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Introduction

Upswing of automatic speech recognition (ASR) over the last
decade: deep learning has revolutionized ASR!

1 Availability of a huge amount of speech data
2 Powerful computational resources (GPUs)

[1] IWSDS, http://www.iwsds.org/

Tons of applications:
1 Search-by-voice, voice assistants, gaming, dictation, in-vehicle

systems...
2 Low-resource keyword spotting (KWS) for hearing assistive devices

([2] I. López-Espejo et al., “Improved External Speaker-Robust Keyword Spotting for Hearing Assistive
Devices”. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020)
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[3] D. Yu and L. Deng, “Automatic Speech Recognition: A Deep Learning Approach”. Springer, 2015
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ASR Overview

Architecture overview of an ASR system:

SIGNAL PROCESSING &
FEATURE EXTRACTION ACOUSTIC MODEL HYPOTHESIS SEARCH

LANGUAGE MODEL

Speech
Features

Acoustic
Model Score

Language
Model Score

Recognition
Result

Speech Signal
FRONT-END BACK-END

Basic ASR components:
1 Signal processing & feature extraction: log-Mel spectra, Mel-frequency cepstral

coefficients (MFCCs)...
2 Acoustic model (AM): it integrates knowledge about acoustics and phonetics
3 Language model (LM): it estimates the probability of a hypothesized word sequence

(LM score) by learning the correlation among words from text corpora
4 Hypothesis search: it outputs the word sequence with the highest score as the

recognition result
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ASR Overview: Front-end

[4] H. Liao, “Uncertainty Decoding for Noise Robust Speech Recognition”. Ph.D. thesis (University of Cambridge), 2007

Desirable properties of speech features: discriminative, compact
and robust to acoustic distortions (e.g., ambient/background noise)
Depending on acoustic modeling...

1 Gaussian mixture models (GMMs): use of coefficient derivatives
2 Deep neural networks (DNNs): use of temporal context
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ASR Overview: Front-end

[4] H. Liao, “Uncertainty Decoding for Noise Robust Speech Recognition”. Ph.D. thesis (University of Cambridge), 2007

MFCCs better fit GMM-based acoustic models (diagonal covariance
matrices, less complexity)

Log-Mel spectra better fit DNN-based acoustic models (exploitation
of spectro-temporal correlations)
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ASR Overview: Back-end

The goal in ASR is to find the most likely sequence of words
W = (w1,w2, ...,wm) from a set of feature vectors X = (x1, ..., xT )

Maximum a posteriori (MAP) estimation problem:
Ŵ = argmaxW P(W|X) = argmaxW p(X|W)P(W)

The Viterbi algorithm allows us the decoding of W from the observations X

SIGNAL PROCESSING &
FEATURE EXTRACTION ACOUSTIC MODEL HYPOTHESIS SEARCH
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Speech
Features

Acoustic
Model Score

Language
Model Score

Recognition
Result

Speech Signal
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To find out p(X|W), we require both the lexicon (i.e., the mapping between
the written words that can be recognized and the word phonetic
transcriptions) and the acoustic model
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ASR Overview: Back-end

The acoustic model is responsible for providing p(X|W)

Every word wi ∈W, i = 1, ...,m, is normally decomposed into simpler acoustic units (i.e.,
monophones or triphones) from the lexicon

Each of these acoustic units is modeled by a hidden Markov model (HMM) with
continuous density functions (variable speed of speech)

Remember: HMM parameters are obtained by maximum likelihood estimation using the
Baum-Welch (EM) algorithm

[5] S. Young et al., “The HTK Book (for HTK Version 3.4)”. Cambridge University Engineering Department, 2006
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ASR Overview: Back-end

Each distribution bj (o = xt) expresses the probability that the feature vector xt is
observed at state sj

Modeling of the output observation distributions of the HMM states

1 Using GMMs: bj (xt |sj ) =
∑K

k=1 P(k|sj )N
(
xt

∣∣∣µ(k)
sj ,Σ

(k)
sj

)
2 It is much better to use DNNs to produce the state emission likelihoods!

