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Introduction

e Upswing of automatic speech recognition (ASR) over the last
decade: deep learning has revolutionized ASR!

@ Auvailability of a huge amount of speech data
@ Powerful computational resources (GPUs)

| )
NG
I

[1] IWSDS, http://www.ivsds.org/

@ Tons of applications:

@ Search-by-voice, voice assistants, gaming, dictation, in-vehicle
systems...

@ Low-resource keyword spotting (KWS) for hearing assistive devices
([2] I. Lépez-Espejo et al., “Improved External Speaker-Robust Keyword Spotting for Hearing Assistive
Devices”. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020)
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[3] D. Yu and L. Deng, “Automatic Speech Recognition: A Deep Learning Approach”. Springer, 2015
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ASR Overview

@ Architecture overview of an ASR system:

FRONT-END BACK-END

Speech Signal
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LANGUAGE MODEL

@ Basic ASR components:

@ Signal processing & feature extraction: log-Mel spectra, Mel-frequency cepstral
coefficients (MFCCs)...

@ Acoustic model (AM): it integrates knowledge about acoustics and phonetics

© Language model (LM): it estimates the probability of a hypothesized word sequence
(LM score) by learning the correlation among words from text corpora

@ Hypothesis search: it outputs the word sequence with the highest score as the
recognition result
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ASR Overview: Front-end
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[4] H. Liao, “Uncertainty Decoding for Noise Robust Speech Recognition”. Ph.D. thesis (University of Cambridge), 2007

@ Desirable properties of speech features: discriminative, compact
and robust to acoustic distortions (e.g., ambient/background noise)
@ Depending on acoustic modeling...

@ Gaussian mixture models (GMMs): use of coefficient derivatives
@ Deep neural networks (DNNs): use of temporal context
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ASR Overview: Front-end
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[4] H. Liao, “Uncertainty Decoding for Noise Robust Speech Recognition”. Ph.D. thesis (University of Cambridge), 2007

@ MFCCs better fit GMM-based acoustic models (diagonal covariance
matrices, less complexity)

o Log-Mel spectra better fit DNN-based acoustic models (exploitation
of spectro-temporal correlations)
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ASR Overview: Back-end

@ The goal in ASR is to find the most likely sequence of words
W = (wq, wa, ..., wy,) from a set of feature vectors X = (x1,...,XT)

@ Maximum a posteriori (MAP) estimation problem:
W = arg maxyy, P(W|X) = arg maxyy, p(X|W)P(W)

@ The Viterbi algorithm allows us the decoding of W from the observations X

FRONT-END BACK-END

Speech Acoustic
sial Features. Model Score

A —— §| SIGNAL &
A —>| FEATURE EXTRACTION ACOUSTIC MODEL XW) HYPOTHESIS SEARCH
: P

LANGUAGE MODEL

@ To find out p(X|W), we require both the lexicon (i.e., the mapping between
the written words that can be recognized and the word phonetic
transcriptions) and the acoustic model
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ASR Overview: Back-end

@ The acoustic model is responsible for providing p(X|W)

@ Every word w; € W, i =1,...,m, is normally decomposed into simpler acoustic units (i.e.,
monophones or triphones) from the lexicon

@ Each of these acoustic units is modeled by a hidden Markov model (HMM) with
continuous density functions (variable speed of speech)

@ Remember: HMM parameters are obtained by maximum likelihood estimation using the
Baum-Welch (EM) algorithm

Markov
Model
M

I | M \
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[5] S. Young et al., “The HTK Book (for HTK Version 3.4)". Cambridge University Engineering Department, 2006
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ASR Overview: Back-end

@ Each distribution bj(o = x;) expresses the probability that the feature vector x; is
observed at state s;

@ Modeling of the output observation distributions of the HMM states
@ Using GMMs: bi(xt|s;) = XK, P(k|sj)N (xt ’p,g,(),):gf))
@ It is much better to use DNNs to produce the state emission likelihoods!

