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Introduction CASPR
Centre for Acoustic Signal Processing Research

Speech technologies have become ubiquitous in nowadays society

KWS
+

ASR
KWS
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HEY
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Wake-up word
+ Query

Spoken keyword spotting (KWS) can be defined as the task of identifying
keywords in audio streams comprising speech

Applications of KWS: speech data mining, audio indexing, phone call
routing, etc.
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General Approaches CASPR
Centre for Acoustic Signal Processing Research

Over the years, different techniques have been explored for KWS:

1) Large-vocabulary continuous speech recognition

Flexibility to deal with non-predefined keywords

High computational complexity

Dong Wang, “Out-of-Vocabulary Spoken Term Detection”. 2010
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General Approaches CASPR
Centre for Acoustic Signal Processing Research

Over the years, different techniques have been explored for KWS:

2) Keyword/filler hidden Markov model (HMM)

Good performance

Viterbi decoding is still needed

NON-
SPEECH

SPEECH

w ɜr dik

Filler HMM - Speech/Non-speech loop

Keyword HMM - "Keyword" phone state sequence
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General Approaches CASPR
Centre for Acoustic Signal Processing Research

Over the years, different techniques have been explored for KWS:

3) Deep spoken keyword spotting

No complicated sequence search algorithm
Adjustable complexity
Significant improvements over keyword/filler HMM in small-footprint scenarios

Guoguo Chen, Carolina Parada and Georg Heigold, “Small-footprint keyword spotting using deep neural networks”. In Proc. of
ICASSP 2014
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Motivation and Goal of the Tutorial CASPR
Centre for Acoustic Signal Processing Research

Deep KWS is very appealing to be deployed to a variety of consumer
electronics with limited resources like earphones and headphones,
smartphones, smart speakers and so on

Much research on deep KWS has been conducted since 2014 until today

We can expect that deep KWS will continue to be a hot topic in the future!

Forecasts suggest that, by 2024, the number of voice assistant units will
exceed that of world’s population

For today

We will present a review into deep spoken KWS intended for practitioners and
researchers who are interested in this technology
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Organization of the Tutorial CASPR
Centre for Acoustic Signal Processing Research

1. Introduction (Iván López-Espejo)

2. The Deep Spoken Keyword Spotting Approach (Iván López-Espejo)

3. Robustness in Keyword Spotting (John H. L. Hansen)

4. BREAK (∼15 min)

5. Audio-Visual Keyword Spotting (Zheng-Hua Tan)

6. Technology Applications (Zheng-Hua Tan)

7. Experimental Considerations (Iván López-Espejo)

8. Conclusions and Future Directions (Iván López-Espejo)

9. Q&A (Iván López-Espejo, Zheng-Hua Tan and John H. L. Hansen)

Iván López-Espejo
Aalborg University (Denmark)

Zheng-Hua Tan
Aalborg University (Denmark)

John H. L. Hansen
The University of Texas at Dallas (USA)
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The General Pipeline CASPR
Centre for Acoustic Signal Processing ResearchI. López-Espejo et al.: Deep Spoken KWS: An Overview
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FIGURE 2. General pipeline of a modern deep spoken keyword spotting system: 1) features are extracted from the speech signal, 2) a DNN acoustic model uses
these features to produce posteriors over the different keyword and filler (non-keyword) classes, and 3) the temporal sequence of these posteriors is processed
(Posterior Handling) to determine the possible existence of keywords.

II. DEEP SPOKEN KEYWORD SPOTTING APPROACH
Figure 2 depicts the general pipeline of a modern deep
spoken keyword spotting system [15], [22], [28], [41]–[43],
which is composed of three main blocks: 1) the speech
feature extractor converting the input signal to a compact
speech representation, 2) the deep learning-based acoustic
model producing posteriors over the different keyword and
filler (non-keyword) classes from the speech features (see the
example of Figure 3), and 3) the posterior handler processing
the temporal sequence of posteriors to determine the possible
existence of keywords in the input signal.

