de generalización). 

 

# Datos de validación. 
X_valid = pickle.load(open('X_valid.pkl', 'rb')) 
Y_valid_oh = pickle.load(open('Y_valid.pkl', 'rb')) 
no_vs = X_valid.shape[0]  # No. de muestras de validación. 
X_valid = np.expand_dims(X_valid,axis=1) 
X_valid = (X_valid - uX) / sX 
Y_valid = np.zeros(no_vs) 
for i in range(no_vs): 
    Y_valid[i] = np.where(Y_valid_oh[i]==1)[0][0] 
X_valid = torch.FloatTensor(X_valid) 
Y_valid = torch.LongTensor(Y_valid) 

 

Y hacemos lo propio para el conjunto de evaluación, sobre el cual caracterizaremos el ren-

dimiento del modelo en términos de la precisión de reconocimiento de palabra: 

 

# Datos de test. 
X_test = pickle.load(open('X_test.pkl', 'rb')) 
Y_test_oh = pickle.load(open('Y_test.pkl', 'rb')) 
no_es = X_test.shape[0]  # No. de muestras de test. 
X_test = np.expand_dims(X_test,axis=1) 
X_test = (X_test - uX) / sX 
Y_test = np.zeros(no_es) 
for i in range(no_es): 
    Y_test[i] = np.where(Y_test_oh[i]==1)[0][0] 
X_test = torch.FloatTensor(X_test) 
Y_test = torch.FloatTensor(Y_test) 

 

Creamos una instancia u objeto de nuestra clase Convolutional() que define la arquitectura de 

nuestra red neuronal, especificando que el número de mapas de características de la primera 

capa convolucional es 32, el tamaño del kernel, 5, el tamaño del pooling, 2, la dimensión del 

vector de entrada a la primera capa completamente conectada, un número a determinar 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 50 / 62



Implementación de un Sistema de Control por Voz

Entrenamiento y Evaluación del Reconocedor de Palabras

Creamos una instancia u objeto de nuestra clase Convolutional() que
define la arquitectura de la red

Función de pérdida/coste: Entroṕıa cruzada categórica (de uso t́ıpico en
problemas de clasificación)

Optimizador: Adam con parámetros por defecto

5 

 

(flattened_size), el número de neuronas de las capas ocultas completamente conectadas, 128,  y 

el número de neuronas de la capa de salida (igual al número de clases/palabras que se podrá 

reconocer), 3. Además, la función de pérdida/coste será la entropía cruzada categórica (de 

uso típico en problemas de clasificación), y, como optimizador, se empleará Adam con pará-

metros por defecto. 

 

print('Creando el modelo...') 
no_cl = 3  # No. de clases ("yes", "no" y "otro"). 
pooling = 2  # Tamaño del pooling. 
ksize = 5  # Tamaño del kernel. 
no_ch = 32  # Número de canales. 
model = Convolutional(no_ch, ksize, pooling, flattened_size, 128, no_cl) 
criterion = torch.nn.CrossEntropyLoss() 
optimizer = torch.optim.Adam(model.parameters()) 

 

Y ya podemos comenzar a entrenar nuestro modelo de forma discriminativa, lo que haremos 

por un total de 12 épocas (es decir, pasadas del conjunto de entrenamiento al completo). Además, 

aprovechamos el bucle de entrenamiento a continuación para almacenar, para su análisis poste-

rior, tanto los valores de pérdida de entrenamiento y validación como los correspondientes de 

precisión de reconocimiento de palabra. Almacenamos valores por cada iteración (es decir, 

para cada pasada de un mini-batch). 

 

print('Entrenando el modelo...') 
model.train() 
no_epoch = 12  # No. de épocas de entrenamiento. 
train_loss = [] 
val_loss = [] 
train_acc = [] 
val_acc = [] 
for epoch in range(no_epoch): 
    # Procesamiento por mini-batch. 
    mi = 1 
    for x_batch, y_batch in train_loader: 
        optimizer.zero_grad() 
        y_pred = model(x_batch)  # Pasada hacia delante. 
        loss = criterion(y_pred.squeeze(), y_batch) 
        # Para validación. 
        y_pred_val = model(X_valid) 
        loss_val = criterion(y_pred_val.squeeze(), Y_valid) 
        print('Época {}, Mini-batch: {}, Pérdida de entrenamiento: {}, Pérdida de validación: 
{}'.format(epoch+1, mi, loss.item(), loss_val.item())) 
        loss.backward()  # Pasada hacia atrás. 
        optimizer.step() 
        train_loss.append(loss.data.numpy()) 
        val_loss.append(loss_val.data.numpy()) 
        train_acc.append(compute_accuracy(y_pred, y_batch)) 
        val_acc.append(compute_accuracy(y_pred_val, Y_valid)) 
        mi += 1 

 

Mostramos por pantalla las curvas de pérdida y precisión de reconocimiento de pa-

labra en función de la iteración, tanto para el conjunto de entrenamiento como para el de 

validación. 