[5] S. Young et al., “The HTK Book (for HTK Version 3.4)”. Cambridge University Engineering Department, 2006
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ASR Overview: Back-end

p(X|W) can be calculated by summing over all the possible state sequences
q = (q1, ..., qT ) that can produce W:

p(X|W) =
∑

q

∏T
t=1 p(xt |qt)P(qt |qt−1)

P(W) depends on the linguistic task. Under the N-gram approach (usually,
N = 2 or N = 3): P(W) =

∏m
i=1 P(wi |wi−1, ...,wi−N+1)

From N-gram to connectionist approaches: recurrent neural networks
(RNNs) are widely used to fit a probabilistic model to compute P(W)

Macromodel λ integrates the acoustic and language models

The optimal state sequence q̂ from which W is recovered is estimated by the
Viterbi algorithm:
q̂ = argmaxq p(q,X|λ)
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DNN-HMM Hybrid ASR

Context-dependent (CD) DNN-HMM systems significantly outperform
classical GMM-HMM systems on many large-vocabulary continuous speech
recognition (LVCSR) tasks:

The output units of the DNN are senones (i.e., tied triphone states) instead of
monophone states

[3] D. Yu and L. Deng, “Automatic Speech Recognition: A Deep Learning Approach”. Springer, 2015

Iván López-Espejo (University of Granada) AI in Speech Recognition and Voice Control Thursday 18th April, 2024 12 / 35



DNN-HMM Hybrid ASR

Important! We do not use one DNN per state: a single DNN is trained to
estimate the conditional state posterior probability p(qt = sj |xt) for all
states {sj ; j = 1, ...,S}

[3] D. Yu and L. Deng, “Automatic Speech Recognition: A Deep Learning Approach”. Springer, 2015
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DNN-HMM Hybrid ASR

Decoding in DNN-HMM ASR systems:

As for GMM-HMM ASR, Ŵ = argmaxW p(X|W)P(W), where the AM

score is p(X|W) =
∑

q

∏T
t=1 p(xt |qt)P(qt |qt−1)

In DNN-HMM ASR,

p(xt |qt = sj) =
p(qt = sj |xt)P(xt)

P(sj)
⇒ p̄(xt |qt = sj) =

p(qt = sj |xt)
P(sj)

The prior probability of each senone, P(sj) = Tsj/T , is estimated from
the training set

p(qt = sj |xt) is given by the DNN!
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DNN-HMM Hybrid ASR

Training DNN-HMM ASR systems (I):

Embedded Viterbi algorithm (S is the training set):
1 hmm0 ← TrainCD-GMM-HMM(S);
2 stateAlignment ← ForcedAlignmentWithGMMHMM(S,hmm0);
3 stateToSenoneIDMap ← GenerateStateToSenoneIDMap(hmm0);
4 featureSenoneIDPairs ←

GenerateDNNTrainingSet(stateToSenoneIDMap,stateAlignment);
5 ptdnn ← PretrainDNN(S);
6 hmm ← ConvertGMMHMMToDNNHMM(hmm0,stateToSenoneIDMap);
7 prior ← EstimatePriorProbability(featureSenoneIDPairs);
8 dnn ← Backpropagate(ptdnn,featureSenoneIDPairs);
9 Return dnnhmm = {dnn,hmm,prior}

The embedded Viterbi algorithm minimizes the average cross entropy
for each speech utterance with T frames:

LCE(θ) = −
T∑
t=1

log p(qt |xt ; θ)
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DNN-HMM Hybrid ASR

Training DNN-HMM ASR systems (II):

The cross-entropy criterion treats each frame independently
Nevertheless, ASR is a sequence classification problem!
Sequence-discriminative training techniques:

1 Maximum mutual information (MMI)
2 Boosted maximum mutual information (BMMI)
3 Minimum phone error (MPE)
4 State minimum Bayes risk (sMBR)

Example: MMI
MMI aims at maximizing the mutual information between the distributions of
the observation and word sequences (highly correlated to minimizing the
expected sentence error)

JMMI(θ; S) =
U∑

u=1

logP (Wu |Xu ; θ) =
U∑

u=1

log
p (Xu |su ; θ)κ P(Wu)∑
W p (Xu |sw ; θ)κ P(W)

[6] M. Mohri, https://cs.nyu.edu/~mohri/asr12/lecture_12.pdf
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DNN-HMM Hybrid ASR

Training DNN-HMM ASR systems (II):

The cross-entropy criterion treats each frame independently
Nevertheless, ASR is a sequence classification problem!
Sequence-discriminative training techniques:

1 Maximum mutual information (MMI)
2 Boosted maximum mutual information (BMMI)
3 Minimum phone error (MPE)
4 State minimum Bayes risk (sMBR)

Training criterion WER (%)

GMM-BMMI 18.6
DNN-CE 14.2
DNN-MMI 12.9
DNN-BMMI 12.9
DNN-MPE 12.9
DNN-sMBR 12.6

Word error rate (%) on the Switchboard dataset, [7] K. Veselỳ et al., “Sequence-discriminative training of deep
neural networks”. In Proc. of Interspeech 2013
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DNN-HMM Hybrid ASR: Key Issues

Directly modeling context-dependent phone states (i.e., senones) is key (overfitting
alleviation):

Model Monophones Senones

CD-GMM-HMM — 23.6
CD-DNN-HMM (7x2k) 34.9 17.1

Word error rate (%) on the Switchboard dataset, [8] F. Seide et al., “Conversational Speech Transcription Using
Context-Dependent Deep Neural Networks”. In Proc. of Interspeech 2011

Deeper is better!