Let x(m) be a finite acoustic time signal comprising
speech. In the first place, the speech feature extractor com-
putes an alternative representation of x(m), namely, X. It is
desirable X to be compact (i.e., lower-dimensional, to limit
the computational complexity of the task), discriminative in
terms of the phonetic content and robust to acoustic varia-
tions [44]. Speech features X are traditionally represented by
a two-dimensional matrix composed of a time sequence of
K-dimensional feature vectors xt (t = 0, ..., T − 1) as in

X = (x0, ...,xt, ...,xT−1) ∈ RK×T , (1)

where T , the total number of feature vectors, depends on the
length of the signal x(m). Speech features X can be based on
a diversity of representation types, such as, e.g., spectral [22],
[28], [45], cepstral [16], [46] and time-domain ones [47].
Further details about the different types of speech features
used for KWS are provided in Section III.

The DNN acoustic model receives X as input and outputs a
sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments

X{i} = (xis−P , ...,xis, ...,xis+F ) (2)

of X until the whole feature sequence X is processed. In Eq.
(2), i = dPs e, ..., b

T−1−F
s c is an integer segment index and s

represents the time frame shift. Moreover, P and F denote,
respectively, the number of past and future frames (temporal
context) in each segment X{i} ∈ RK×(P+F+1). While s is
typically designed to have some degree of overlap between

2A proof of this is the organization of events like Auto-KWS 2021
Challenge [40].
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FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords “right” and “left”,
other speech and silence/noise. The acoustic model receives a speech segment
X{i} (log-Mel spectrogram) comprising the keyword “left”. The DNN produces
a posterior distribution over the N = 4 different classes. Keyword “left” is
given the highest posterior probability, 0.8.

consecutive segments X{i} and X{i+1}, many works con-
sider acoustic models classifying non-overlapping segments
that are sufficiently long (e.g., one second) to cover an entire
keyword [16], [30], [48]–[53]. With regard to P and F , a
number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].

Then, let us suppose that the DNN acoustic model f(·|θ) :
RK×(P+F+1) → IN has N output nodes meaning N differ-
ent classes, where θ and I = [0, 1] denote the parameters
of the acoustic model and the unit interval, respectively.
Normally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62],
the latter especially in the context of sequence-to-sequence
models [63]–[65] (see Subsection IV-C for further details).
Let subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, ..., N, (3)

where y
{i}
n = P

(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]

VOLUME 4, 2016 3

Three main blocks:

Speech feature extractor

Deep learning-based acoustic model

Posterior handler
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Further details about the different types of speech features
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sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments
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of X until the whole feature sequence X is processed. In Eq.
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FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords “right” and “left”,
other speech and silence/noise. The acoustic model receives a speech segment
X{i} (log-Mel spectrogram) comprising the keyword “left”. The DNN produces
a posterior distribution over the N = 4 different classes. Keyword “left” is
given the highest posterior probability, 0.8.

consecutive segments X{i} and X{i+1}, many works con-
sider acoustic models classifying non-overlapping segments
that are sufficiently long (e.g., one second) to cover an entire
keyword [16], [30], [48]–[53]. With regard to P and F , a
number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].

Then, let us suppose that the DNN acoustic model f(·|θ) :
RK×(P+F+1) → IN has N output nodes meaning N differ-
ent classes, where θ and I = [0, 1] denote the parameters
of the acoustic model and the unit interval, respectively.
Normally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62],
the latter especially in the context of sequence-to-sequence
models [63]–[65] (see Subsection IV-C for further details).
Let subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, ..., N, (3)

where y
{i}
n = P

(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]
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Speech feature extraction

x(m) −→ Speech feature extractor −→ X = (x0, ..., xt , ..., xT−1) ∈ RK×T

X{i} = (xis−P , ..., xis , ..., xis+F ) ∈ RK×(P+F+1), i = dPs e, ..., b
T−1−F

s c

Typically, F < P
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where T , the total number of feature vectors, depends on the
length of the signal x(m). Speech features X can be based on
a diversity of representation types, such as, e.g., spectral [22],
[28], [45], cepstral [16], [46] and time-domain ones [47].
Further details about the different types of speech features
used for KWS are provided in Section III.