Markov
Model
M

// \“ aZ4| :‘a3<\\ \\
/bz<ol>vb 205 ! b 305) ! i 4<o4>b4<o 5] b\<oé)
Observatio:
s;::;,;;“u |] I] [I D |]
0, 0, 03 0y 05 0

[5] S. Young et al., “The HTK Book (for HTK Version 3.4)". Cambridge University Engineering Department, 2006
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ASR Overview: Back-end

@ p(X|W) can be calculated by summing over all the possible state sequences
q = (g1, ..., q7) that can produce W:

p(XIW) = 32 TT,_; P(xlqe) P(Gel qe—1)

@ P(W) depends on the linguistic task. Under the N-gram approach (usually,
N=2orN= 3) P(W) = H:il :D(W,"W,'_l7 caey Wi—N+1)

@ From N-gram to connectionist approaches: recurrent neural networks
(RNNs) are widely used to fit a probabilistic model to compute P(W)

@ Macromodel ) integrates the acoustic and language models

@ The optimal state sequence q from which W is recovered is estimated by the
Viterbi algorithm:

4 = arg max, p(q, X|}\)
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DNN-HMM Hybrid ASR

@ Context-dependent (CD) DNN-HMM systems significantly outperform
classical GMM-HMM systems on many large-vocabulary continuous speech
recognition (LVCSR) tasks:

@ The output units of the DNN are senones (i.e., tied triphone states) instead of
monophone states

/— Transition Probabilities

Window of
feature frames

» § l Ao L
“\ s g B i S -I

[3] D. Yu and L. Deng, “Automatic Speech Recognition: A Deep Learning Approach”. Springer, 2015
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DNN-HMM Hybrid ASR

@ Important! We do not use one DNN per state: a single DNN is trained to
estimate the conditional state posterior probability p(g: = sj|x.) for all
states {s;; j=1,..., 5}
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[3] D. Yu and L. Deng, “Automatic Speech Recognition: A Deep Learning Approach”. Springer, 2015
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DNN-HMM Hybrid ASR

@ Decoding in DNN-HMM ASR systems:

o As for GMM-HMM ASR, W = arg maxyy p(X|W)P(W), where the AM
: T

score is p(X|W) = Zq [1;—1 P(xtlGe) P(qtlqe-1)

o In DNN-HMM ASR,

P(qe = sj|x¢) P(x¢) P(ge = sj|xt)

P(s) P(s)

o The prior probability of each senone, P(s;) = T,/ T, is estimated from

the training set

p(x¢|qe = sj) = = p(xelge = s5) =

o p(g: = sj|x;) is given by the DNN!

ACOUSTIC MODEL

P(X|W)
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DNN-HMM Hybrid ASR

@ Training DNN-HMM ASR systems (I):

e Embedded Viterbi algorithm (S is the training set):

@ hmmO < TrainCD-GMM-HMM(S);

@ stateAlignment < ForcedAlignmentWithGMMHMM(S,hmmO0);

@ stateToSenonelDMap <+ GenerateStateToSenonelDMap(hmmo0);

@ featureSenonelDPairs +
GenerateDNNTrainingSet(state ToSenonelDMap, stateAlignment);

@ ptdnn « PretrainDNN(S);

@ hmm «+ Convert GMMHMMToDNNHMM(hmmO,state ToSenonelDMap);

@ prior + EstimatePriorProbability(featureSenonelDPairs);

@ dnn + Backpropagate(ptdnn, featureSenonelDPairs);

© Return dnnhmm = {dnn,hmm,prior}

e The embedded Viterbi algorithm minimizes the average cross entropy
for each speech utterance with T frames:

<
Lee(0) == log p(qe|x:; 0)
t=1
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DNN-HMM Hybrid ASR

@ Training DNN-HMM ASR systems (I1):

o The cross-entropy criterion treats each frame independently
Nevertheless, ASR is a sequence classification problem!
Sequence-discriminative training techniques:

@ Maximum mutual information (MMI)

@ Boosted maximum mutual information (BMMI)

© Minimum phone error (MPE)

@ State minimum Bayes risk (sMBR)

o Example: MMI
@ MMI aims at maximizing the mutual information between the distributions of
the observation and word sequences (highly correlated to minimizing the
expected sentence error)

5 - uixe: 0 p(X“1s";0)" P(W")
Jumi(0;5) = 3 log P (W*|X";0) Zlogzwp (Xe[s: )" P(W)

u=1

[6] M. Mohri, https://cs.nyu.edu/~mohri/asri2/lecture_12.pdf
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DNN-HMM Hybrid ASR

@ Training DNN-HMM ASR systems (11):

o The cross-entropy criterion treats each frame independently
o Nevertheless, ASR is a sequence classification problem!
e Sequence-discriminative training techniques:

@ Maximum mutual information (MMI)

@ Boosted maximum mutual information (BMMI)

© Minimum phone error (MPE)

@ State minimum Bayes risk (sMBR)

Training criterion | WER (%)

GMM-BMMI 18.6
DNN-CE 14.2
DNN-MMI 12.9
DNN-BMMI 12.9
DNN-MPE 12.9
DNN-sMBR 12.6

Word error rate (%) on the Switchboard dataset, [7] K. Vesely et al., “Sequence-discriminative training of deep
neural networks”. In Proc. of Interspeech 2013
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DNN-HMM Hybrid ASR: Key Issues

