

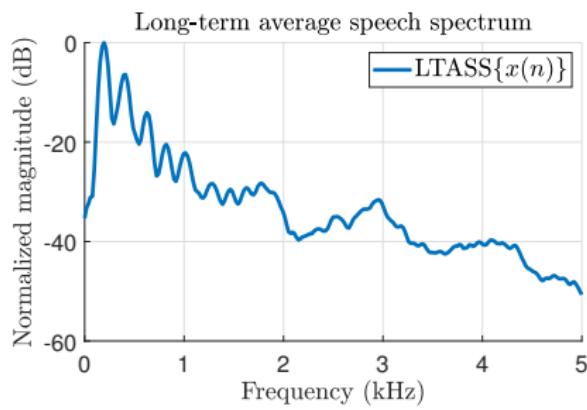
On Speech Pre-emphasis as a Simple and Inexpensive Method to Boost Speech Enhancement

Iván López-Espejo, Aditya Joglekar, **Antonio M. Peinado**, Jesper Jensen

IBERSPEECH 2024
Aveiro, Portugal

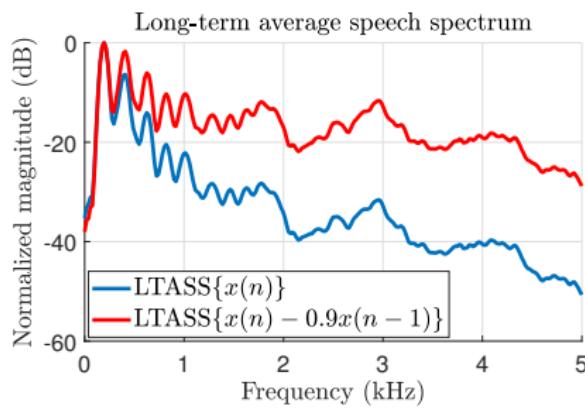
amp@ugr.es

Wednesday 13th November, 2024


UNIVERSIDAD
DE GRANADA

Overview

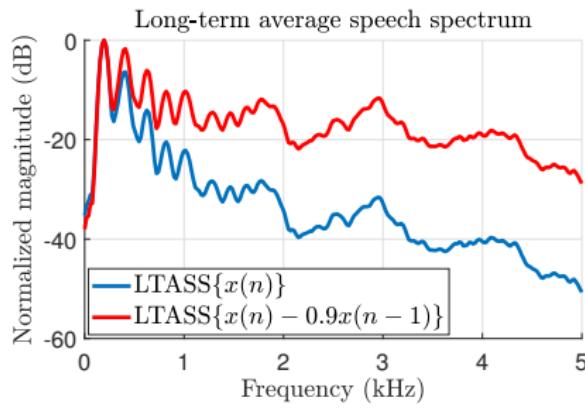
- 1 Introduction
- 2 Speech Enhancement Framework
- 3 Speech Pre-emphasis Integration
- 4 Speech Dataset
- 5 Experimental Results
- 6 Conclusions and Future Work


Introduction

- Speech is characterized by a **spectral tilt** stemming from glottal excitation due to vocal fold vibration
- Spectral tilt may lead to speech processing systems “overlooking” higher frequencies
 - **Perceptually-relevant speech elements such as fricatives, affricates, and some plosives have higher energy at higher frequencies!**