The DNN acoustic model receives X as input and outputs a
sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments
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of X until the whole feature sequence X is processed. In Eq.
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FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords “right” and “left”,
other speech and silence/noise. The acoustic model receives a speech segment
X{i} (log-Mel spectrogram) comprising the keyword “left”. The DNN produces
a posterior distribution over the N = 4 different classes. Keyword “left” is
given the highest posterior probability, 0.8.

consecutive segments X{i} and X{i+1}, many works con-
sider acoustic models classifying non-overlapping segments
that are sufficiently long (e.g., one second) to cover an entire
keyword [16], [30], [48]–[53]. With regard to P and F , a
number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].

Then, let us suppose that the DNN acoustic model f(·|θ) :
RK×(P+F+1) → IN has N output nodes meaning N differ-
ent classes, where θ and I = [0, 1] denote the parameters
of the acoustic model and the unit interval, respectively.
Normally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62],
the latter especially in the context of sequence-to-sequence
models [63]–[65] (see Subsection IV-C for further details).
Let subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, ..., N, (3)

where y
{i}
n = P

(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]

VOLUME 4, 2016 3

Deep learning-based acoustic modeling

f (·|θ) : RK×(P+F+1) → [0, 1]N

The N output nodes represent either words or subword units (e.g.,
context-independent phonemes)

y
{i}
n = P

(
Cn|X{i}, θ

)
= fn

(
X{i}|θ

)
, n = 1, ...,N

N∑
n=1

y{i}n = 1, ∀i (fully-connected layer + softmax activation)
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feature extractor converting the input signal to a compact
speech representation, 2) the deep learning-based acoustic
model producing posteriors over the different keyword and
filler (non-keyword) classes from the speech features (see the
example of Figure 3), and 3) the posterior handler processing
the temporal sequence of posteriors to determine the possible
existence of keywords in the input signal.

Let x(m) be a finite acoustic time signal comprising
speech. In the first place, the speech feature extractor com-
putes an alternative representation of x(m), namely, X. It is
desirable X to be compact (i.e., lower-dimensional, to limit
the computational complexity of the task), discriminative in
terms of the phonetic content and robust to acoustic varia-
tions [44]. Speech features X are traditionally represented by
a two-dimensional matrix composed of a time sequence of
K-dimensional feature vectors xt (t = 0, ..., T − 1) as in

X = (x0, ...,xt, ...,xT−1) ∈ RK×T , (1)

where T , the total number of feature vectors, depends on the
length of the signal x(m). Speech features X can be based on
a diversity of representation types, such as, e.g., spectral [22],
[28], [45], cepstral [16], [46] and time-domain ones [47].
Further details about the different types of speech features
used for KWS are provided in Section III.

The DNN acoustic model receives X as input and outputs a
sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments
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of X until the whole feature sequence X is processed. In Eq.
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keyword [16], [30], [48]–[53]. With regard to P and F , a
number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
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RK×(P+F+1) → IN has N output nodes meaning N differ-
ent classes, where θ and I = [0, 1] denote the parameters
of the acoustic model and the unit interval, respectively.
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feature extractor converting the input signal to a compact
speech representation, 2) the deep learning-based acoustic
model producing posteriors over the different keyword and
filler (non-keyword) classes from the speech features (see the
example of Figure 3), and 3) the posterior handler processing
the temporal sequence of posteriors to determine the possible
existence of keywords in the input signal.

Let x(m) be a finite acoustic time signal comprising
speech. In the first place, the speech feature extractor com-
putes an alternative representation of x(m), namely, X. It is
desirable X to be compact (i.e., lower-dimensional, to limit
the computational complexity of the task), discriminative in
terms of the phonetic content and robust to acoustic varia-
tions [44]. Speech features X are traditionally represented by
a two-dimensional matrix composed of a time sequence of
K-dimensional feature vectors xt (t = 0, ..., T − 1) as in

X = (x0, ...,xt, ...,xT−1) ∈ RK×T , (1)

where T , the total number of feature vectors, depends on the
length of the signal x(m). Speech features X can be based on
a diversity of representation types, such as, e.g., spectral [22],
[28], [45], cepstral [16], [46] and time-domain ones [47].
Further details about the different types of speech features
used for KWS are provided in Section III.

