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Introducción

Las misiones Apolo de la NASA destacan como uno de los mayores logros
de la humanidad

La NASA grabó en cintas analógicas todas las conversaciones entre los
astronautas, los especialistas de control de misión y el personal de apoyo que
hicieron que estas misiones fueran un éxito
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Figure 1: Apollo audio data reflects the complex interaction between mission personnel. Astronauts (from command and lunar modules)
communicated with Mission Control Center (MCC). Flight controllers within MCC communicated with the flight director. Each flight
controller communicated with his backroom support which consisted of engineers, scientists, etc.. An interactive layout of the MCC
can be accessed here: http://1.usa.gov/WY989U

.

2. Apollo Missions and Data Sources
2.1. Audio Data

The audio data collection can broadly be divided into two
datasets: (i) data captured during the mission and (ii) data cap-
tured after and before the mission. The data captured during the
mission was due to the complex interaction between the core
mission personnel, i.e., astronauts, flight controllers, and back-
room specialists (as shown in Fig. 1). The 9 lunar missions
lasted between 6 and nearly 13 days (e.g., Apollo 11 lasted 8
days 3 hours 18 minutes and 35 seconds). In what follows, these
audio data sources are explained in more detail.

2.1.1. Onboard audio

The Apollo program included two spacecraft: the Lunar Mod-
ule (LM) to land on the moon and the Command Module (CM),
which remained in lunar orbit 1 (see Fig. 1). Each contained a
combined voice and data recorder. The CM recorder used far-
field microphones to record crew activity when radio commu-
nication was not possible (e.g., behind the Moon); the tape was
replayed at high speed over a low-margin radio link when radio
communication was reestablished. The LM recorder could not
be rewound in flight, so its ten-hour capacity was selectively
used during critical parts of the mission and the tape was re-
turned to Earth.

2.1.2. Mission Control Center (MCC) audio

As many as 17 positions in the MCC were staffed at various
times during the mission, and these flight controllers communi-
cated among themselves and with “back room” specialists over
dedicated intercom circuits (loops) (see. Fig. 1). Much of
the complexity of managing a mission occurred on these loops.
Speakers used close talking microphones.2

2.1.3. Space-to-ground communication

The 9 Apollo lunar missions lasted between 6 and nearly
13 days. Because of the trajectory, communication with the
spacecraft was possible for about 90% of this time. These
recordings exhibit highly variable channel characteristics

1Sample onboard audio: http://1.usa.gov/WPFl2j
2Sample MCC audio: http://bit.ly/XtxDGR

because several different receiving stations and relay facilities
were used 3. Speakers used close-talking microphones. Two
versions are available, one with superimposed public affairs
commentary.

Additionally, audio data is also available from pre- and
post-mission sources such as:

2.1.4. Press conferences

Each mission included pre-mission and post-mission press con-
ferences with the astronauts, and change-of-shift briefings by
flight controllers. Many of these events include responses to
audience questions, and they were generally recorded with far-
field microphones.4

2.1.5. Debriefs

Following each mission, the astronauts conducted a set of struc-
tured discussions in which specific aspects of the mission were
reviewed, most recorded with far-field microphones.

2.1.6. Interviews

The NASA History Division has conducted interviews with
about 270 Apollo participants, including astronauts, controllers,
engineers, and managers, many with near-field microphones.5

About 30% of this audio is presently available online;
the remainder is available only on physical media from the
NASA Johnson Space Center (JSC) Media Resource Center
[20] or (for the oral history interviews) the JSC History Office
collection at the University of Houston, Clear Lake.

2.2. Text Data

In addition to the large audio collection, a vast amount of text is
also available. Some of the prominent sources are:

3Sample space-to-ground: http://1.usa.gov/13gMEno
4Sample press conference: http://bit.ly/YJaqA4
5Sample oral history interview: http://cs.pn/13gMT1N
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Introducción

Subvención de la National Science Foundation (NSF)
para convertir el vasto archivo de cintas de audio en
“Explore Apollo” (exploreapollo.org)

“Explore Apollo” es un sitio web de educación e
investigación que brinda acceso público a los materiales
de voz

Prof. John H. L. Hansen
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Introducción

CRSS (Center for Robust Speech Systems) está
haciendo posible la conservación de una valiosa pieza
histórica

Ardua tarea consistente en la digitalización de cientos
de cintas analógicas de 14 horas de duración cada una

Producción de un corpus de habla real, único en su
clase, de decenas de miles de horas

▶ Apollo 11
▶ Apollo 13
▶ Gemini 8
▶ ...