 

 

 

 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 51 / 62



Implementación de un Sistema de Control por Voz

Entrenamiento y Evaluación del Reconocedor de Palabras

Entrenamos nuestro modelo por un total de 12 épocas

Almacenamos, por cada iteración, valores de pérdida y precisión

5 

 

(flattened_size), el número de neuronas de las capas ocultas completamente conectadas, 128,  y 

el número de neuronas de la capa de salida (igual al número de clases/palabras que se podrá 

reconocer), 3. Además, la función de pérdida/coste será la entropía cruzada categórica (de 

uso típico en problemas de clasificación), y, como optimizador, se empleará Adam con pará-

metros por defecto. 

 

print('Creando el modelo...') 
no_cl = 3  # No. de clases ("yes", "no" y "otro"). 
pooling = 2  # Tamaño del pooling. 
ksize = 5  # Tamaño del kernel. 
no_ch = 32  # Número de canales. 
model = Convolutional(no_ch, ksize, pooling, flattened_size, 128, no_cl) 
criterion = torch.nn.CrossEntropyLoss() 
optimizer = torch.optim.Adam(model.parameters()) 

 

Y ya podemos comenzar a entrenar nuestro modelo de forma discriminativa, lo que haremos 

por un total de 12 épocas (es decir, pasadas del conjunto de entrenamiento al completo). Además, 

aprovechamos el bucle de entrenamiento a continuación para almacenar, para su análisis poste-

rior, tanto los valores de pérdida de entrenamiento y validación como los correspondientes de 

precisión de reconocimiento de palabra. Almacenamos valores por cada iteración (es decir, 

para cada pasada de un mini-batch). 

 

print('Entrenando el modelo...') 
model.train() 
no_epoch = 12  # No. de épocas de entrenamiento. 
train_loss = [] 
val_loss = [] 
train_acc = [] 
val_acc = [] 
for epoch in range(no_epoch): 
    # Procesamiento por mini-batch. 
    mi = 1 
    for x_batch, y_batch in train_loader: 
        optimizer.zero_grad() 
        y_pred = model(x_batch)  # Pasada hacia delante. 
        loss = criterion(y_pred.squeeze(), y_batch) 
        # Para validación. 
        y_pred_val = model(X_valid) 
        loss_val = criterion(y_pred_val.squeeze(), Y_valid) 
        print('Época {}, Mini-batch: {}, Pérdida de entrenamiento: {}, Pérdida de validación: 
{}'.format(epoch+1, mi, loss.item(), loss_val.item())) 
        loss.backward()  # Pasada hacia atrás. 
        optimizer.step() 
        train_loss.append(loss.data.numpy()) 
        val_loss.append(loss_val.data.numpy()) 
        train_acc.append(compute_accuracy(y_pred, y_batch)) 
        val_acc.append(compute_accuracy(y_pred_val, Y_valid)) 
        mi += 1 

 

Mostramos por pantalla las curvas de pérdida y precisión de reconocimiento de pa-

labra en función de la iteración, tanto para el conjunto de entrenamiento como para el de 

validación. 

 

 

 

 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 52 / 62



Implementación de un Sistema de Control por Voz

Entrenamiento y Evaluación del Reconocedor de Palabras

Mostramos por pantalla las curvas de pérdida y precisión de
reconocimiento de palabra en función de la iteración:

6 

 

# Pintamos las curvas de pérdida. 
fig, ax = plt.subplots() 
ax.plot(train_loss, label='Pérdida de entrenamiento') 
ax.plot(val_loss, 'r', label='Pérdida de validación') 
ax.set_xlabel('Iteración') 
ax.set_ylabel('Pérdida') 
ax.legend() 
plt.show() 
# Pintamos las curvas de precisión. 
fig2, ax2 = plt.subplots() 
ax2.plot(train_acc, label='Precisión de entrenamiento') 
ax2.plot(val_acc, 'r', label='Precisión de validación') 
ax2.set_xlabel('Iteración') 
ax2.set_ylabel('Precisión (%)') 
ax2.legend() 
plt.show() 

