

Introduction

- Speaker verification performance tends to dramatically drop in the presence of non-neutrally-phonated (e.g., *shouted and whispered*) speech
- Previous work explored a series of *minimum mean square error (MMSE)* techniques estimating **normal speaker embeddings from non-neutrally-phonated ones**
- MEMLIN** (Multi-Environment Model-based LInear Normalization) provided the best performance in terms of equal error rate (EER) when dealing with both shouted and whispered speech
- In this work **we tackle a MEMLIN's shortcoming**, which is explained in the next box

Normal Speaker Embedding Estimation

$\tilde{\mathbf{x}} \in \mathbb{R}^D$: Normal embedding | $\tilde{\mathbf{y}} \in \mathbb{R}^D$: Non-neutrally-phonated embedding | $\tilde{\mathbf{v}} \in \mathbb{R}^D$: Vocal effort transfer vector

MMSE Estimation

$$\tilde{\mathbf{y}} = \tilde{\mathbf{x}} + \tilde{\mathbf{v}} \rightarrow \text{Assuming } \tilde{\mathbf{y}} \text{ is modeled by a } K\text{-component GMM} \rightarrow \hat{\tilde{\mathbf{x}}} = \tilde{\mathbf{y}} - \underbrace{\sum_{k=1}^K P(k|\tilde{\mathbf{y}}) \hat{\mathbf{v}}^{\{k\}}}_{\hat{\mathbf{v}}}$$

- Limitation of MEMLIN:** The set of partial estimates $\{\hat{\mathbf{v}}^{\{k\}}; k = 1, \dots, K\}$ is pre-computed (during an offline training stage) and fixed

To overcome MEMLIN's shortcoming, we propose MMSE_V:

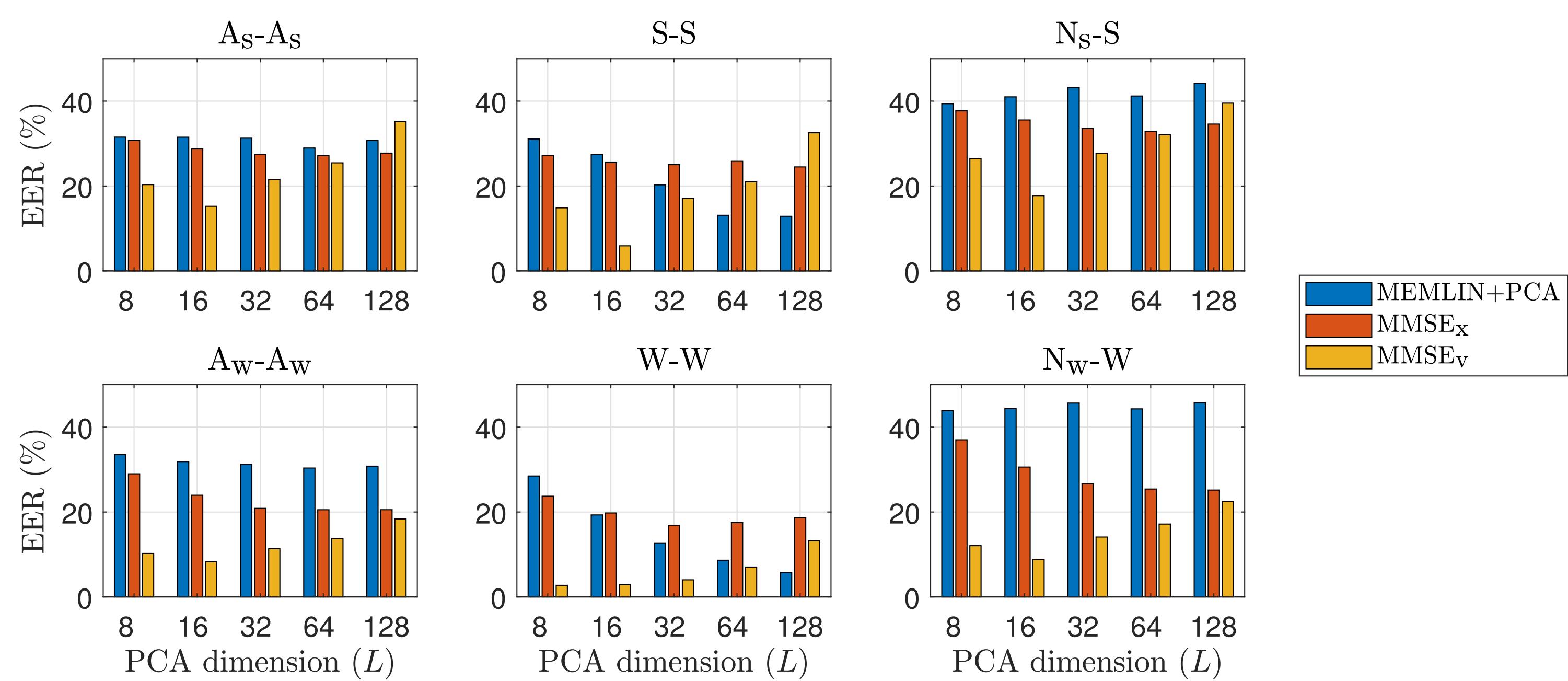
- We jointly model $\tilde{\mathbf{v}}$ and $\tilde{\mathbf{y}}$ by a K -component GMM $p(\tilde{\mathbf{z}} = (\tilde{\mathbf{v}}, \tilde{\mathbf{y}}))$
- Estimation is carried out in a **principal component analysis (PCA)** domain **to face data scarcity**