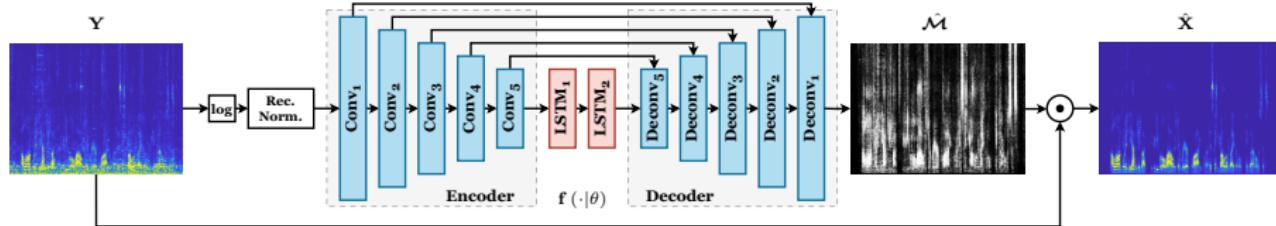
Introduction

- **Pre-emphasis filtering** is a simple yet effective pre-processing step that compensates high-frequency components by flattening the speech spectrum
- Pre-emphasis filtering is a *default consideration in classical ASR and speech coding systems*


Introduction

- We study pre-emphasis filtering for DNN-based speech enhancement

How?

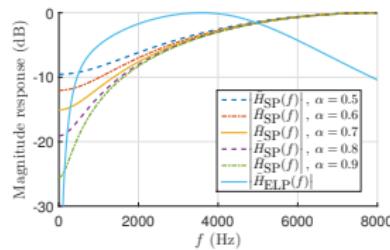

We explore pre-emphasizing the estimated and actual training clean speech during DNN training so that speech is perceptually balanced for loss calculation

- Our expectation is that the contribution of distinct speech frequency components to the total loss better reflects their perceptual importance

Speech Enhancement Framework

- We use a **spectral masking** scheme for speech enhancement purposes
- The mapping function $f(\cdot | \theta)$ is deployed by a CRNN
- The enhanced waveform is synthesized by using the phase of the noisy signal

MSE loss function


$$\mathcal{L}_{\text{MSE}} = \frac{1}{KT} \sum_{k=0}^{K-1} \sum_{t=0}^{T-1} \left(|\hat{X}(k, t)| - |X(k, t)| \right)^2$$

Speech Pre-emphasis Integration

- 1 We consider **two pre-emphasis variants** to be integrated into the loss function: **standard pre-emphasis (SP)** and **equal-loudness pre-emphasis (ELP)**
- 2 **Intensity-to-loudness conversion (I2L)** is optionally used to leverage pre-emphasis

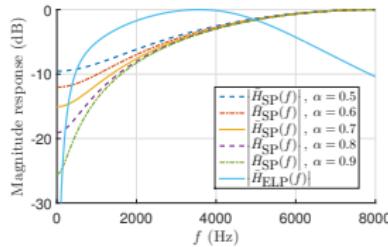
Standard Speech Pre-emphasis (SP)

- First-order high-pass FIR filter
 $|H_{SP}(f)| = |1 - \alpha e^{-j2\pi f/f_s}| = \sqrt{\alpha^2 - 2\alpha \cos(2\pi f/f_s) + 1}$
- $|\bar{H}_{SP}(f)| \in (0, 1]$ is a scaled version of $|H_{SP}(f)|$
- $|\bar{H}_{SP}(k)|$ is found by uniform sampling of $|\bar{H}_{SP}(f)|$

Pre-emphasized MSE loss function

$$\mathcal{L}_{\text{MSE}}^{\text{SP}} = \frac{1}{KT} \sum_{k=0}^{K-1} \sum_{t=0}^{T-1} \left(|\bar{H}_{SP}(k)| \cdot \left(|\hat{X}(k, t)| - |X(k, t)| \right) \right)^2$$

Speech Pre-emphasis Integration


- 1 We consider **two pre-emphasis variants** to be integrated into the loss function: **standard pre-emphasis (SP)** and **equal-loudness pre-emphasis (ELP)**
- 2 **Intensity-to-loudness conversion (I2L)** is optionally used to leverage pre-emphasis

Equal-loudness Pre-emphasis (ELP)

- ELP approximates the frequency-dependent sensitivity of human hearing at about the 40 dB level:

$$|H_{\text{ELP}}(f)| = \sqrt{\frac{(f^2 + \beta_1)f^4}{(f^2 + \beta_2)^2(f^2 + \beta_3)((2\pi f)^6 + \beta_4)}}$$