L× N WER (%) 1× N WER (%)

1x2k 24.2 — —
3x2k 18.4 — —
5x2k 17.2 1x3,772 22.5
7x2k 17.1 1x4,634 22.6
— — 1x16k 22.1

Word error rate (%) on the Switchboard dataset, [8]

Use of temporal context:

Model 1 frame 11 frames

CD-DNN-HMM (7x2k) 23.2 17.1

Word error rate (%) on the Switchboard dataset, [8]
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Robust ASR

Gap in performance between humans and machines due to mismatch
between the training and testing conditions of ASR systems:

1 Speaker variabilities: intra- (mood, illness...) and inter-speaker (vocal
tract length, tone...) variability

2 Environment variabilities: background noise, reverberation...

Speaker variability compensation:

1 Vocal tract length normalization (VTLN)
2 Feature-space maximum likelihood linear regression (fMLLR)

Model No compensation VTLN fMLLR

CD-GMM-HMM 23.6 21.5 20.4
CD-MLP-HMM (1x2,048) 24.2 22.5 21.5
CD-DNN-HMM (7x2,048) 17.1 16.8 16.4

Word error rate (%) on the Switchboard dataset, [9] F. Seide et al., “Feature engineering in context-dependent deep
neural networks for conversational speech transcription”. In Proc. of ASRU 2011

Iván López-Espejo (University of Granada) AI in Speech Recognition and Voice Control Thursday 18th April, 2024 19 / 35



Robust ASR

Environment variability compensation:
Example: acoustic models are trained with clean speech data and we try to
recognize noisy speech data → mismatch will cause a wrong transcription

The statistical distribution of the speech energy is affected in the presence of
background noise (when h = 0):

y(m) = h(m) ∗ x(m) + n(m)→ y = x + h + log (1 + exp{n− x− h})
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Robust ASR

Environment variability compensation:

THERE ARE PLENTY OF APPROACHES!

Feature-space approaches: noise-robust features (RASTA-PLP,
TANDEM...), normalization of feature statistical moments (CMN,
HEQ...) and speech/feature enhancement (Wiener filtering,
DNN-based speech enhancement, beamforming...)

Model-based approaches: model adaptation (CMLLR...) and
adaptive training (fNAT, SAT...)

Compensation with explicit distortion modeling: model adaptation
or feature compensation (VTS...)

Missing data approaches: ignoring unreliable elements during
recognition (marginalization, SFD...) and data imputation (TGI...)

...
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Robust ASR

Environment variability compensation:

Multi-condition training: training the acoustic model with distorted
speech data from different acoustic conditions (very effective if we can
cover rather all the test acoustic conditions!)

Noise-aware training (NAT):

[10] A. Abe et al., “Robust Speech Recognition using
DNN-HMM Acoustic Model Combining Noise-aware
Training with Spectral Subtraction”. In Proc. of In-
terspeech 2015

DNN-HMM System (7x2,048) WER (%)

Multi-condition (MC) training 13.4
MC+Feature enhancement 13.8
MC+NAT 13.1
MC+Dropout 12.9
MC+NAT+Dropout 12.4

Word error rate (%) on the Aurora-4 dataset, [11]
M. Seltzer et al., “An Investigation of Deep Neural
Networks for Noise Robust Speech Recognition”. In
Proc. of ICASSP 2013
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End-to-end ASR

End-to-end ASR: a deep learning model is trained to directly map an input
speech feature sequence to a sequence of characters/tokens

End-to-end ASR systems are “simpler”/cleaner: there is no need for specific
acoustic and language models with pronunciation lexicons

CHiME-6 Challenge: distant microphone conversational speech recognition
in everyday home environments
(https://chimechallenge.github.io/chime6/overview.html)

In CHiME-6, DNN-HMM hybrid ASR systems still outperformed end-to-end
ASR approaches (in 2020!)
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End-to-end ASR: Basics

Recurrent neural networks (RNNs)
Standard RNNs (general idea):
ht = σ (Wihxt +Whhht−1 + bh)
yt = Whoht + bo
Bidirectional RNNs:−→
h t = σ

