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Introduction

I Speaker verification performance tends to dra-
matically drop in the presence of non-neutrally-
phonated (e.g., shouted and whispered) speech

I Previous work explored a series of minimum
mean square error (MMSE) techniques estimat-
ing normal speaker embeddings from non-
neutrally-phonated ones

I MEMLIN (Multi-Environment Model-based LInear
Normalization) provided the best performance in
terms of equal error rate (EER) when dealing with
both shouted and whispered speech

I In this work we tackle a MEMLIN’s shortcom-
ing, which is explained in the next box

System Overview

I Speaker embedding compensation is applied only
in case that the embedding comes from non-
neutrally-phonated speech

I The ECAPA-TDNN back-end is trained on an aug-
mented version of the VoxCeleb2 dataset
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Finally, an estimate of the normal embedding x̃ is achieved
by means of Eq. (2) along with the application of the inverse
PCA transform to the result of Eq. (7), namely,

ˆ̃x = ỹ −WLv̂︸ ︷︷ ︸
ˆ̃v

. (10)

Note that, in order to apply this method in Section 4, both
the PCA transform matrix WL and the GMM p(z) are calcu-
lated from a training set comprising paired normal and non-
neutrally-phonated embeddings (see Subsection 3.1).

For the sake of reproducibility, a Python implementation
of this speaker embedding compensation methodology has
been made publicly available3.

3. SYSTEM OVERVIEW

Figure 1 depicts a block diagram of the proposed vocal effort-
robust speaker verification system. First, the powerful self-
supervised pre-trained model WavLM [3] is used to compute
a high-level representation of the input speech signal. Based
on a Transformer structure, WavLM extends HuBERT [11]
to masked speech prediction and de-noising to allow the
pre-trained model to perform well in a variety of speech
processing tasks including speaker verification. Second, an
ECAPA-TDNN [1] back-end extracts a speaker embedding
from the representation outputted by WavLM. Then, the
speaker embedding compensation methodology of Section 2
is applied only in the case that the embedding comes from
non-neutrally-phonated speech. To detect this case, a simple,
yet virtually flawless logistic regression-based detector [4, 5]
can be used. That being said, note that the results reported
in Section 4 are obtained by oracle non-neutrally-phonated
speech detection for the sake of simplicity. Finally, the result-
ing embedding is compared with a reference embedding x̃ref
by cosine similarity to produce a score sc.

3.1. Shouted and Whispered Speech Corpora

For experimental purposes, we consider the vocal effort
modes shouted and whispered in addition to normal. To
this end, we employ two different (i.e., disjoint) corpora:
the speech corpus informed in [12], which comprises paired

3https://ilopezes.files.wordpress.com/2023/06/
mmsev.zip
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Fig. 1. Block diagram of the proposed vocal effort-robust
speaker verification system. See the text for further details.

shouted-normal speech utterances in Finnish from 22 speak-
ers, and CHAINS (CHAracterizing INdividual Speakers)
[13], which contains paired whispered-normal speech ut-
terances in English from 36 speakers. Due to speech data
scarcity, all the embedding compensation experiments in
Section 4 are performed —as in [5]— by following a leave-
one-speaker-out cross-validation strategy, which serves to
split the corpora into training and test sets.

We consider the following 4 test conditions (trial lists)
under the shouted-normal scenario: As-As (all shouted
and normal utterances vs. all shouted and normal utter-
ances; 557,040 trials), Ns-Ns (normal utterances vs. nor-
mal utterances; 139,128 trials), S-S (shouted utterances vs.
shouted utterances; 139,128 trials) and Ns-S (normal utter-
ances vs. shouted utterances; 278,784 trials). Furthermore,
we similarly examine 4 equivalent test conditions under the
whispered-normal scenario, namely, Aw-Aw (2,821,498 tri-
als), Nw-Nw (705,078 trials), W-W (704,950 trials) and
Nw-W (1,411,344 trials).

For further details about these corpora, the reader is re-
ferred to [12, 13] and [5].