@ Directly modeling context-dependent phone states (i.e., senones) is key (overfitting

alleviation):
Model | Monophones  Senones
CD-GMM-HMM — 23.6
CD-DNN-HMM (7x2k) 34.9 17.1

Word error rate (%) on the Switchboard dataset, [8] F. Seide et al., “Conversational Speech Transcription Using
Context-Dependent Deep Neural Networks”. In Proc. of Interspeech 2011

@ Deeper is better!
Lx N | WER (%) || 1xN | WER (%)

1x2k 242 — —
3x2k 18.4 — —
5x2k 17.2 1x3,772 22.5

7x2k 17.1 1x4,634 22.6
— — 1x16k 22.1

Word error rate (%) on the Switchboard dataset, [8]

@ Use of temporal context:

Model ‘ 1 frame 11 frames

CD-DNN-HMM (7x2k) ‘ 23.2 17.1

Word error rate (%) on the Switchboard dataset, [8]
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Robust ASR

@ Gap in performance between humans and machines due to mismatch
between the training and testing conditions of ASR systems:

© Speaker variabilities: intra- (mood, illness...) and inter-speaker (vocal

tract length, tone...) variability
@ Environment variabilities: background noise, reverberation...

@ Speaker variability compensation:

@ Vocal tract length normalization (VTLN)
@ Feature-space maximum likelihood linear regression (FMLLR)

Model ‘ No compensation VTLN fMLLR
CD-GMM-HMM 23.6 21.5 20.4
CD-MLP-HMM (1x2,048) 24.2 22.5 21.5
CD-DNN-HMM (7x2,048) 17.1 16.8 16.4

Word error rate (%) on the Switchboard dataset, [9] F. Seide et al., “Feature engineering in context-dependent deep
neural networks for conversational speech transcription”. In Proc. of ASRU 2011
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Robust ASR

@ Environment variability compensation:
@ Example: acoustic models are trained with clean speech data and we try to
recognize noisy speech data — mismatch will cause a wrong transcription

Wrong w

transcription
Back-end *>X

] H_J

W = arg maxw(p(X|W)P(W)

Noisy
speech

—> Front-end

Noise
mismatch

@ The statistical distribution of the speech energy is affected in the presence of
background noise (when h = 0):

y(m) = h(m) % x(m) + n(m) — y = x4+ h + log (1 + exp{n — x — h})

Hn =2 o =8 o =14

004 isy speech 0.04 004
> lean speech > 3
g ; g g
30.03 %003 30,03
g g g
= = =
2 0.02] 2 0.02 2 0.02]
3 3 3
£ 001 go01 o001

o -16 0 10 20 30 —16 0 10 20 30 -10 0 10 20 30
Log-Mel power Log-Mel power Log-Mel power
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Robust ASR

@ Environment variability compensation:

o THERE ARE PLENTY OF APPROACHES!

o Feature-space approaches: noise-robust features (RASTA-PLP,
TANDEM...), normalization of feature statistical moments (CMN,
HEQ...) and speech/feature enhancement (Wiener filtering,
DNN-based speech enhancement, beamforming...)

o Model-based approaches: model adaptation (CMLLR...) and
adaptive training (fNAT, SAT...)

o Compensation with explicit distortion modeling: model adaptation
or feature compensation (VTS...)

o Missing data approaches: ignoring unreliable elements during
recognition (marginalization, SFD...) and data imputation (TGI...)
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Robust ASR

@ Environment variability compensation:

o Multi-condition training: training the acoustic model with distorted
speech data from different acoustic conditions (very effective if we can
cover rather all the test acoustic conditions!)

o Noise-aware training (NAT):

noisy speech

feature noise
extraction | : estimation
Vo DNN-HMM System (7x2,048) | WER (%)
H estimated
feature i noise info. Multi-condition (MC) training 13.4
inputlayer (@ .. @ @ @ .. @ | MC+Feature enhancement 13.8
‘ MC+NAT 13.1
MC+Dropout 12.9
1st hidden layer MC+NAT-+Dropout 12.4

[10] A. Abe et al., “Robust Speech Recognition using Word error rate (%) on the Aurora-4 dataset, [11]
DNN-HMM Acoustic Model Combining Noise-aware M. Seltzer et al., “An Investigation of Deep Neural
Training with Spectral Subtraction”. In Proc. of In- Networks for Noise Robust Speech Recognition”. In
terspeech 2015 Proc. of ICASSP 2013
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End-to-end ASR