 

Debemos obtener algo del estilo siguiente: con la consecución de las iteraciones de entrena-

miento (ajuste/optimización de los parámetros/pesos de la red neuronal), las pérdidas (precisio-

nes de reconocimiento de palabra) de entrenamiento y validación decrecen (aumentan). Como 

es habitual, el rendimiento del modelo es superior sobre el conjunto de entrenamiento en com-

paración con el de validación. Además, observamos que, a partir de la iteración 200, aproxima-

damente, la curva de pérdida de validación tiende a crecer mientras que la de entrenamiento 

sigue decayendo. Esto puede ser un síntoma de sobreajuste del modelo al conjunto de en-

trenamiento que podría tratarse, por ejemplo, mediante una técnica sencilla como la “parada 

temprana” (early stopping). 

 

  
 

Una vez que nuestro reconocedor simple de palabras ha sido entrenado, podemos medir su 

rendimiento en términos de la precisión de reconocimiento de palabra sobre el conjunto 

de evaluación del siguiente modo: 

 

model.eval() 
y_pred = model(X_test) 
acc = compute_accuracy(y_pred, Y_test) 
print('Precisión de evaluación: ' + str(acc) + '%') 

 

Antes de concluir, salvaremos, para futuros usos, el modelo de red neuronal entrenado y los 

estadísticos (es decir, media y desviación típica) de normalización de las matrices de caracterís-

ticas log-Mel: 

 

torch.save(model.state_dict(), 'Mi_Reconocedor.pth') 
sio.savemat('Media.mat', {'uX': uX}) 
sio.savemat('Desv.mat', {'sX': sX}) 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 53 / 62



Implementación de un Sistema de Control por Voz

Entrenamiento y Evaluación del Reconocedor de Palabras

A partir de la iteración 200, la curva de pérdida de validación tiende a crecer:

Śıntoma de sobreajuste

Parada temprana (early stopping)

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 54 / 62



Implementación de un Sistema de Control por Voz

Entrenamiento y Evaluación del Reconocedor de Palabras

Medimos el rendimiento del reconocedor sobre el conjunto de evaluación:

6 

 

# Pintamos las curvas de pérdida. 
fig, ax = plt.subplots() 
ax.plot(train_loss, label='Pérdida de entrenamiento') 
ax.plot(val_loss, 'r', label='Pérdida de validación') 
ax.set_xlabel('Iteración') 
ax.set_ylabel('Pérdida') 
ax.legend() 
plt.show() 
# Pintamos las curvas de precisión. 
fig2, ax2 = plt.subplots() 
ax2.plot(train_acc, label='Precisión de entrenamiento') 
ax2.plot(val_acc, 'r', label='Precisión de validación') 
ax2.set_xlabel('Iteración') 
ax2.set_ylabel('Precisión (%)') 
ax2.legend() 
plt.show() 

 

Debemos obtener algo del estilo siguiente: con la consecución de las iteraciones de entrena-

miento (ajuste/optimización de los parámetros/pesos de la red neuronal), las pérdidas (precisio-

nes de reconocimiento de palabra) de entrenamiento y validación decrecen (aumentan). Como 

es habitual, el rendimiento del modelo es superior sobre el conjunto de entrenamiento en com-

paración con el de validación. Además, observamos que, a partir de la iteración 200, aproxima-

damente, la curva de pérdida de validación tiende a crecer mientras que la de entrenamiento 

sigue decayendo. Esto puede ser un síntoma de sobreajuste del modelo al conjunto de en-

trenamiento que podría tratarse, por ejemplo, mediante una técnica sencilla como la “parada 

temprana” (early stopping). 

 

  
 

Una vez que nuestro reconocedor simple de palabras ha sido entrenado, podemos medir su 

rendimiento en términos de la precisión de reconocimiento de palabra sobre el conjunto 

de evaluación del siguiente modo: 

 

model.eval() 
y_pred = model(X_test) 
acc = compute_accuracy(y_pred, Y_test) 
print('Precisión de evaluación: ' + str(acc) + '%') 

 

Antes de concluir, salvaremos, para futuros usos, el modelo de red neuronal entrenado y los 

estadísticos (es decir, media y desviación típica) de normalización de las matrices de caracterís-

ticas log-Mel: 

 

torch.save(model.state_dict(), 'Mi_Reconocedor.pth') 
sio.savemat('Media.mat', {'uX': uX}) 
sio.savemat('Desv.mat', {'sX': sX}) 