(
W

i
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h

)
←−
h t = σ

(
W

i
←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h

)
yt = W−→

h o

−→
h t +W←−

h o

←−
h t + bo

Long short-term memory (LSTM), bidirectional LSTM (BiLSTM), gated recurrent units
(GRUs)

[12] A. Graves and N. Jaitly, “Towards End-to-End Speech Recognition with Recurrent Neural Networks”. In Proc. of ICML
2014
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End-to-end ASR: CTC

[13] A. Hannun, https://distill.pub/

2017/ctc/

Let C = (c1, ..., cm) be the sequence of
characters/tokens corresponding to
X = (x1, ..., xT )

We ignore an accurate alignment between C
and X, and m < T

Connectionist temporal classification (CTC)
is an alignment-free algorithm

CTC introduces the so-called blank token (ϵ)

CTC objective: maximizing
P(C|X) =

∑
A∈AX,C

∏T
t=1 Pt(c|X) (e.g.,

c = {h,e,l,o,ϵ})

Decoding as usual, Ĉ = argmaxC P(C|X)
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End-to-end ASR: Encoder-decoder Framework

Encoder-decoder framework

The encoder is normally a BiLSTM, while the decoder, an LSTM:
ht = Encoder (xt ,ht−1)
si = Decoder (si−1, yi−1)

I. López-Espejo et al.: Deep Spoken KWS: An Overview

3) Residual connections [126] to fast and effectively train
deeper models providing enhanced KWS performance.

C. RECURRENT AND TIME-DELAY NEURAL
NETWORKS
Speech is a temporal sequence with strong time depen-
dencies. Therefore, the utilization of RNNs for acoustic
modeling —and also time-delay neural networks (TDNNs),
which are shaped by a set of layers performing on different
time scales— naturally arises. For example, LSTM neural
networks [137], which overcome the exploding and van-
ishing gradient problems suffered by standard RNNs, are
used for KWS acoustic modeling in, e.g., [4], [29], [76],
[78], [84], clearly outperforming FFNNs [29]. When latency
is not a strong constraint, bidirectional LSTMs (BiLSTMs)
can be used instead to capture both causal and anticausal
dependencies for improved KWS performance [76], [138].
Alternatively, bidirectional GRUs are explored in [32] for
KWS acoustic modeling. When there is no need to model
very long time dependencies, as it is the case in KWS, GRUs
might be preferred over LSTMs since the former demand less
memory and are faster to train while performing similarly or
even better [93].

Besides, [58] studies a two-stage TDNN consisting of
an LVCSR acoustic model followed by a keyword classi-
fier. The authors of [58] also investigate the integration of
frame skipping and caching to decrease computation, thereby
outperforming classical CNN acoustic modeling [28] while
halving the number of multiplications.

As we already suggested in Subsection IV-B, CNNs might
have difficulties to model long time dependencies. To over-
come this point, they can be combined with RNNs to build
the so-called CRNNs. Thus, it may be stated that CRNNs
bring the best of two worlds: first, convolutional layers
model local spectro-temporal correlations of speech and,
then, recurrent layers follow suit by modeling long-term time
dependencies in the speech signal. Some works explore the
use of CRNNs for acoustic modeling in deep spoken KWS
using either unidirectional or bidirectional LSTMs or GRUs
[32], [48], [76], [93], [109], [118]. Generally, the use of
CRNNs allows us for outperforming standalone CNNs and
RNNs [48].

1) Connectionist Temporal Classification
As for the majority of acoustic models, the above-reviewed
RNN acoustic models are typically trained to produce frame-
level posterior probabilities. At training time, in case of em-
ploying, e.g., cross-entropy loss, frame-level annotated data
are required, which may be cumbersome to get. In the context
of RNN acoustic modeling, connectionist temporal classifi-
cation (CTC) [63] is an attractive alternative letting the model
unsupervisedly locate and align the phonetic unit labels at
training time [4]. In other words, frame-level alignments of
the target label sequences are not required for training.

Mathematically speaking, let C = (c0, ..., cm−1) be the
sequence of phonetic units or, e.g., characters corresponding

RNN RNN RNN

RNN RNN RNN

E
nc

od
er

D
ecoder

x0 x1 xT-1

hT-1

. . .

. . .