The DNN acoustic model receives X as input and outputs a
sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments

X{i} = (xis−P , ...,xis, ...,xis+F ) (2)

of X until the whole feature sequence X is processed. In Eq.
(2), i = dPs e, ..., b

T−1−F
s c is an integer segment index and s

represents the time frame shift. Moreover, P and F denote,
respectively, the number of past and future frames (temporal
context) in each segment X{i} ∈ RK×(P+F+1). While s is
typically designed to have some degree of overlap between

2A proof of this is the organization of events like Auto-KWS 2021
Challenge [40].
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FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords “right” and “left”,
other speech and silence/noise. The acoustic model receives a speech segment
X{i} (log-Mel spectrogram) comprising the keyword “left”. The DNN produces
a posterior distribution over the N = 4 different classes. Keyword “left” is
given the highest posterior probability, 0.8.

consecutive segments X{i} and X{i+1}, many works con-
sider acoustic models classifying non-overlapping segments
that are sufficiently long (e.g., one second) to cover an entire
keyword [16], [30], [48]–[53]. With regard to P and F , a
number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].

Then, let us suppose that the DNN acoustic model f(·|θ) :
RK×(P+F+1) → IN has N output nodes meaning N differ-
ent classes, where θ and I = [0, 1] denote the parameters
of the acoustic model and the unit interval, respectively.
Normally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62],
the latter especially in the context of sequence-to-sequence
models [63]–[65] (see Subsection IV-C for further details).
Let subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, ..., N, (3)

where y
{i}
n = P

(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]
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FIGURE 2. General pipeline of a modern deep spoken keyword spotting system: 1) features are extracted from the speech signal, 2) a DNN acoustic model uses
these features to produce posteriors over the different keyword and filler (non-keyword) classes, and 3) the temporal sequence of these posteriors is processed
(Posterior Handling) to determine the possible existence of keywords.

II. DEEP SPOKEN KEYWORD SPOTTING APPROACH
Figure 2 depicts the general pipeline of a modern deep
spoken keyword spotting system [15], [22], [28], [41]–[43],
which is composed of three main blocks: 1) the speech
feature extractor converting the input signal to a compact
speech representation, 2) the deep learning-based acoustic
model producing posteriors over the different keyword and
filler (non-keyword) classes from the speech features (see the
example of Figure 3), and 3) the posterior handler processing
the temporal sequence of posteriors to determine the possible
existence of keywords in the input signal.

Let x(m) be a finite acoustic time signal comprising
speech. In the first place, the speech feature extractor com-
putes an alternative representation of x(m), namely, X. It is
desirable X to be compact (i.e., lower-dimensional, to limit
the computational complexity of the task), discriminative in
terms of the phonetic content and robust to acoustic varia-
tions [44]. Speech features X are traditionally represented by
a two-dimensional matrix composed of a time sequence of
K-dimensional feature vectors xt (t = 0, ..., T − 1) as in

X = (x0, ...,xt, ...,xT−1) ∈ RK×T , (1)

where T , the total number of feature vectors, depends on the
length of the signal x(m). Speech features X can be based on
a diversity of representation types, such as, e.g., spectral [22],
[28], [45], cepstral [16], [46] and time-domain ones [47].
Further details about the different types of speech features
used for KWS are provided in Section III.

The DNN acoustic model receives X as input and outputs a
sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments

X{i} = (xis−P , ...,xis, ...,xis+F ) (2)

of X until the whole feature sequence X is processed. In Eq.
(2), i = dPs e, ..., b

T−1−F
s c is an integer segment index and s

represents the time frame shift. Moreover, P and F denote,
respectively, the number of past and future frames (temporal
context) in each segment X{i} ∈ RK×(P+F+1). While s is
typically designed to have some degree of overlap between

2A proof of this is the organization of events like Auto-KWS 2021
Challenge [40].
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FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords “right” and “left”,
other speech and silence/noise. The acoustic model receives a speech segment
X{i} (log-Mel spectrogram) comprising the keyword “left”. The DNN produces
a posterior distribution over the N = 4 different classes. Keyword “left” is
given the highest posterior probability, 0.8.

consecutive segments X{i} and X{i+1}, many works con-
sider acoustic models classifying non-overlapping segments
that are sufficiently long (e.g., one second) to cover an entire
keyword [16], [30], [48]–[53]. With regard to P and F , a
number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].