 

 

 

Salvamos el modelo de red neuronal y los estad́ısticos de normalización de
las matrices de caracteŕısticas log-Mel:

6 

 

# Pintamos las curvas de pérdida. 
fig, ax = plt.subplots() 
ax.plot(train_loss, label='Pérdida de entrenamiento') 
ax.plot(val_loss, 'r', label='Pérdida de validación') 
ax.set_xlabel('Iteración') 
ax.set_ylabel('Pérdida') 
ax.legend() 
plt.show() 
# Pintamos las curvas de precisión. 
fig2, ax2 = plt.subplots() 
ax2.plot(train_acc, label='Precisión de entrenamiento') 
ax2.plot(val_acc, 'r', label='Precisión de validación') 
ax2.set_xlabel('Iteración') 
ax2.set_ylabel('Precisión (%)') 
ax2.legend() 
plt.show() 

 

Debemos obtener algo del estilo siguiente: con la consecución de las iteraciones de entrena-

miento (ajuste/optimización de los parámetros/pesos de la red neuronal), las pérdidas (precisio-

nes de reconocimiento de palabra) de entrenamiento y validación decrecen (aumentan). Como 

es habitual, el rendimiento del modelo es superior sobre el conjunto de entrenamiento en com-

paración con el de validación. Además, observamos que, a partir de la iteración 200, aproxima-

damente, la curva de pérdida de validación tiende a crecer mientras que la de entrenamiento 

sigue decayendo. Esto puede ser un síntoma de sobreajuste del modelo al conjunto de en-

trenamiento que podría tratarse, por ejemplo, mediante una técnica sencilla como la “parada 

temprana” (early stopping). 

 

  
 

Una vez que nuestro reconocedor simple de palabras ha sido entrenado, podemos medir su 

rendimiento en términos de la precisión de reconocimiento de palabra sobre el conjunto 

de evaluación del siguiente modo: 

 

model.eval() 
y_pred = model(X_test) 
acc = compute_accuracy(y_pred, Y_test) 
print('Precisión de evaluación: ' + str(acc) + '%') 

 

Antes de concluir, salvaremos, para futuros usos, el modelo de red neuronal entrenado y los 

estadísticos (es decir, media y desviación típica) de normalización de las matrices de caracterís-

ticas log-Mel: 

 

torch.save(model.state_dict(), 'Mi_Reconocedor.pth') 
sio.savemat('Media.mat', {'uX': uX}) 
sio.savemat('Desv.mat', {'sX': sX}) 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 55 / 62



Implementación de un Sistema de Control por Voz

Demo Live

Implementaremos un código muy básico con el que podremos grabarnos
diciendo una palabra y reconocerla de forma automática

Creamos un nuevo fichero de código Python llamado Demo Live.py e
importamos los módulos que vamos a requerir:

7 

 

4. DEMO LIVE 

 

Para comprobar por nosotros mismos la utilidad del reconocedor simple de palabras desarro-

llado, vamos a implementar un código muy básico con el que podremos grabarnos diciendo 

una palabra y reconocerla de forma automática haciendo uso de la red neuronal entre-

nada. Para empezar, crea un nuevo fichero de código Python llamado Demo_Live.py. Importa a 

continuación los módulos que vamos a requerir: 

 

import sounddevice as sd 
import time 
import torch 
import librosa 
import numpy as np 
import matplotlib.pyplot as plt 
import scipy.io as sio 

 

Para poder cargar los pesos/parámetros de nuestro modelo guardados anteriormente, necesita-

remos instanciar de nuevo nuestra clase Convolutional() que define la arquitectura de nuestra 

red neuronal convolucional. Podemos, simplemente, copiar y pegar el código de la clase en nues-

tro fichero Demo_Live.py. Una solución algo más elegante sería disponer el código de la clase 

en un fichero de código Python separado e importar la clase… ¡queda a tu elección! 

 

Seguidamente, especificamos la frecuencia de muestreo de las grabaciones sonoras que llevará a 

cabo nuestra pieza de código (16 kHz) junto con la duración de estas (1 segundo). A continua-

ción, cargamos el modelo de red neuronal entrenado y lo preparamos para su uso. 

 

fs = 16000  # Frecuencia de muestreo de grabación en Hz. 
seconds = 1  # Duración de la grabación. 
 