. . .

y{0} y{1} y{T-1}

. . . . . .
y{T-2}

SoftmaxSoftmax Softmax

<sos>

y{0}

FIGURE 7. Example of sequence-to-sequence (Seq2Seq) model. Here,
“<sos>” stands for “start of sequence”. See the text for further details.

to the sequence of feature vectors X = (x0, ...,xT−1), where
m < T and the accurate alignment between C and X is
unknown. CTC is an alignment-free algorithm whose goal
is to maximize [63]

P (C|X) =
∑

A∈AX,C

T−1∏
t=0

Pt (c|x0, ...,xt) , (5)

where c is the whole set of recognizable phonetic units
or characters plus a blank symbol (modeling confusion in-
formation of the speech signal [4]), and the summation is
performed over the set of all valid alignments AX,C . From
Eq. (5), the acoustic model outputs can be understood as the
probability distribution over all the possible label sequences
given the sequence of input features X [46].

The very first attempt to apply CTC to KWS was carried
out by Fernández et al. [46] using a BiLSTM for acoustic
modeling. At training time, this system just needs, along with
the training speech signals, the list of training words in order
of occurrence. After this first attempt, several works have
explored variants of this approach using different RNN ar-
chitectures like LSTMs [4], [60], [61], [139], BiLSTMs [84],
[98] and GRUs [61], [140], as well as considering different
phonetic units such as phonemes [60], [84] and Mandarin
syllables [8], [139]. In general, these systems are shown to
be superior to both LVCSR- and keyword/filler HMM-based
KWS systems with less or no additional computational cost
[4], [8], [139]. Notice that since CTC requires searching
for the keyword phonetic unit sequence on a lattice, this
approach is also suitable for open-vocabulary KWS.

2) Sequence-to-Sequence Models
CTC assumes conditional label independence, i.e., past
model outputs do not influence current predictions (see Eq.
(5)). Hence, in the context of KWS and ASR in general, CTC
may need an external language model to perform well. There-
fore, a more convenient approach for KWS acoustic mod-
eling might be the use of sequence-to-sequence (Seq2Seq)
models, first proposed in [141] for language translation.
Figure 7 illustrates an example of Seq2Seq model. In short,
Seq2Seq models are comprised of an RNN encoder7 sum-

7In [9], Shan et al. show, for KWS, the superiority of CRNN encoders
with respect to GRU ones, which, in turn, are better than LSTM encoders.

8 VOLUME 4, 2016

[14] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE Access, 2021

Potential issue: the encoder needs to condense all the required information
(regardless the length of the input sequence) into a fixed-dimensional vector
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End-to-end ASR: Attention

We can attend to a context-relevant subset of {h1, ...,hT} instead of hT to
“help” the decoder:
si = Decoder (si−1, yi−1,Ci )

[15] S. Nadig, https:
//medium.com/intel-student-ambassadors/attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21

Ci =
∑T

t=1 αitht αit = softmax (AttentionFunction (si−1,ht))
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End-to-end ASR: Attention Encoder-decoder

[16] W. Chan et al., “Listen, Attend and
Spell: A Neural Network for Large Vocab-
ulary Conversational Speech Recognition”.
In Proc. of ICASSP 2016

Problem with CTC: conditional label independence at
decoding → CTC needs an external language model
to work well

Attention-based encoder-decoder ASR: the
alignment between C and X is learned using an
attention mechanism
P(C|X) =

∏m
i=1 P(ci |X, c1, ..., ci−1)

Attention-based encoder-decoder ASR is less robust to
noise than CTC-based ASR → CTC-attention ASR
has proven to be effective to improve recognition
performance:

[15] S. Nadig, https://medium.com/intel-student-ambassadors/
attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21
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Whisper

Robust Speech Recognition via Large-Scale Weak Supervision 4
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Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.

[17] A. Radford et al., “Robust Speech Recognition via Large-Scale Weak Supervision”. In Proc. of ICML 2023
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Voice Control
Keyword Spotting Technology
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[14] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview”. IEEE
Access, 2021

Voice control is typically
implemented through
spoken keyword spotting
(KWS)

Spoken KWS can be
defined as the task of
identifying keywords in
audio streams comprising
speech
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Applications and Ongoing Work
Topic Identification in NASA’s Apollo Missions Audio

[18] A. Joglekar et al., “Fearless Steps APOLLO: Challenges in keyword spotting and topic
detection for naturalistic audio streams”. The Journal of the Acoustical Society of America,
2023

AGILE-KWS: A Giant Leap for Keyword Spotting
European Commission, Marie Curie Global Fellowships (HORIZON-MSCA-2021-PF-01)
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No-Reference Speech Intelligibility Prediction
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Figure 1: The pipeline of our proposed method.