Prof. John H. L. Hansen
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Introducción

A. Joglekar et al., “Fearless Steps: Advancements in Speech Technology and Corpus Development for Naturalistic Audio,” en
2023 NASA HRP IWS
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Introducción

La disponibilidad de un corpus de habla real de
estas caracteŕısticas ofrece la oportunidad de
un salto de rendimiento para las tecnoloǵıas
del habla

The Fearless Steps Challenge

▶ Detección de actividad de voz
▶ Identificación de locutor
▶ Diarización de locutor
▶ Reconocimiento automático del habla (ASR)
▶ Análisis conversacional

app.exploreapollo.org emplea algoritmos
de diarización y ASR desarrollados por CRSS
para facilitar la consulta de los materiales de
voz y proporcionar una nueva perspectiva sobre
las misiones Apolo de la NASA
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Introducción

Aún en proceso de recuperación del resto del audio de las misiones Apolo

¡En total, se espera recuperar más de 150.000 horas de audio! → El
corpus de habla natural basado en comunicaciones reales más grande
existente

Disponer de mecanismos de indexación de metadatos que garanticen una consulta
eficaz de los materiales de voz resulta imperativo
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Proyecto AGILE-KWS

A GIant LEap for KeyWord Spotting (AGILE-KWS)

Clasificación por tema de los diferentes fragmentos sonoros

▶ Conversaciones personales
▶ Problemas técnicos
▶ ...

Anotación automática (¡>150k horas!) de las grabaciones

▶ Detección de palabras clave (KWS) vs. ASR

Marie Sk lodowska-Curie Action, Global Postdoctoral Fellowship
(2022-2025)
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Detección de Palabras Clave (KWS)

La detección de palabras clave (KWS) trata de la identificación de
palabras clave en señales de audio

Las palabras clave se preseleccionan en base al conocimiento del dominio
espećıfico

1

Small-Footprint Open-Vocabulary Keyword Spotting
with Quantized LSTM Networks

Théodore Bluche, Maël Primet, Thibault Gisselbrecht
Sonos Inc., Paris, France

Abstract—We explore a keyword-based spoken language un-
derstanding system, in which the intent of the user can directly
be derived from the detection of a sequence of keywords in the
query. In this paper, we focus on an open-vocabulary keyword
spotting method, allowing the user to define their own keywords
without having to retrain the whole model. We describe the
different design choices leading to a fast and small-footprint
system, able to run on tiny devices, for any arbitrary set of
user-defined keywords, without training data specific to those
keywords. The model, based on a quantized long short-term
memory (LSTM) neural network, trained with connectionist
temporal classification (CTC), weighs less than 500KB. Our
approach takes advantage of some properties of the predictions
of CTC-trained networks to calibrate the confidence scores and
implement a fast detection algorithm. The proposed system
outperforms a standard keyword-filler model approach.

Index Terms—keyword spotting, spoken language understand-
ing, neural network quantization, long short-term memory,
connectionist temporal classification

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) systems have
recently reached close to human recognition perfor-

mance [1], allowing voice assistants (Alexa, Google Assistant,
Siri), vocal interfaces and other spoken language understand-
ing (SLU) systems to flourish. However, to achieve such per-
formance, most “ask-me-anything” voice assistants run large-
vocabulary continuous speech recognition (LVCSR) models,
demanding a lot of resource and computing power. Therefore,
most of the processing is performed in the cloud, inducing
privacy concerns and latency issues. When SLU is limited to
a specific number of tasks, in a closed-ontology setting (e.g.
with a task-specific language model [2]), the inference can be
performed on device. Recently, generic ASR models running
on mobile devices have also been proposed [3]. In both cases,
the full systems weigh more than 100MB, which remains too
large for small devices typical of IoT applications where the
memory and computing power is scarce.

We target “mini-SLU” scenarios, in which the detection
of simple keywords in the query is sufficient to convey its
meaning. In such a system, the user should be able to speak
in natural language to trigger an action based on the keywords,
as illustrated on Fig. 1. For this system to be practical and easy
to adapt to any use-case, we assume that it should adapt to
situations where the set of keywords is not known in advance,
allowing the user to define their own interactions based on
custom keywords. This also implies that no specific training
data is available.