- $|\bar{H}_{\text{ELP}}(f)| \in [0, 1]$ is a scaled version of $|H_{\text{ELP}}(f)|$
- $|\bar{H}_{\text{ELP}}(k)|$ is found by uniform sampling of $|\bar{H}_{\text{ELP}}(f)|$

Pre-emphasized MSE loss function

$$\mathcal{L}_{\text{MSE}}^{\text{ELP}} = \frac{1}{KT} \sum_{k=0}^{K-1} \sum_{t=0}^{T-1} \left(|\bar{H}_{\text{ELP}}(k)| \cdot \left(|\hat{X}(k, t)| - |X(k, t)| \right) \right)^2$$

ELP accounts for the decrease in hearing sensitivity at higher frequencies

Speech Pre-emphasis Integration

- 1 We consider **two pre-emphasis variants** to be integrated into the loss function: **standard pre-emphasis (SP)** and **equal-loudness pre-emphasis (ELP)**
- 2 **Intensity-to-loudness conversion (I2L)** is optionally used to leverage pre-emphasis

Intensity-to-loudness Conversion (I2L)

- **Cubic-root amplitude compression** simulates the *non-linear relationship between the intensity of sound and its perceived loudness*

Pre-emphasized MSE loss function with I2L

$$\mathcal{L}_{\text{MSE}}^{\text{SP/ELP+I2L}} = \frac{1}{KT} \sum_{k=0}^{K-1} \sum_{t=0}^{T-1} \left(\left(|\bar{H}_{\text{SP/ELP}}(k)| \cdot |\hat{X}(k, t)| \right)^{\frac{2}{3}} - \left(|\bar{H}_{\text{SP/ELP}}(k)| \cdot |X(k, t)| \right)^{\frac{2}{3}} \right)^2$$

- Cubic-root amplitude compression can **boost the effect of pre-emphasis** by further reducing the dynamic range of the speech magnitude spectrum

Speech Dataset

- For experimental purposes, we use the **TIMIT-1C** speech dataset comprising clean and simulated noisy signals
- Clean signals were artificially distorted by diverse types of **additive noise**
 - Training and validation sets:** car, bus station, restaurant, and street (**seen noises**)
 - Test set:** café, train station, pedestrian street, and bus (**unseen noises**) + *seen noises*
- The training, validation and test sets consider the same discrete set of **SNRs:** $\{-5, 0, 5, 10, 15, 20\}$ dB
- Neither noise realizations nor speakers overlap across sets

Experimental Results

SP Standard pre-emphasis | **ELP** Equal-loudness pre-emphasis | **I2L** Intensity-to-loudness conversion

SNR (dB)	Metric	Seen noises						Unseen noises					
		Noisy	Processed				Noisy	Processed				Noisy	Processed
			X	+SP	+ELP	X		X	+SP	+I2L	X		
			X	X	+I2L	X		X	X	+I2L	X		+I2L
-5	STOI	0.64	0.74	0.74	0.74	0.74	0.74	0.65	0.73	0.73	0.73	0.73	0.73
	PESQ	1.06	1.57	1.59	1.62	1.50	1.58	1.16	1.47	1.47	1.49	1.47	1.48
0	STOI	0.73	0.84	0.84	0.84	0.83	0.83	0.75	0.83	0.83	0.83	0.83	0.83
	PESQ	1.11	1.86	1.90	1.93	1.81	1.89	1.27	1.76	1.76	1.81	1.78	1.78
5	STOI	0.82	0.90	0.90	0.90	0.90	0.90	0.83	0.90	0.90	0.90	0.90	0.90
	PESQ	1.25	2.20	2.26	2.31	2.21	2.23	1.51	2.14	2.15	2.21	2.20	2.17
10	STOI	0.89	0.94	0.94	0.94	0.94	0.94	0.91	0.94	0.95	0.95	0.94	0.94
	PESQ	1.53	2.61	2.67	2.72	2.65	2.64	1.84	2.56	2.59	2.66	2.66	2.62
15	STOI	0.94	0.97	0.97	0.97	0.97	0.97	0.95	0.97	0.97	0.97	0.97	0.97
	PESQ	1.92	2.94	3.00	3.08	3.02	3.01	2.26	2.93	2.96	3.04	3.04	3.00
20	STOI	0.97	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
	PESQ	2.45	3.30	3.35	3.45	3.38	3.38	2.84	3.32	3.37	3.44	3.43	3.40