@ End-to-end ASR: a deep learning model is trained to directly map an input
speech feature sequence to a sequence of characters/tokens

@ End-to-end ASR systems are “simpler” /cleaner: there is no need for specific
acoustic and language models with pronunciation lexicons
@ CHIiME-6 Challenge: distant microphone conversational speech recognition

in everyday home environments
(https://chimechallenge.github.io/chime6/overview.html)

@ In CHIME-6, DNN-HMM hybrid ASR systems still outperformed end-to-end
ASR approaches (in 2020!)
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End-to-end ASR: Basics

Recurrent neural networks (RNNs)
@ Standard RNNs (general idea):
he = o (Wipxe + Wpphe_1 + bp)
yt = Whoht + b,
@ Bidirectional RNNs:
ht—cr(W—>xt+W—>—>ht 1+b—>)

?t =0 (WiTxf + WTTRH + b7>

%
ye=Wo WetWe b+,

@ Long short-term memory (LSTM), bidirectional LSTM (BiLSTM), gated recurrent units
(GRUs)

Y e Ye1

Outputs S Y v 2SI
Backward Layer

Forward Layer ‘ ‘ ‘_.

Inputs T T Te41

[12] A. Graves and N. Jaitly, “Towards End-to-End Speech Recognition with Recurrent Neural Networks”. In Proc. of ICML
2014
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End-to-end ASR: CTC

[ |
\ ‘ ‘ L @ Let C = (cy,...,Cm) be the sequence of
characters/tokens corresponding to

T 1 X:(xla"'axT)
S 1 B R @ We ignore an accurate alignment between C
e e e e eeeee e and X, and m< T
I [ D ] R
© 000000000 @ Connectionist temporal classification (CTC)
ele @ e lelldiE € [ € is an alignment-free algorithm
T T T T @ CTC introduces the so-called blank token (e)
sjljijelelife)e @ CTC objective: maximizing
T
€cecl | €€l oo P(CIX) = ZAEAX,C I1,; Pe(c|X) (eg.,
TITr c={he,lo0,})
el 1o @ Decoding as usual, € = arg maxc P(C|X)
h e | o

[13] A. Hannun, https://distill.pub/
2017/ctc/
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End-to-end ASR: Encoder-decoder Framework

Encoder-decoder framework

@ The encoder is normally a BiLSTM, while the decoder, an LSTM:
h; = Encoder (x4, h;_1)
s; = Decoder (s;_1,y;-1)

(R — v
Softmax Softmax Softmax
A A A
[
RNN |—->| RNN |— ->| RNN ||
[=9
hr. | A A A o
= <sos> | =
- e el
= yi0 yi2
S| RN [T RNN [ 777 T RNN
=
X0 X1 X711

[14] I. Lépez-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE Access, 2021

@ Potential issue: the encoder needs to condense all the required information
(regardless the length of the input sequence) into a fixed-dimensional vector
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End-to-end ASR: Attention

@ We can attend to a context-relevant subset of {hy,...,hs} instead of ht to
“help” the decoder:
s; = Decoder (s;_1,y;-1,C/)

[15] S. Nadig, https:
//medium.com/intel-student-ambassadors/attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21

C = 2;1 aith ajr = softmax (AttentionFunction (s;_1, h;))
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End-to-end ASR: Attention Encoder-decoder

(e0s)

@ Problem with CTC: conditional label independence at
decoding — CTC needs an external language model
to work well

@ Attention-based encoder-decoder ASR: the
alignment between C and X is learned using an
D attention mechanism
P(C‘X) = H;ll P(C,'|X, Clyeeny C,‘,l)
- / ‘ @ Attention-based encoder-decoder ASR is less robust to

_— noise than CTC-based ASR — CTC-attention ASR
has proven to be effective to improve recognition

performance:
Listener Multitask learning: Lypr, = Alcre + (1 — A)Latention

e hy

monotonic
alignment

[16] W. Chan et al., “Listen, Attend and

Spell: A Neural Network for Large Vocab- > -

ulary Conversational Speech Recognition” . CTC guides attention alignment to be monotonic

In Proc. of ICASSP 2016 [15] S. Nadig, https://medium.com/intel-student-ambassadors/
attention-in-end-to-end-automatic-speech-recognition-9£9e42718d21
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Whisper

[17] A. Radford et al., “Robust Speech Recogni
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Voice Control
Keyword Spotting Technology
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[14] I. Lépez-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE

Access, 2021
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@ Voice control is typically
implemented through
spoken keyword spotting
(KWS)

@ Spoken KWS can be
defined as the task of
identifying keywords in
audio streams comprising
speech
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Applications and Ongoing Work

Topic Identification in NASA’s Apollo Missions Audio

i) Communi

ASTRONAUTS

NASA Crew members

Audio

channel 1.SAD:Speech Feature
Activity
Detection

streams

ion Overview for Apollo-MCC

(iii) CRSS-UTD DIARIZATION OUTPUT:
Apollo Knowledge Extraction Per Audio Stream

Audio Stream

(a) Text
Sequence:

I# & speech (1 or more speakers)

Lets go read math.