Fig. 1: Mini-SLU system based on keyword spotting. The user
says a query in natural language. The system performs an
action based on the detection of keywords in the query.

We present in this paper a keyword spotting (KWS) system,
designed to be small enough to fit on micro-controllers,
i.e. weigh less than 500KB. The development of tiny KWS
models is an active area of research, mainly focusing on the
detection of wake words or a pre-defined set of commands
allowing single-word interactions. For these applications, it is
reasonably feasible to collect a training dataset labeled at the
keyword level (e.g. the Google Speech Commands [4] or “Hey
Snips” [5] datasets). These works focus mainly on the neu-
ral network architecture (feed-forward [6]; convolutional [7];
residual [8]; recurrent [9], [10] neural networks; WaveNet [5]),
or on the compression methods [11]–[13]. The networks are
usually trained at the frame level using the cross-entropy loss.
Other choices of losses, such as the connectionist temporal
classification (CTC) [9], [14] or a max-pooling loss [10]
have also been proposed. Although they have an attractive
formulation, since the neural network directly predicts the
confidence at the keyword level, these methods are not suited
to the scenario we explore, because they require to know the
set of keywords in advance, and a specific training set made
of these keywords.

Historically, the approach consisting in modeling the key-
word directly to score segments of audio [15], [16] evolved
into acoustic KWS, mainly based on hidden Markov mod-
els (HMMs). These methods take advantage of the modeling of
sub-word units (e.g. phone) by the HMMs to enable building
acoustic models of any arbitrary keyword, only requiring
generic ASR training data. To cope with the issue of scoring
and comparing acoustic segments of different lengths, these
approaches generally involve a “filler model” of speech seg-
ments outside the keyword [17]–[20] (e.g. an ergodic phone
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Detección de Palabras Clave (KWS)

¿Por qué necesitamos KWS?

La extracción de información de alto nivel (p. ej., tema) a partir de audio
natural es complicada debido al ruido y otros factores acústicos

KWS simplifica el proceso decodificando el espacio acústico y filtrando los
segmentos relevantes para la comprensión conversacional

1
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Sonos Inc., Paris, France

Abstract—We explore a keyword-based spoken language un-
derstanding system, in which the intent of the user can directly
be derived from the detection of a sequence of keywords in the
query. In this paper, we focus on an open-vocabulary keyword
spotting method, allowing the user to define their own keywords
without having to retrain the whole model. We describe the
different design choices leading to a fast and small-footprint
system, able to run on tiny devices, for any arbitrary set of
user-defined keywords, without training data specific to those
keywords. The model, based on a quantized long short-term
memory (LSTM) neural network, trained with connectionist
temporal classification (CTC), weighs less than 500KB. Our
approach takes advantage of some properties of the predictions
of CTC-trained networks to calibrate the confidence scores and
implement a fast detection algorithm. The proposed system
outperforms a standard keyword-filler model approach.

Index Terms—keyword spotting, spoken language understand-
ing, neural network quantization, long short-term memory,
connectionist temporal classification

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) systems have
recently reached close to human recognition perfor-

mance [1], allowing voice assistants (Alexa, Google Assistant,
Siri), vocal interfaces and other spoken language understand-
ing (SLU) systems to flourish. However, to achieve such per-
formance, most “ask-me-anything” voice assistants run large-
vocabulary continuous speech recognition (LVCSR) models,
demanding a lot of resource and computing power. Therefore,
most of the processing is performed in the cloud, inducing
privacy concerns and latency issues. When SLU is limited to
a specific number of tasks, in a closed-ontology setting (e.g.
with a task-specific language model [2]), the inference can be
performed on device. Recently, generic ASR models running
on mobile devices have also been proposed [3]. In both cases,
the full systems weigh more than 100MB, which remains too
large for small devices typical of IoT applications where the
memory and computing power is scarce.

We target “mini-SLU” scenarios, in which the detection
of simple keywords in the query is sufficient to convey its
meaning. In such a system, the user should be able to speak
in natural language to trigger an action based on the keywords,
as illustrated on Fig. 1. For this system to be practical and easy
to adapt to any use-case, we assume that it should adapt to
situations where the set of keywords is not known in advance,
allowing the user to define their own interactions based on
custom keywords. This also implies that no specific training
data is available.