We apply LoRA to the original weight matrices in each atten-
tion head (WQ,WK ,WV ) and output weight matrix (WO) in
each transformer block. The general form of LoRA used in this
work is given by the following equation:

W = Wp+∆WA+∆WS = Wp+AA ·BA+AS ·BS, (1)

where Wp ∈ Rd1×d2 denotes the original weight matrix in
the pre-trained model, (AA ∈ Rd1×ra ,BA ∈ Rra×d2) and
(AS ∈ Rd1×rs ,BS ∈ Rrs×d2) represent the low-rank matrices
that are trained during noisy-speech ASR adaptation and SIP
fine-tuning, respectively, and W is the adapted weight matrix.
Note that ra, rs ≪ min(d1, d2).

2.1.3. Adapted backbones

Feature extraction was performed on three adapted wav2vec 2.0
backbone models, with each model pre-trained for a different
task:

• SSL [21]: This model only underwent self-supervised pre-
training on three multilingual datasets.

• ASR (clean) [22]: This model fine-tuned wav2vec 2.0 (SSL)
for English ASR on the Common Voice dataset [23].

• ASR (noisy): We adapted the clean-speech ASR model
above for noisy-speech ASR.

2.1.4. Noisy-speech ASR adaptation

When wav2vec 2.0 is used for ASR, a fully-connected layer is
added on top of it, which maps the contextual representations at
the last transformer layer h1

L, · · · ,hT
L to posterior probability

distributions over tokens.
In noisy-speech ASR adaptation, the pre-trained weight

matrix Wp from a clean-speech ASR model [22] is frozen and
AS and BS are dropped from Eq. (1). AA and BA are trained
with rank set to ra = 16, reducing the number of trainable pa-
rameters in the wav2vec 2.0 backbone from 300M to 3M.

2.2. Feature extraction

2.2.1. Weighted-sum model

Utilizing the embeddings from different layers of pre-trained
models has been shown to be beneficial for speech-related
downstream tasks [14, 24]. The weighted-sum features at the

t-th frame are defined as

xt
WS =

L∑
l=0

αlh
t
l , (2)

where αl is the learnable weight for the l-th layer.
To avoid overfitting, the parameters in the pre-trained mod-

els are usually frozen when there are limited training data avail-
able for the downstream task [14]. Following this same practice,
we freeze the parameters of the wav2vec 2.0 backbones in the
weighted-sum model (frozen), and train the weights αl as well
as the SI predictor. Additionally, the frozen backbones enable
us to compare the quality of the representations from the differ-
ent wav2vec 2.0 backbones in Subsec. 2.1.3.

Furthermore, to alleviate the aforementioned overfitting is-
sue, we explore the application of LoRA to the weighted-sum
model (LoRA). In Eq. (1), during the SIP fine-tuning stage, af-
ter adding the product of the previously trained AA, BA to Wp,
only AS and BS are trained, while the other matrices are frozen.
We set the rank of the LoRA matrices to rs = 8, effectively
decreasing the number of trainable parameters in the wav2vec
2.0 backbone from 300M to 1.5M. For comparison, we also
train another variant updating all the parameters in the wav2vec
2.0 backbone (i.e., without LoRA), named weighted-sum model
(full).

2.2.2. Projection model

When the pre-trained model is frozen, a linear combination of
the layer-wise embeddings may not sufficiently empower fea-
ture extraction for the downstream task. To tackle this problem,
we propose an affine mapping to project the embeddings from
different layers into a unified space. We take the mean of the
projected embeddings to calculate the feature vector that is in-
put to the predictor. The corresponding features at the t-th frame
can be defined as:

xt
P =

1

L+ 1

L∑
l=0

(
Al · ht

l + bl
)
, (3)

where Al ∈ Rdp×dw is the learnable weight matrix, bl ∈ Rdp

is the learnable bias vector, and dp = 256 is the projection
size. Only the parameters in the linear layers and predictor are
trained during SIP fine-tuning, while the wav2vec 2.0 backbone
is frozen.

[19] H. Wang et al., “No-Reference Speech Intelligibility Prediction Leveraging a Noisy-Speech ASR Pre-Trained Model”.
Submitted to Interspeech 2024

Self-supervised speech representation learning
1 Wav2vec 2.0 ( https://huggingface.co/docs/transformers/model doc/wav2vec2)

2 HuBERT ( https://huggingface.co/docs/transformers/model doc/hubert)

3 WavLM ( https://huggingface.co/docs/transformers/model doc/wavlm)
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Singing-Voice to Singing-Voice Translation