How do birds fly?

(b) Keyword m
locations: math birds
CCIT T T [

(c) Speaker ID
i s

s2 T

1

s2 T $3 §1

5. Speaker ID
& Tagging

Speaker, Apollo

Mission
Crew
members
KWD List

6. Speech Recognition /
Keyword Spotting

7. Apollo
Speech &
Language
Metric
Estimation

Individual Streams

1) Talk Time perS

2) Word Count per S

3) Turn Taking

4) Keyword Profile
(freq. of KWDs)

Group Dynamics

5) Group Talk Time

6) Group Word Count

7) Group KWD Profile

[18] A. Joglekar et al., “Fearless Steps APOLLO: Challenges in keyword spotting and topic

detection for naturalistic audio streams”.

2023

AGILE-KWS: A Giant Leap for Keyword Spotting
European Commission, Marie Curie Global Fellowships (HORIZON-MSCA-2021-PF-01)

Ivédn Lépe (VISR HEELELEYN Al in Speech Recognition and Voice Control

The Journal of the Acoustical Society of America,

DALLAS
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Applications and Ongoing Work

No-Reference Speech Intelligibility Prediction

Wav2vec 2.0 (Subsec.2.1.1)

Transformer Block L

Transformer Block 2

Transformer Block 1

— 0 —n—17

L) L) L3

Feature Encoder
[bf ] . =
o ow > o

LS G

(Subsec. 2.1.3)

by G

) (]

= (]

i Output Hidden States by | Block [
(Subsec. 2.1.2)
[ LoRABlock Wo ]
b b b
I T
T
[ Attention [
LoRA LoRA
Block Block
Multi-Head
Attention
Wi Wy H
o
‘ Input Hidden States hj_,

*”_‘M -

Feature Extraction

(Subsec. 2.2)

Sl Predictor |(Subsec. 2.3)|

BILSTM Layer

Fully-connected
v

[19] H. Wang et al., “No-Reference Speech Intelligibility Prediction Leveraging a Noisy-Speech ASR Pre-Trained Model”.

Submitted to Interspeech 2024

@ Self-supervised speech representation learning

o Wav2vec 2.0 (¥ https://huggingface.co/docs/transformers/model_doc/wav2vec2)
e HUBERT (# https://huggingface.co/docs/transformers/model_doc/hubert)
e WavLM (& https://huggingface.co/docs/transformers/model_doc/wavim)
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Singing-Voice to Singing-Voice Translation

Block 5

Character Types
Kanji: B
Hiragana: |, 7%, 9

0<L1.23 EH 127, T 151>
<IH 1.51, T 1.68>
<G 1.68, OW 1.70> 2.03

<Note 1, onset 1.23, dur 0.28>
<Note 2, onset 1.51, dur 0.17>
<Note 3, onset 1.68, dur 0.35>

</, onset 1.23, dur 0.28>
<7, onset 1.51, dur 0.17>
<9, onset 1.68, dur 0.35>

Block4 Block 7
Frame-Level Vocal Melody Extraction Singing-Voice Synthesis

Pitch: 58, start 1.23, end 1.25
Pitch: 61, start 1.25, end 1.27
Pitch: 62, start 1.27, end 1.28

[20] S. Antonisen and |. Lépez-Espejo, “PolySinger: Singing-Voice to Singing-Voice Translation from English to Japanese”.

Submitted to ISMIR 2024
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Applications and Ongoing Work

Noise-Robust Hearing Aid Voice Control

| Rear mic (Yes, Babble - 0 dB)

| Front mic (Yes, Babble - 0 dB) | In-ear mic (Yes, Babble - 0 dB)

° 0.5 © 0.5 ° 05
3 3 3
2 2 2
= 0 S 0 = 0
£ g g
-0.5 0.5 -0.5
1 -1 -1
0 05 1 0 05 1 0 05 1
i Time (s) Time (s)

% Wanna collaborate? Reach out to iloes@ugr.es
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