# Cargamos el reconocedor entrenado. 
model = Convolutional(32, 5, 2, 2464, 128, 3) 
model.load_state_dict(torch.load('Mi_Reconocedor.pth', weights_only=True)) 
model.eval() 

 

El siguiente fragmento de código lleva a cabo, haciendo uso de la librería sounddevice, la gra-

bación de nuestra muestra de voz de 1 segundo de duración a 16 kHz de frecuencia de 

muestreo: 

 

# Grabamos la muestra de audio. 
print('La grabación comienza en') 
print('3') 
time.sleep(1) 
print('2') 
time.sleep(1) 
print('1') 
time.sleep(1) 
print('Grabando...') 
grab = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Listo!') 

 

 

 

 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 56 / 62



Implementación de un Sistema de Control por Voz

Demo Live

Tenemos que instanciar de nuevo nuestra clase Convolutional() para
cargar los pesos de nuestro modelo entrenado:

Bien copiamos y pegamos el código de la clase en Demo Live.py...
o bien disponemos la clase en un fichero de código Python separado para importar

Establecemos los parámetros de grabación y cargamos el modelo de red
neuronal entrenado:

7 

 

4. DEMO LIVE 

 

Para comprobar por nosotros mismos la utilidad del reconocedor simple de palabras desarro-

llado, vamos a implementar un código muy básico con el que podremos grabarnos diciendo 

una palabra y reconocerla de forma automática haciendo uso de la red neuronal entre-

nada. Para empezar, crea un nuevo fichero de código Python llamado Demo_Live.py. Importa a 

continuación los módulos que vamos a requerir: 

 

import sounddevice as sd 
import time 
import torch 
import librosa 
import numpy as np 
import matplotlib.pyplot as plt 
import scipy.io as sio 

 

Para poder cargar los pesos/parámetros de nuestro modelo guardados anteriormente, necesita-

remos instanciar de nuevo nuestra clase Convolutional() que define la arquitectura de nuestra 

red neuronal convolucional. Podemos, simplemente, copiar y pegar el código de la clase en nues-

tro fichero Demo_Live.py. Una solución algo más elegante sería disponer el código de la clase 

en un fichero de código Python separado e importar la clase… ¡queda a tu elección! 

 

Seguidamente, especificamos la frecuencia de muestreo de las grabaciones sonoras que llevará a 

cabo nuestra pieza de código (16 kHz) junto con la duración de estas (1 segundo). A continua-

ción, cargamos el modelo de red neuronal entrenado y lo preparamos para su uso. 

 

fs = 16000  # Frecuencia de muestreo de grabación en Hz. 
seconds = 1  # Duración de la grabación. 
 
# Cargamos el reconocedor entrenado. 
model = Convolutional(32, 5, 2, 2464, 128, 3) 
model.load_state_dict(torch.load('Mi_Reconocedor.pth', weights_only=True)) 
model.eval() 

 

El siguiente fragmento de código lleva a cabo, haciendo uso de la librería sounddevice, la gra-

bación de nuestra muestra de voz de 1 segundo de duración a 16 kHz de frecuencia de 

muestreo: 

 

# Grabamos la muestra de audio. 
print('La grabación comienza en') 
print('3') 
time.sleep(1) 
print('2') 
time.sleep(1) 
print('1') 
time.sleep(1) 
print('Grabando...') 
grab = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Listo!') 

 

 

 

 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 57 / 62



Implementación de un Sistema de Control por Voz

Demo Live

Grabamos una muestra de voz de 1 segundo de duración a 16 kHz de
frecuencia de muestreo y la representamos:

7 

 

4. DEMO LIVE 

 

Para comprobar por nosotros mismos la utilidad del reconocedor simple de palabras desarro-

llado, vamos a implementar un código muy básico con el que podremos grabarnos diciendo 

una palabra y reconocerla de forma automática haciendo uso de la red neuronal entre-

nada. Para empezar, crea un nuevo fichero de código Python llamado Demo_Live.py. Importa a 

continuación los módulos que vamos a requerir: 

 

import sounddevice as sd 
import time 
import torch 
import librosa 
import numpy as np 
import matplotlib.pyplot as plt 
import scipy.io as sio 

 

Para poder cargar los pesos/parámetros de nuestro modelo guardados anteriormente, necesita-

remos instanciar de nuevo nuestra clase Convolutional() que define la arquitectura de nuestra 

red neuronal convolucional. Podemos, simplemente, copiar y pegar el código de la clase en nues-

tro fichero Demo_Live.py. Una solución algo más elegante sería disponer el código de la clase 

en un fichero de código Python separado e importar la clase… ¡queda a tu elección! 