Fig. 1: Mini-SLU system based on keyword spotting. The user
says a query in natural language. The system performs an
action based on the detection of keywords in the query.

We present in this paper a keyword spotting (KWS) system,
designed to be small enough to fit on micro-controllers,
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formulation, since the neural network directly predicts the
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Historically, the approach consisting in modeling the key-
word directly to score segments of audio [15], [16] evolved
into acoustic KWS, mainly based on hidden Markov mod-
els (HMMs). These methods take advantage of the modeling of
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Detección de Palabras Clave (KWS)
I. López-Espejo et al.: Deep Spoken KWS: An Overview

Deep Learning-based Keyword
Spotting Acoustic Model

Posterior HandlingSpeech Feature
Extraction

Speech signal

Decision

x(m) X{i} y{i}

f(·|θ)

FIGURE 2. General pipeline of a modern deep spoken keyword spotting system: 1) features are extracted from the speech signal, 2) a DNN acoustic model uses
these features to produce posteriors over the different keyword and filler (non-keyword) classes, and 3) the temporal sequence of these posteriors is processed
(Posterior Handling) to determine the possible existence of keywords.

II. DEEP SPOKEN KEYWORD SPOTTING APPROACH
Figure 2 depicts the general pipeline of a modern deep
spoken keyword spotting system [15], [22], [28], [41]–[43],
which is composed of three main blocks: 1) the speech
feature extractor converting the input signal to a compact
speech representation, 2) the deep learning-based acoustic
model producing posteriors over the different keyword and
filler (non-keyword) classes from the speech features (see the
example of Figure 3), and 3) the posterior handler processing
the temporal sequence of posteriors to determine the possible
existence of keywords in the input signal.

Let x(m) be a finite acoustic time signal comprising
speech. In the first place, the speech feature extractor com-
putes an alternative representation of x(m), namely, X. It is
desirable X to be compact (i.e., lower-dimensional, to limit
the computational complexity of the task), discriminative in
terms of the phonetic content and robust to acoustic varia-
tions [44]. Speech features X are traditionally represented by
a two-dimensional matrix composed of a time sequence of
K-dimensional feature vectors xt (t = 0, ..., T − 1) as in

X = (x0, ...,xt, ...,xT−1) ∈ RK×T , (1)

where T , the total number of feature vectors, depends on the
length of the signal x(m). Speech features X can be based on
a diversity of representation types, such as, e.g., spectral [22],
[28], [45], cepstral [16], [46] and time-domain ones [47].
Further details about the different types of speech features
used for KWS are provided in Section III.

The DNN acoustic model receives X as input and outputs a
sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments

X{i} = (xis−P , ...,xis, ...,xis+F ) (2)

of X until the whole feature sequence X is processed. In Eq.
(2), i = dPs e, ..., b

T−1−F
s c is an integer segment index and s

represents the time frame shift. Moreover, P and F denote,
respectively, the number of past and future frames (temporal
context) in each segment X{i} ∈ RK×(P+F+1). While s is
typically designed to have some degree of overlap between

2A proof of this is the organization of events like Auto-KWS 2021
Challenge [40].

"Left"

"Right"
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Other speech

Silence/noise

:

:

:

:

0.1

0.1

0.8

0.0

X{i}

f(·|θ)
y{i}

FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords “right” and “left”,
other speech and silence/noise. The acoustic model receives a speech segment
X{i} (log-Mel spectrogram) comprising the keyword “left”. The DNN produces
a posterior distribution over the N = 4 different classes. Keyword “left” is
given the highest posterior probability, 0.8.

consecutive segments X{i} and X{i+1}, many works con-
sider acoustic models classifying non-overlapping segments
that are sufficiently long (e.g., one second) to cover an entire
keyword [16], [30], [48]–[53]. With regard to P and F , a
number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].