Then, let us suppose that the DNN acoustic model f(·|θ) :
RK×(P+F+1) → IN has N output nodes meaning N differ-
ent classes, where θ and I = [0, 1] denote the parameters
of the acoustic model and the unit interval, respectively.
Normally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62],
the latter especially in the context of sequence-to-sequence
models [63]–[65] (see Subsection IV-C for further details).
Let subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, ..., N, (3)

where y
{i}
n = P

(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]
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FIGURE 4. Example of the processing of two consecutive feature segments
X{i} and X{i+1}, from X comprising the keyword “right”, by a DNN acoustic
model: (a) when using an overlapping segmentation window, and (b) when
using a smaller, non-overlapping one.

as an output layer, e.g., [16], [43], [47], [52], [60], [67]–
[72]. The parameters of the model, θ, are usually estimated
by discriminatively training f(·|θ) by backpropagation from
annotated speech data characterizing the different N classes.
The most popular loss function that is employed to this end
is cross-entropy loss [73], [74].

Figure 3 shows an example, illustrating the above para-
graph, in which there are N = 4 different classes. Two of
these classes represent the keywords “right” (C1) and “left”
(C2). The other two classes are the filler classes other speech
(C3) and silence/noise (C4). A segment X{i} consisting of a
log-Mel spectrogram comprising the keyword “left” is input
to the DNN acoustic model. Then, this generates a posterior
distribution y{i} over the N = 4 classes. Keyword “left”
is given the highest posterior probability, namely, y{i}2 =
P
(
C2|X{i}, θ

)
= 0.8.

Most of the research that has been conducted on deep
KWS has focused on its key part, which is the design of
increasingly accurate and decreasingly computationally com-
plex acoustic models f(·|θ) [32], [75].

Finally, KWS is not a static task but a dynamic one in
which the KWS system has to continuously listen to the
input signal x(m) to yield the sequence of posteriors y{i},
i = dPs e, ..., b

T−1−F
s c, in order to detect keywords in real-

time. In the example in Figure 3, a straightforward way to do
this could just be choosing the class Ĉ{i} with the highest
posterior, that is,

Ĉ{i} = argmax
Cn

y{i}n = argmax
Cn

P
(
Cn|X{i}, θ

)
. (4)

Nevertheless, this approach is not robust, as discussed in
what follows. Continuing with the illustration of Figure 3,
Figure 4 exemplifies the processing by the acoustic model of
two consecutive feature segments X{i} and X{i+1} from X
comprising the keyword “right”. Figure 4a shows the typical
case of using an overlapping segmentation window. As we
can see, following the approach of Eq. (4) might lead to
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frequency
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cosine
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Mel-frequency cepstrum

FIGURE 5. Classical pipeline for extracting log-Mel spectral and
Mel-frequency cepstral speech features using the fast Fourier transform (FFT).

detecting the same keyword realization twice, yielding a false
alarm. In addition, Figure 4b depicts the case in which a
non-overlapping segmentation window is employed. In this
situation, the energy of the keyword realization leaks into two
different segments in such a manner that neither the posterior
P
(
C1|X{i}, θ

)
nor P

(
C1|X{i+1}, θ

)
is sufficiently strong

for the keyword to be detected, thereby yielding a miss detec-
tion. Hence, a proper handling of the sequence of posteriors
y{i} (i = dPs e, ..., b

T−1−F
s c) is a very important component

for effective keyword detection [2], [4], [15], [22], [29],
[41]–[43], [45], [46], [56], [76]–[79]. Posterior handling is
examined in Section V.