3.2. System Implementation Details

The used ECAPA-TDNN back-end was trained, employing
the additive angular margin (AAM) loss [14], on an aug-

I Shouted-normal speech corpus: Paired utter-
ances in Finnish from 22 speakers

I Whispered-normal speech corpus: Paired ut-
terances in English from 36 speakers (CHAINS)

I Due to speech data scarcity, experiments are
performed by following a leave-one-speaker-out
cross-validation strategy

Normal Speaker Embedding Estimation
x̃ ∈ RD : Normal embedding | ỹ ∈ RD : Non-neutrally-phonated embedding | ṽ ∈ RD : Vocal effort transfer vector
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ỹ = x̃ + ṽ −→ Assuming ỹ is modeled by a K -component GMM −→ ˆ̃x = ỹ −
K∑

k=1
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I Limitation of MEMLIN: The set of partial estimates
{

ˆ̃v{k}; k = 1, ..., K
}

is pre-computed (during an offline
training stage) and fixed

I To overcome MEMLIN’s shortcoming, we propose MMSEv:
1. We jointly model ṽ and ỹ by a K -component GMM p(z̃ = (ṽ, ỹ))
2. Estimation is carried out in a principal component analysis (PCA) domain to face data scarcity

Let WL be a D × L PCA transform matrix, where L� D = 256

v = W>L ṽ, y = W>L ỹ
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P(k|ỹ)ˆ̃v{k}

︸ ︷︷ ︸
ˆ̃v

MMSEv Compensation

v̂ = E(v|y) =
K∑

k=1

P(k|y)E(v|y, k)︸ ︷︷ ︸
v̂{k}

−→ ˆ̃x = ỹ −WLv̂︸︷︷︸
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1. Combination weights: P(k |y) =
p(y|k )P(k )

K∑
k′=1

p(y|k ′)P(k ′)

2. Partial estimates: E(v|y, k ) = µ
{k}
v + Σ{k}vy

(
Σ{k}yy

)−1 (
y− µ

{k}
y

)
I Both WL and p(z) are calculated from paired normal and non-neutrally-phonated embeddings

Experimental Results and Discussion
I EER (%) is the chosen speaker verification metric | Use of K = 8-component GMMs
I Embedding compensation experiments are carried out by employing E-T+WavLM as the baseline system
I MMSEx: MMSE estimator equivalent to MMSEv that directly estimates x̃ from E(x|y)
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Fig. 2. Speaker verification results in terms of EER, in percentages, as a function of the dimensionality, after PCA application,
of the embeddings processed by MEMLIN, MMSEx and MMSEv. Bar plots are shown for shouted and normal speech (top
row), as well as for whispered and normal speech (bottom row).

Table 1. Speaker verification results in terms of EER, in percentages, when considering both shouted and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
As-As 19.96 17.11 15.62 31.50 28.72 15.22
Ns-Ns 9.73 7.25 7.25 7.25 7.25 7.25

S-S 11.58 9.94 10.44 27.46 25.53 5.91
Ns-S 25.28 21.76 20.74 41.00 35.56 17.74

mented version of the VoxCeleb2 [15] dataset to extract
D = 256-dimensional speaker embeddings. Considering an
AAM loss margin of 0.2, first, WavLM —which was pre-
trained on 94k hours of unlabeled speech data— was fixed
and the ECAPA-TDNN parameters were trained for a total of
20 epochs. Second, WavLM and the ECAPA-TDNN back-
end were jointly fine tuned for 5 epochs. Finally, by following
the large margin fine-tuning strategy reported in [16], WavLM
and the ECAPA-TDNN back-end were jointly trained for 2
more epochs by considering an AAM loss margin of 0.4.
Notice that, for the sake of reproducibility, the model cor-
responding to this speaker verification system is publicly
available4. The reader is referred to [3] for further informa-
tion on this speaker verification system.

4. EXPERIMENTAL RESULTS

In this section, EER is chosen as the speaker verification per-
formance metric. Besides, as in previous work [4, 5], all the

4https://github.com/microsoft/unilm/tree/master/
wavlm

embedding compensation techniques evaluated make use of
K = 8-component GMMs.

4.1. WavLM Performance

Tables 1 and 2 show speaker verification results in terms of
EER under the shouted-normal and whispered-normal scenar-
ios, respectively. The left part of these tables compare, when
no embedding compensation is considered, the use of WavLM
speech representations (as in Section 3), E-T+WavLM, with
the use of traditional speech features, E-T+MFCC (note that
E-T stands for ECAPA-TDNN). Specifically, the speaker
verification system E-T+MFCC, which is publicly avail-
able5, employs 80-dimensional Mel-frequency cepstral coef-
ficients [17]. In line with [3], we can see from these tables
that E-T+WavLM generally outperforms E-T+MFCC. That
being said, we can also observe that there is still a large room
for improvement in the presence of vocal effort mismatch (all
conditions except Ns-Ns and Nw-Nw) that will be addressed
by embedding compensation in the next subsections. Bear

5https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb

Whispered and normal speech:
Table 2. Speaker verification results in terms of EER, in percentages, when considering both whispered and normal speech.
MEMLIN+PCA, MMSEx and MMSEv process, after PCA application, L = 16-dimensional embeddings.