Vocal Performance

Block 1
Automatic Lyrics Transcription

Subsection 3.1

Block 2
Phoneme-Level Lyrics Alignment

Subsection 3.2

Block 5
Autmomatic Lyrics Translation

Subsection 3.5

Block 7
Singing-Voice Synthesis

Section 3.7

は な す

0 <L 1.23, EH 1.27, T 1.51>
<IH 1.51, T 1.68>

<G 1.68, OW 1.70> 2.03

Let it go 離す

Block 3
Note-Level Lyrics Alignment

Subsection 3.3

<Note 1, onset 1.23, dur 0.28>
<Note 2, onset 1.51, dur 0.17>
<Note 3, onset 1.68, dur 0.35>

Block 6
Pronunciation
Subsection 3.6

<は, onset 1.23, dur 0.28>
<な, onset 1.51, dur 0.17>
<す, onset 1.68, dur 0.35>

Block 4
Frame-Level Vocal Melody Extraction

Subsection 3.4

Pitch: 58, start 1.23, end 1.25
Pitch: 61, start 1.25, end 1.27
Pitch: 62, start 1.27, end 1.28

Character Types
Kanji: 離

Hiragana: は, な, す

Figure 1. Overview of the proposed SV2SVT system. In Block 2, each word is delimited by “<” and “>” and has been
split into phonemes with accompanying starting times. The same applies to Blocks 3 and 4 regarding syllables/mora. Block
7 shows the notes passed to the synthesizer in green with their respective Japanese characters, alongside a white squiggle
which indicates the pitch over time.

3.1 Automatic Lyrics Transcription (ALT)194

Whisper [22] is a transformer-based [10] model pre-trained195

on 680k hours of weakly labeled audio data for multi-196

task learning; there among the main task being multi-197

lingual automatic speech recognition. The most re-198

cent iteration, Whisper-large-V3, is trained on 1M199

hours of weakly labeled audio and 4M hours of au-200

dio which was pseudo-labeled by Whisper-large-V2.201

Whisper-large-V3 is collected from HuggingFace 3202

for ALT. We have not fine-tuned Whisper on singing data203

due to Whisper’s great ability to generalize across several204

domains. To keep the memory usage of Whisper within205

∼8 GB, a chunking algorithm is set up to chunk the input206

recording into 30s segments and process them individually207

with a batch size of 4. as shown on Figure 1 in Block 1,208

the output of Whisper is a string of English text given the209

audio of an English vocal performance as input.210

3.2 Lyrics Alignment211

Phoneme-level lyrics alignment of the English transcrip-212

tion to the input audio is done with the model informed213

in [26]. Each word is deconstructed into a phonetic struc-214

ture according to the CMU pronunciation dictionary 4 . A215

voice activation detection threshold can be set between 0216

and 30 to help mitigate noise during pauses between sung217

word. As shown in Figure 1, both the audio from the vo-218

cal performance and the transcription provided by the ALT219

system in Block 1 are exploited to generate lyrics align-220

ment in Block 2, in which the outputs are each phoneme221

with a starting time of appearance in the input audio.222

3 https://huggingface.co/openai/
whisper-large-v3

4 http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Word BLUEBERRY

Phonemes B L UW1 B EH2 R IY0

Syllables BLUW BEH RIY

Table 1. Example of the word “blueberry” being decon-
structed phonetically according to the CMU pronunciation
dictionary and further reconstructed into syllables. An in-
teger ranging 0-2 is associated with each vowel to indicate
the type of vowel stress.

3.3 Note Creation223

In Western languages, poetry and song lyrics are very rem-224

iniscent of each other. Such a piece of poetry has a rhyth-225

mic structure called meter. This structure can be dissected226

into a syllabic pattern [37]. Therefore, in Figure 1, Block227

3, the boundaries of a note are defined by the alignment of228

a syllable. The phonetics generated by the lyrics aligner in229

Block 2 are concatenated into syllables in accordance with230

the CMU pronunciation dictionary (see an example in Fig-231

ure 1). It is assumed that each vowel makes an individual232

syllable. Consonants are merged with their closest neigh-233

boring vowel, gravitating towards the rightmost vowel in234

case of both neighboring phonemes being vowels. Each235

syllable has an onset and duration which are derived from236

the alignment of each phoneme belonging to that syllable,237

and these temporal alignments of syllables are what defines238

the notes.239

[20] S. Antonisen and I. López-Espejo, “PolySinger: Singing-Voice to Singing-Voice Translation from English to Japanese”.
Submitted to ISMIR 2024
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Noise-Robust Hearing Aid Voice Control
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6

room acoustics. Furthermore, it is reasonable to expect that,
in general, such a phase difference pattern can be easily
distinguished from those resulting from external speakers,
whose spatial locations with respect to the microphones are
necessarily different from that of a user.