 

Seguidamente, especificamos la frecuencia de muestreo de las grabaciones sonoras que llevará a 

cabo nuestra pieza de código (16 kHz) junto con la duración de estas (1 segundo). A continua-

ción, cargamos el modelo de red neuronal entrenado y lo preparamos para su uso. 

 

fs = 16000  # Frecuencia de muestreo de grabación en Hz. 
seconds = 1  # Duración de la grabación. 
 
# Cargamos el reconocedor entrenado. 
model = Convolutional(32, 5, 2, 2464, 128, 3) 
model.load_state_dict(torch.load('Mi_Reconocedor.pth', weights_only=True)) 
model.eval() 

 

El siguiente fragmento de código lleva a cabo, haciendo uso de la librería sounddevice, la gra-

bación de nuestra muestra de voz de 1 segundo de duración a 16 kHz de frecuencia de 

muestreo: 

 

# Grabamos la muestra de audio. 
print('La grabación comienza en') 
print('3') 
time.sleep(1) 
print('2') 
time.sleep(1) 
print('1') 
time.sleep(1) 
print('Grabando...') 
grab = sd.rec(int(seconds * fs), samplerate=fs, channels=1) 
sd.wait() 
print('¡Listo!') 

 

 

 

 

 

 

 

 

8 

 

Por curiosidad, representamos la muestra de voz capturada: 

 

# Representamos la señal grabada. 
plt.figure() 
plt.plot(np.arange(0,fs)/(fs-1), grab) 
plt.xlabel('Tiempo (s)') 
plt.ylabel('Amplitud') 
plt.title('Señal grabada') 
plt.show() 

 

El siguiente paso consistirá en extraer, con la ayuda de la herramienta librosa, la matriz 40x101 

de características log-Mel a partir de la grabación de 1 segundo de duración. Además, ha-

ciendo uso de los estadísticos de normalización calculados sobre el conjunto de entrenamiento, 

transformamos la matriz de características calculada: 

 

# Extraemos la matriz log-Mel. 
grab = grab[:,0] 
grab += 1e-3 * np.random.randn(len(grab))  # Añadimos ruido blanco gaussiano de fondo. 
# 40 canales, ventana de Hann de 32 ms y salto de 10 ms. 
mel = librosa.feature.melspectrogram(y=grab, sr=fs, n_mels=40, n_fft=512, 
hop_length=160) 
lmel = np.log(mel)  # Matriz de características log-Mel final. 
uX = sio.loadmat('Media.mat')['uX'][0][0] 
sX = sio.loadmat('Desv.mat')['sX'][0][0] 
lmel = (lmel - uX) / sX  # Normalización de la matriz log-Mel. 

 

Añadimos la dimensión de los canales a nuestra matriz de características que convertimos a un 

tensor PyTorch. Llevamos entonces a cabo la predicción de la palabra contenida en la 

grabación pasando dicha matriz por nuestra red neuronal convolucional: 

 

# Hacemos la predicción. 
lmel = np.expand_dims(np.expand_dims(lmel, axis=0), axis=0)  # Añadimos la dimensión de 
los canales. 
entrada = torch.FloatTensor(lmel) 
y_pred = model(entrada) 
y_pred = np.argmax(y_pred.data.numpy()) 

 

Y, para terminar, mostramos el resultado de la predicción por pantalla: 

 

# Mostramos el resultado por pantalla. 
if y_pred == 0: 
    print('La palabra reconocida es YES!') 
elif y_pred == 1: 
    print('La palabra reconocida es NO!') 
else: 
    print('No se ha reconocido ni YES ni NO!') 

 

¿Ha acertado? 

 

 

5. NÚMERO DE PARÁMETROS DE LA RED NEURONAL 

 

Desafiar a los alumnos a que calculen el número de parámetros del modelo de red neuronal 

convolucional. 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 58 / 62



Implementación de un Sistema de Control por Voz

Demo Live

Extraemos la matriz 40×101 de caracteŕısticas log-Mel a partir de la
grabación de 1 segundo

Normalizamos la matriz de caracteŕısticas

8 

 

Por curiosidad, representamos la muestra de voz capturada: 

 

# Representamos la señal grabada. 
plt.figure() 
plt.plot(np.arange(0,fs)/(fs-1), grab) 
plt.xlabel('Tiempo (s)') 
plt.ylabel('Amplitud') 
plt.title('Señal grabada') 
plt.show() 