Condition E-T+MFCC E-T+WavLM MEMLIN MEMLIN+PCA MMSEx MMSEv
Aw-Aw 16.54 11.24 8.25 31.87 23.95 8.27
Nw-Nw 1.21 0.62 0.62 0.62 0.62 0.62

W-W 4.38 5.26 4.00 19.31 19.77 2.87
Nw-W 12.81 9.81 11.47 44.38 30.59 8.86

in mind that all the embedding compensation experiments in
this section are carried out by employing E-T+WavLM as the
baseline system.

4.2. Effect of PCA Dimension

Figure 2 plots the EER performance of the estimation method-
ology proposed in Section 2, MMSEv, as a function of the
PCA dimension L. For comparison, these bar plots also show
results from MEMLIN (applied in the PCA domain) as well
as from an MMSE estimator equivalent to that of Section 2
that directly estimates the normal embedding x̃ from E[x|y],
MMSEx. From this figure, we can see that MEMLIN’s per-
formance tends to drop when decreasing L as a result of the
information loss caused by PCA compression, which can be
particularly harmful when the estimation relies on a small set
of pre-computed and fixed partial estimates.

On the other hand, MMSEv involves the computation of
2L × 2L covariance matrices, Σ{k}

z , under a data scarcity
scenario. Given our small sample size, reducing L helps to
achieve better-conditioned covariance matrices to be used in
Eqs. (8) and (9). This, together with the fact that MMSEv ex-
ploits the observed non-neutrally-phonated embedding ỹ for
partial estimate calculation, can explain why EER decreases
up to L = 16 for MMSEv (see Figure 2). Keeping decreasing
L beyond this point harms speaker verification performance
due to the information loss entailed by PCA compression.

In relation to MMSEx, an internal analysis revealed that
estimating the normal embedding x̃ from E[x|y] yields target
and non-target score probability masses that are poorly sep-
arated as a result of compensated embeddings ˆ̃x where the
specific-speaker information is significantly distorted. Inter-
estingly, we also observed that the vocal effort transfer vec-
tor ṽ has a weak speaker-dependence. Therefore, estimat-
ing x̃ as ỹ − ˆ̃v according to MMSEv better preserves the
specific-speaker information contained in ỹ, which, in turn,
leads to better-separated target and non-target score probabil-
ity masses.

4.3. Embedding Compensation Performance Summary

The right part of Tables 1 and 2 compare standard MEMLIN
(i.e., without PCA) with MMSEv, MMSEx and MEMLIN

applied in the PCA domain (MEMLIN+PCA). Note that, in
these tables, the three latter techniques process, after PCA
application, L = 16-dimensional embeddings. Under the
shouted-normal scenario (Table 1), MMSEv outperforms
MEMLIN in the presence of vocal effort mismatch (i.e., in
As-As, S-S and Ns-S). Furthermore, while MEMLIN is on
par with MMSEv in Aw-Aw under the whispered-normal
scenario (Table 2), MMSEv achieves in Nw-W a 22.7% EER
relative improvement with respect to MEMLIN which actu-
ally worsens the baseline system E-T+WavLM (as in the S-S
condition).

5. CONCLUDING REMARKS

In this work, we have shown that embedding compensation
can significantly mitigate the speaker verification perfor-
mance drop caused by vocal effort mismatch when a state-of-
the-art speaker verification system integrating a cutting-edge
self-supervised pre-trained model for speech representation
is used. With the aim of improving a reference embedding
compensation method —i.e., MEMLIN—, we have proposed
an MMSE estimator of the vocal effort transfer vector that,
unlike MEMLIN, exploits the non-neutrally-phonated em-
beddings observed at test time for partial estimate calculation
and performs in a PCA domain to cope with non-neutrally-
phonated speech data scarcity. Compared with MEMLIN, the
proposed MMSE estimator has shown superior and compet-
itive EER performance when processing shouted and whis-
pered speech, respectively.
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