III. SPEECH FEATURE EXTRACTION
In the following subsections, we walk through the most
relevant speech features revolving around deep KWS: Mel-
scale-related features, recurrent neural network features, low-
precision features, learnable filterbank features and other
features.

A. MEL-SCALE-RELATED FEATURES
Speech features based on the perceptually-motivated Mel-
scale filterbank [80], like the log-Mel spectral coefficients
and Mel-frequency cepstral coefficients (MFCCs) [81], have
been widely used over decades in the fields of ASR and,
indeed, KWS. Despite the multiple attempts to learn opti-
mal, alternative representations from the speech signal (see
Subsection III-D for more details), Mel-scale-related features
are still nowadays a solid, competitive and safe choice [82].
Figure 5 depicts the well-known classical pipeline for extract-
ing log-Mel spectral and MFCC features. In deep KWS, both
types of speech features are commonly normalized to have
zero mean and unit standard deviation before being input
to the acoustic model, thereby stabilizing and speeding up
training as well as improving model generalization [83].

Mel-scale-related features are, by far, the most widely used
speech features in deep KWS. For example, MFCCs with
temporal context and, sometimes, their first- and second-
order derivatives are used in [16], [30], [46], [51]–[53], [84]–
[91]. As can be seen from Figure 5, MFCCs are obtained

4 VOLUME 4, 2016

KWS is not a static task but a
dynamic one

Ĉ{i} = argmaxCn
y
{i}
n =

argmaxCn
P
(
Cn|X{i}, θ

)
(not the

best way)

f (·|θ) : RK×(P+F+1) → [0, 1]N

The N output nodes represent either words or subword units (e.g.,
context-independent phonemes)

y
{i}
n = P

(
Cn|X{i}, θ

)
= fn

(
X{i}|θ

)
, n = 1, ...,N

N∑
n=1

y{i}n = 1, ∀i (fully-connected layer + softmax activation)
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FIGURE 4. Example of the processing of two consecutive feature segments
X{i} and X{i+1}, from X comprising the keyword “right”, by a DNN acoustic
model: (a) when using an overlapping segmentation window, and (b) when
using a smaller, non-overlapping one.

as an output layer, e.g., [16], [43], [47], [52], [60], [67]–
[72]. The parameters of the model, θ, are usually estimated
by discriminatively training f(·|θ) by backpropagation from
annotated speech data characterizing the different N classes.
The most popular loss function that is employed to this end
is cross-entropy loss [73], [74].

Figure 3 shows an example, illustrating the above para-
graph, in which there are N = 4 different classes. Two of
these classes represent the keywords “right” (C1) and “left”
(C2). The other two classes are the filler classes other speech
(C3) and silence/noise (C4). A segment X{i} consisting of a
log-Mel spectrogram comprising the keyword “left” is input
to the DNN acoustic model. Then, this generates a posterior
distribution y{i} over the N = 4 classes. Keyword “left”
is given the highest posterior probability, namely, y{i}2 =
P
(
C2|X{i}, θ

)
= 0.8.

Most of the research that has been conducted on deep
KWS has focused on its key part, which is the design of
increasingly accurate and decreasingly computationally com-
plex acoustic models f(·|θ) [32], [75].

Finally, KWS is not a static task but a dynamic one in
which the KWS system has to continuously listen to the
input signal x(m) to yield the sequence of posteriors y{i},
i = dPs e, ..., b

T−1−F
s c, in order to detect keywords in real-

time. In the example in Figure 3, a straightforward way to do
this could just be choosing the class Ĉ{i} with the highest
posterior, that is,

Ĉ{i} = argmax
Cn

y{i}n = argmax
Cn

P
(
Cn|X{i}, θ

)
. (4)

Nevertheless, this approach is not robust, as discussed in
what follows. Continuing with the illustration of Figure 3,
Figure 4 exemplifies the processing by the acoustic model of
two consecutive feature segments X{i} and X{i+1} from X
comprising the keyword “right”. Figure 4a shows the typical
case of using an overlapping segmentation window. As we
can see, following the approach of Eq. (4) might lead to
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FIGURE 5. Classical pipeline for extracting log-Mel spectral and
Mel-frequency cepstral speech features using the fast Fourier transform (FFT).