Moreover, in our previous work [15], we found that the
higher the similarities between the own-voice and head-related
transfer functions2 of the user in terms of MFCC Euclidean
distance, the less distinguishable is an external speaker from
the user. In [15], these similarities yielded a reduction in
external speaker detection accuracy and, in turn, a drop in
performance in terms of KWS accuracy. This is because
spotting a keyword uttered by an external speaker as if it were
spoken by the user is considered to be an erroneous keyword
prediction.

Hence, for better discrimination between users’ own-voice
and external speakers, we propose the use of phase difference
information through GCC-PHAT-based features in the CQT
domain.

The GCC-PHAT coefficients, GPHAT (k, t), are defined as
[16]:

GPHAT (k, t) =
X1(k, t)[X2(k, t)]

∗

|X1(k, t)[X2(k, t)]∗|

= ej(φ1(k,t)−φ2(k,t)),

k = 1, ...,K, t = 1, ..., T,

(13)

where | · | denotes magnitude, [·]∗ refers to complex conjuga-
tion, and φ1(k, t) and φ2(k, t) are the phases of the signals
from the front and rear microphones, respectively. Then, a
GCC-PHAT-based matrix A ∈ RT×K is built from the angle
of (13), ]GPHAT (k, t) = φ1(k, t)− φ2(k, t), that is,

A =

 ]GPHAT (1, 1) · · · ]GPHAT (K, 1)
...

. . .
...

]GPHAT (1, T ) · · · ]GPHAT (K,T )

 . (14)

After mean and variance normalization of A, this matrix
is stacked to the T × K × 2 log-spectral magnitude tensor
described above and defined from Xi to create a compact and
coherent T ×K × 3 input feature tensor to the model.

In case of an arbitrary number of microphones, M , a total
of CM2 =

(
M
2

)
=M(M−1)/2 GCC-PHAT-based matrices

can be calculated as in (14) from the different CM2 pairs
of microphones. In this case, the size of the feature tensor
becomes T ×K ×

(
M + CM2

)
.

IV. EXPERIMENTAL FRAMEWORK

A. Multi-user Hearing Aid Speech Corpus

A multi-user hearing aid speech database is constructed in
order to train and test various variants of the proposed system.
This multi-user hearing aid speech database is a generalization
of the single-user hearing aid speech corpus presented in
[15]. Recall that, in this paper, “single-user” and “multi-
user” allude to whether impulse responses are measured, as
described below, on a single person or on multiple persons

2These concepts are carefully defined later in Subsection IV-A.
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Fig. 4. Experimental set-up for transfer function measuring. Every external
speaker can be located in one of the 48 equidistantly spaced points (black
dots) on a circumference of 1.9 meter radius. One at a time, actual persons
and mannequins wearing a two-microphone behind-the-ear hearing aid in the
left ear are seated in the center of the circumference. The blue and red dots
refer to the front and rear microphones, respectively, of the hearing aid. The
brown circles symbolize the position of the sixteen loudspeakers.

Rear microphone
Front

microphone
1 cm

Fig. 5. Hearing aid shell mounted on the left ear of a head and torso simulator
with the front and rear microphone locations annotated [41].

wearing a hearing aid. Although the two databases have a
number of features in common, the multi-user hearing aid
speech database is described here in detail for the sake of
completeness. The database is created from the Google Speech
Commands Dataset (GSCD) [13], which is a speech corpus
that contains a total of 105,829 one-second long utterances,
each comprising one word among a set of 35 words. These
utterances were produced by 2,618 different speakers.

Figure 4 shows the experimental set-up used to generate
the multi-user hearing aid speech database from the GSCD.
Sixteen loudspeakers are arranged in a circular array, placed
equidistantly spaced around actual female and male subjects,
as well as mannequins, at eye-height in a low-reverberation lis-
tening room. Subjects and mannequins wear a two-microphone
behind-the-ear hearing aid prototype in the left ear similar
to the one in Figure 5 with an inter-microphone distance
of 10 mm. Own-voice transfer functions (OVTFs) and head-
related transfer functions (HRTFs) are measured on subjects
and mannequins one at a time. An OVTF is defined as the
pair of acoustic transfer functions between the mouth of the
subject and the front and rear microphones of her/his left ear
hearing aid. For this purpose, a close-talk microphone is placed
2 cm in front of the person’s mouth and speech sentences
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Iván López-Espejo (University of Granada) AI in Speech Recognition and Voice Control Thursday 18th April, 2024 34 / 35



AI in Speech Recognition and Voice Control
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