 

El siguiente paso consistirá en extraer, con la ayuda de la herramienta librosa, la matriz 40x101 

de características log-Mel a partir de la grabación de 1 segundo de duración. Además, ha-

ciendo uso de los estadísticos de normalización calculados sobre el conjunto de entrenamiento, 

transformamos la matriz de características calculada: 

 

# Extraemos la matriz log-Mel. 
grab = grab[:,0] 
grab += 1e-3 * np.random.randn(len(grab))  # Añadimos ruido blanco gaussiano de fondo. 
# 40 canales, ventana de Hann de 32 ms y salto de 10 ms. 
mel = librosa.feature.melspectrogram(y=grab, sr=fs, n_mels=40, n_fft=512, 
hop_length=160) 
lmel = np.log(mel)  # Matriz de características log-Mel final. 
uX = sio.loadmat('Media.mat')['uX'][0][0] 
sX = sio.loadmat('Desv.mat')['sX'][0][0] 
lmel = (lmel - uX) / sX  # Normalización de la matriz log-Mel. 

 

Añadimos la dimensión de los canales a nuestra matriz de características que convertimos a un 

tensor PyTorch. Llevamos entonces a cabo la predicción de la palabra contenida en la 

grabación pasando dicha matriz por nuestra red neuronal convolucional: 

 

# Hacemos la predicción. 
lmel = np.expand_dims(np.expand_dims(lmel, axis=0), axis=0)  # Añadimos la dimensión de 
los canales. 
entrada = torch.FloatTensor(lmel) 
y_pred = model(entrada) 
y_pred = np.argmax(y_pred.data.numpy()) 

 

Y, para terminar, mostramos el resultado de la predicción por pantalla: 

 

# Mostramos el resultado por pantalla. 
if y_pred == 0: 
    print('La palabra reconocida es YES!') 
elif y_pred == 1: 
    print('La palabra reconocida es NO!') 
else: 
    print('No se ha reconocido ni YES ni NO!') 

 

¿Ha acertado? 

 

 

5. NÚMERO DE PARÁMETROS DE LA RED NEURONAL 

 

Desafiar a los alumnos a que calculen el número de parámetros del modelo de red neuronal 

convolucional. 

 

 

 

 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 59 / 62



Implementación de un Sistema de Control por Voz

Demo Live

Predecimos la palabra contenida en la grabación y mostramos el
resultado por pantalla:

8 

 

Por curiosidad, representamos la muestra de voz capturada: 

 

# Representamos la señal grabada. 
plt.figure() 
plt.plot(np.arange(0,fs)/(fs-1), grab) 
plt.xlabel('Tiempo (s)') 
plt.ylabel('Amplitud') 
plt.title('Señal grabada') 
plt.show() 

 

El siguiente paso consistirá en extraer, con la ayuda de la herramienta librosa, la matriz 40x101 

de características log-Mel a partir de la grabación de 1 segundo de duración. Además, ha-

ciendo uso de los estadísticos de normalización calculados sobre el conjunto de entrenamiento, 

transformamos la matriz de características calculada: 

 

# Extraemos la matriz log-Mel. 
grab = grab[:,0] 
grab += 1e-3 * np.random.randn(len(grab))  # Añadimos ruido blanco gaussiano de fondo. 
# 40 canales, ventana de Hann de 32 ms y salto de 10 ms. 
mel = librosa.feature.melspectrogram(y=grab, sr=fs, n_mels=40, n_fft=512, 
hop_length=160) 
lmel = np.log(mel)  # Matriz de características log-Mel final. 
uX = sio.loadmat('Media.mat')['uX'][0][0] 
sX = sio.loadmat('Desv.mat')['sX'][0][0] 
lmel = (lmel - uX) / sX  # Normalización de la matriz log-Mel. 

 

Añadimos la dimensión de los canales a nuestra matriz de características que convertimos a un 

tensor PyTorch. Llevamos entonces a cabo la predicción de la palabra contenida en la 

grabación pasando dicha matriz por nuestra red neuronal convolucional: 

 

# Hacemos la predicción. 
lmel = np.expand_dims(np.expand_dims(lmel, axis=0), axis=0)  # Añadimos la dimensión de 
los canales. 
entrada = torch.FloatTensor(lmel) 
y_pred = model(entrada) 
y_pred = np.argmax(y_pred.data.numpy()) 

 

Y, para terminar, mostramos el resultado de la predicción por pantalla: 

 

# Mostramos el resultado por pantalla. 
if y_pred == 0: 
    print('La palabra reconocida es YES!') 
elif y_pred == 1: 
    print('La palabra reconocida es NO!') 
else: 
    print('No se ha reconocido ni YES ni NO!') 