Then, let us suppose that the DNN acoustic model f(·|θ) :
RK×(P+F+1) → IN has N output nodes meaning N differ-
ent classes, where θ and I = [0, 1] denote the parameters
of the acoustic model and the unit interval, respectively.
Normally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62],
the latter especially in the context of sequence-to-sequence
models [63]–[65] (see Subsection IV-C for further details).
Let subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, ..., N, (3)

where y
{i}
n = P

(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]
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sider acoustic models classifying non-overlapping segments
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number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
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acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].
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Normally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62],
the latter especially in the context of sequence-to-sequence
models [63]–[65] (see Subsection IV-C for further details).
Let subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, ..., N, (3)

where y
{i}
n = P

(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]
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I. López-Espejo et al., “Deep Spoken Keyword Spotting: An
Overview,” IEEE Access, 2022

1 f(·|θ) se implementa mediante una red
neuronal profunda

AGILE-KWS persegúıa el
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FIGURE 2. General pipeline of a modern deep spoken keyword spotting system: 1) features are extracted from the speech signal, 2) a DNN acoustic model uses
these features to produce posteriors over the different keyword and filler (non-keyword) classes, and 3) the temporal sequence of these posteriors is processed
(Posterior Handling) to determine the possible existence of keywords.
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which is composed of three main blocks: 1) the speech
feature extractor converting the input signal to a compact
speech representation, 2) the deep learning-based acoustic
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respectively, the number of past and future frames (temporal
context) in each segment X{i} ∈ RK×(P+F+1). While s is
typically designed to have some degree of overlap between

2A proof of this is the organization of events like Auto-KWS 2021
Challenge [40].
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FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords “right” and “left”,
other speech and silence/noise. The acoustic model receives a speech segment
X{i} (log-Mel spectrogram) comprising the keyword “left”. The DNN produces
a posterior distribution over the N = 4 different classes. Keyword “left” is
given the highest posterior probability, 0.8.
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A. Joglekar et al., “Fearless Steps APOLLO: Identifying
Conversational Mission-Critical Topics in NASA Apollo Missions
Audio Based on Keyword Spotting,” en 2024 NASA HRP IWS

Sólo hay transcripciones manuales a nivel de frase para 125 horas de audio

¡Necesitamos segmentaciones a nivel de palabra para desarrollar sistemas
de KWS!

Solución: Obtención de marcas de tiempo a nivel de palabra mediante
alineamiento forzado
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Detección de Palabras Clave (KWS)

Solución propuesta de alineamiento forzado

Cuadro: Precisión (%) de palabra clave tras segmentación mediante alineamiento forzado

Sistema MFA FeaRLESS – FA TRILL – FA Propuesta FA

Precisión (%) 93 89 94 99

A. Joglekar et al., “Fearless Steps APOLLO: Identifying Conversational Mission-Critical Topics in NASA Apollo Missions Audio
Based on Keyword Spotting,” en 2024 NASA HRP IWS
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Identificación de Tema a partir de KWS

25 temas de conversación identificados

Temas de conversación anotados manualmente para 115 horas de audio

En términos de duración, los temas se encuentran considerablemente desbalanceados

A. Joglekar et al., “Fearless Steps APOLLO: Challenges in keyword spotting and topic detection for naturalistic audio streams,”
The Journal of the Acoustical Society of America, 2023
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Identificación de Tema a partir de KWS

Ciertas palabras clave son identificativas de determinados temas de
conversación

A. Joglekar et al., “Fearless Steps APOLLO: Identifying Conversational Mission-Critical Topics in NASA Apollo Missions Audio
Based on Keyword Spotting,” en 2024 NASA HRP IWS
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Identificación de Tema a partir de KWS

Ciertas palabras clave son identificativas de determinados temas de
conversación

¡Fuerte correlación entre palabras clave y temas de conversación!
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Identificación de Tema a partir de KWS

(a) Sistema de KWS con validación humana

(b) Red convolucional de grafo para generar secuencias de temas a partir
de embeddings de palabras clave

A. Joglekar et al., “Fearless Steps APOLLO: Identifying Conversational Mission-Critical Topics in NASA Apollo Missions Audio
Based on Keyword Spotting,” en 2024 NASA HRP IWS
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Identificación de Tema de Extremo a Extremo

Śı hay resultados preliminares de identificación de tema de extremo a
extremo (es decir, ¡sin KWS!)

Se espera obtener mejores resultados mediante la solución basada en KWS

Cuadro: Precisión (%) de identificación de tema de extremo a extremo sobre FS-P4

Sistema Desarrollo Evaluación

Saliency 47,2 39,2
ResNet-18 58,8 52,3
ResNet-34 60,5 54,9
S+R 68,3 59,5

A. Joglekar et al., “Fearless Steps APOLLO: Identifying Conversational Mission-Critical Topics in NASA Apollo Missions Audio
Based on Keyword Spotting,” en 2024 NASA HRP IWS
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