Let \mathbf{W}_L be a $D \times L$ PCA transform matrix, where $L \ll D = 256$

$$p(\mathbf{z} = (\mathbf{v}, \mathbf{y}) \in \mathbb{R}^{2L}) = \sum_{k=1}^K P(k) \mathcal{N} \left(\mathbf{z} \mid \boldsymbol{\mu}_z^{\{k\}}, \boldsymbol{\Sigma}_z^{\{k\}} \right), \quad \boldsymbol{\mu}_z^{\{k\}} = \begin{pmatrix} \boldsymbol{\mu}_v^{\{k\}} \\ \boldsymbol{\mu}_y^{\{k\}} \end{pmatrix}, \quad \boldsymbol{\Sigma}_z^{\{k\}} = \begin{pmatrix} \boldsymbol{\Sigma}_{vv}^{\{k\}} & \boldsymbol{\Sigma}_{vy}^{\{k\}} \\ \boldsymbol{\Sigma}_{yy}^{\{k\}} & \boldsymbol{\Sigma}_{yy}^{\{k\}} \end{pmatrix}$$

MMSE_V Compensation

$$\hat{\mathbf{v}} = \mathbb{E}(\mathbf{v}|\mathbf{y}) = \sum_{k=1}^K P(k|\mathbf{y}) \underbrace{\mathbb{E}(\mathbf{v}|\mathbf{y}, k)}_{\hat{\mathbf{v}}^{\{k\}}} \rightarrow \hat{\tilde{\mathbf{x}}} = \tilde{\mathbf{y}} - \underbrace{\mathbf{W}_L \hat{\mathbf{v}}}_{\hat{\mathbf{v}}}$$


- Combination weights:** $P(k|\mathbf{y}) = \frac{p(\mathbf{y}|k)P(k)}{\sum_{k'=1}^K p(\mathbf{y}|k')P(k')}$

- Partial estimates:** $\mathbb{E}(\mathbf{v}|\mathbf{y}, k) = \boldsymbol{\mu}_v^{\{k\}} + \boldsymbol{\Sigma}_{vy}^{\{k\}} \left(\boldsymbol{\Sigma}_{yy}^{\{k\}} \right)^{-1} (\mathbf{y} - \boldsymbol{\mu}_y^{\{k\}})$

- Both \mathbf{W}_L and $p(\mathbf{z})$ are calculated from paired normal and non-neutrally-phonated embeddings

Experimental Results and Discussion

- EER (%)** is the chosen speaker verification metric | Use of $K = 8$ -component GMMs
- Embedding compensation experiments are carried out by employing *E-T+WavLM* as the baseline system
- MMSE_X:** MMSE estimator equivalent to MMSE_V that directly estimates $\tilde{\mathbf{x}}$ from $\mathbb{E}(\mathbf{x}|\mathbf{y})$

Shouted and normal speech:

Condition	E-T+MFCC	E-T+WavLM	MEMLIN	MEMLIN+PCA	MMSE _X	MMSE _V
As-As	19.96	17.11	15.62	31.50	28.72	15.22
Ns-Ns	9.73	7.25	7.25	7.25	7.25	7.25
S-S	11.58	9.94	10.44	27.46	25.53	5.91
Ns-S	25.28	21.76	20.74	41.00	35.56	17.74

Whispered and normal speech:

Condition	E-T+MFCC	E-T+WavLM	MEMLIN	MEMLIN+PCA	MMSE _X	MMSE _V
Aw-Aw	16.54	11.24	8.25	31.87	23.95	8.27
Nw-Nw	1.21	0.62	0.62	0.62	0.62	0.62
W-W	4.38	5.26	4.00	19.31	19.77	2.87
Nw-W	12.81	9.81	11.47	44.38	30.59	8.86