 

¿Ha acertado? 

 

 

5. NÚMERO DE PARÁMETROS DE LA RED NEURONAL 

 

Desafiar a los alumnos a que calculen el número de parámetros del modelo de red neuronal 

convolucional. 

 

 

 

 8 

 

Por curiosidad, representamos la muestra de voz capturada: 

 

# Representamos la señal grabada. 
plt.figure() 
plt.plot(np.arange(0,fs)/(fs-1), grab) 
plt.xlabel('Tiempo (s)') 
plt.ylabel('Amplitud') 
plt.title('Señal grabada') 
plt.show() 

 

El siguiente paso consistirá en extraer, con la ayuda de la herramienta librosa, la matriz 40x101 

de características log-Mel a partir de la grabación de 1 segundo de duración. Además, ha-

ciendo uso de los estadísticos de normalización calculados sobre el conjunto de entrenamiento, 

transformamos la matriz de características calculada: 

 

# Extraemos la matriz log-Mel. 
grab = grab[:,0] 
grab += 1e-3 * np.random.randn(len(grab))  # Añadimos ruido blanco gaussiano de fondo. 
# 40 canales, ventana de Hann de 32 ms y salto de 10 ms. 
mel = librosa.feature.melspectrogram(y=grab, sr=fs, n_mels=40, n_fft=512, 
hop_length=160) 
lmel = np.log(mel)  # Matriz de características log-Mel final. 
uX = sio.loadmat('Media.mat')['uX'][0][0] 
sX = sio.loadmat('Desv.mat')['sX'][0][0] 
lmel = (lmel - uX) / sX  # Normalización de la matriz log-Mel. 

 

Añadimos la dimensión de los canales a nuestra matriz de características que convertimos a un 

tensor PyTorch. Llevamos entonces a cabo la predicción de la palabra contenida en la 

grabación pasando dicha matriz por nuestra red neuronal convolucional: 

 

# Hacemos la predicción. 
lmel = np.expand_dims(np.expand_dims(lmel, axis=0), axis=0)  # Añadimos la dimensión de 
los canales. 
entrada = torch.FloatTensor(lmel) 
y_pred = model(entrada) 
y_pred = np.argmax(y_pred.data.numpy()) 

 

Y, para terminar, mostramos el resultado de la predicción por pantalla: 

 

# Mostramos el resultado por pantalla. 
if y_pred == 0: 
    print('La palabra reconocida es YES!') 
elif y_pred == 1: 
    print('La palabra reconocida es NO!') 
else: 
    print('No se ha reconocido ni YES ni NO!') 

 

¿Ha acertado? 

 

 

5. NÚMERO DE PARÁMETROS DE LA RED NEURONAL 

 

Desafiar a los alumnos a que calculen el número de parámetros del modelo de red neuronal 

convolucional. 

 

 

 

 

¿Ha acertado?

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 60 / 62



Implementación de un Sistema de Control por Voz

Número de Parámetros de la Red Neuronal

¿Seŕıas capaz de calcular manualmente el número de parámetros de
tu modelo de red neuronal?

Puedes comprobar si has hecho correctamente los cálculos apoyándote en el
siguiente fragmento de código:

9 

 

 

def get_no_params(model): 
    nop = 0 
    for param in list(model.parameters()): 
        nn = 1 
        for s in list(param.size()): 
            nn = nn * s 
        nop += nn 
    return nop 
 
no_params = get_no_params(model) 
print('El número de parámetros de mi modelo es ' + str(no_params)) 

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 61 / 62



Introducción a las Tecnoloǵıas del Habla

Dr. Iván López-Espejo

DÍA 3: INTRODUCCIÓN AL RECONOCIMIENTO DEL HABLA

iloes@ugr.es

Wednesday 4th June, 2025

I. López-Espejo (UGR) Introducción a las Tecnoloǵıas del Habla Wednesday 4th June, 2025 62 / 62


	Introducción y Breve Recorrido Histórico
	Aplicaciones de las Tecnologías del Habla
	Análisis de la Señal de Voz
	
	Introducción a la Verificación de Hablante
	Implementación de un Sistema de Verificación de Hablante
	
	Introducción al Reconocimiento del Habla
	Implementación de un Sistema de Control por Voz
	