- Evaluation carried out in terms of *quality* (**PESQ**) and *intelligibility* (**STOI**)
- For standard pre-emphasis, $\alpha = 0.6$ (*limited impact*)

Experimental Results

SP Standard pre-emphasis | **ELP** Equal-loudness pre-emphasis | **I2L** Intensity-to-loudness conversion

SNR (dB)	Metric	Seen noises						Unseen noises					
		Noisy	Processed				Noisy	Processed					
			\times	+SP	+ELP	\times		\times	+SP	+ELP	\times		
		\times	\times	+I2L	\times	+I2L	\times	\times	+I2L	\times	+I2L		
-5	STOI	0.64	0.74	0.74	0.74	0.74	0.65	0.73	0.73	0.73	0.73	0.73	0.73
	PESQ	1.06	1.57	1.59	1.62	1.50	1.58	1.16	1.47	1.47	1.49	1.47	1.48
0	STOI	0.73	0.84	0.84	0.84	0.83	0.83	0.75	0.83	0.83	0.83	0.83	0.83
	PESQ	1.11	1.86	1.90	1.93	1.81	1.89	1.27	1.76	1.76	1.81	1.78	1.78
5	STOI	0.82	0.90	0.90	0.90	0.90	0.83	0.90	0.90	0.90	0.90	0.90	0.90
	PESQ	1.25	2.20	2.26	2.31	2.21	2.23	1.51	2.14	2.15	2.21	2.20	2.17
10	STOI	0.89	0.94	0.94	0.94	0.94	0.94	0.91	0.94	0.95	0.95	0.94	0.94
	PESQ	1.53	2.61	2.67	2.72	2.65	2.64	1.84	2.56	2.59	2.66	2.66	2.62
15	STOI	0.94	0.97	0.97	0.97	0.97	0.97	0.95	0.97	0.97	0.97	0.97	0.97
	PESQ	1.92	2.94	3.00	3.08	3.02	3.01	2.26	2.93	2.96	3.04	3.04	3.00
20	STOI	0.97	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
	PESQ	2.45	3.30	3.35	3.45	3.38	3.38	2.84	3.32	3.37	3.44	3.43	3.40

- Pre-emphasis filtering has no impact on speech intelligibility
- Best speech quality is achieved by $\mathcal{L}_{\text{MSE}}^{\text{SP+I2L}} \rightarrow \text{PESQ}$ rel. improv. over the baseline of 4.6% (seen noises) and 3.4% (unseen noises)

Conclusions and Future Work

Conclusions

- Results indicate that perceptually balancing the estimated and actual clean speech signals prior to loss calculation allows for obtaining **supplementary speech quality gains** over a conventionally-trained modern speech enhancement system
- Minimal additional computational cost at training time, and *no additional cost at inference time*
- This *simple* and *cheap* methodology may potentially become a **default add-on** for training DNN-based speech enhancement systems

Conclusions and Future Work

Future Work

- Investigating the **generalizability** of this pre-emphasis methodology
 - ① Different speech enhancement architectures/approaches
 - ② Different loss functions
- Running **listening tests** to contrast what is predicted by objective speech quality and intelligibility metrics to strengthen the conclusions drawn

On Speech Pre-emphasis as a Simple and Inexpensive Method to Boost Speech Enhancement

Iván López-Espejo, Aditya Joglekar, **Antonio M. Peinado**, Jesper Jensen

IBERSPEECH 2024
Aveiro, Portugal

amp@ugr.es

Wednesday 13th November, 2024

UNIVERSIDAD
DE GRANADA