detecting the same keyword realization twice, yielding a false
alarm. In addition, Figure 4b depicts the case in which a
non-overlapping segmentation window is employed. In this
situation, the energy of the keyword realization leaks into two
different segments in such a manner that neither the posterior
P
(
C1|X{i}, θ

)
nor P

(
C1|X{i+1}, θ

)
is sufficiently strong

for the keyword to be detected, thereby yielding a miss detec-
tion. Hence, a proper handling of the sequence of posteriors
y{i} (i = dPs e, ..., b

T−1−F
s c) is a very important component

for effective keyword detection [2], [4], [15], [22], [29],
[41]–[43], [45], [46], [56], [76]–[79]. Posterior handling is
examined in Section V.

III. SPEECH FEATURE EXTRACTION
In the following subsections, we walk through the most
relevant speech features revolving around deep KWS: Mel-
scale-related features, recurrent neural network features, low-
precision features, learnable filterbank features and other
features.

A. MEL-SCALE-RELATED FEATURES
Speech features based on the perceptually-motivated Mel-
scale filterbank [80], like the log-Mel spectral coefficients
and Mel-frequency cepstral coefficients (MFCCs) [81], have
been widely used over decades in the fields of ASR and,
indeed, KWS. Despite the multiple attempts to learn opti-
mal, alternative representations from the speech signal (see
Subsection III-D for more details), Mel-scale-related features
are still nowadays a solid, competitive and safe choice [82].
Figure 5 depicts the well-known classical pipeline for extract-
ing log-Mel spectral and MFCC features. In deep KWS, both
types of speech features are commonly normalized to have
zero mean and unit standard deviation before being input
to the acoustic model, thereby stabilizing and speeding up
training as well as improving model generalization [83].

Mel-scale-related features are, by far, the most widely used
speech features in deep KWS. For example, MFCCs with
temporal context and, sometimes, their first- and second-
order derivatives are used in [16], [30], [46], [51]–[53], [84]–
[91]. As can be seen from Figure 5, MFCCs are obtained
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Log-Mel spectral coefficients and Mel-frequency cepstral coefficients
(MFCCs) based on the perceptually-motivated Mel-scale filterbank

A solid, competitive and safe choice −→ Mel-scale-related features are, by
far, the most widely used speech features in deep KWS

Deep KWS performance is not significantly sensitive to the number of
filterbank channels as long as the Mel-frequency resolution is not very poor
(<10)
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Low-Precision Features

A way to diminish the energy consumption and memory footprint of deep
KWS systems consists of quantization of the acoustic model parameters
- ∼ performance of full-precision and 4-bit acoustic models(1)

The same philosophy can be applied to speech features

Same performance by 8-bit (linearly-quantized) log-Mel spectra and
full-precision MFCCs(2)

Degradation is insignificant when exploiting 2-bit precision speech features(2)

Much of the spectral information is superfluous when attempting to spot a
set of keywords −→ Large room for future work on the design of new extremely-light
and compact speech features for small-footprint KWS

(1) Y. Mishchenko et al., “Low-bit quantization and quantization-aware training for small-footprint keyword spotting”. In Proc.
of ICMLA 2019
(2) A. Riviello and J. P. David, “Binary speech features for keyword spotting tasks”. In Proc. of Interspeech 2019
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Learnable Filterbank Features

The development of E2E deep learning systems in which feature extraction
is optimal in line with the task and training criterion is a recent trend

Optimal filterbank learning
- SincConv: The acoustic model parameters are optimized jointly with the cut-off
frequencies of a filterbank based on sinc-convolutions(1)

- Filterbank matrix learning in the power spectral domain(2)

- Parameter learning of a psychoacoustically-motivated gammachirp filterbank(2)

In (2), we found no statistically significant KWS accuracy differences
between employing a learned filterbank and log-Mel features −→
Information redundancy?

In conclusion

Handcrafted speech features currently provide state-of-the-art KWS performance at the same
time that optimal feature learning requires further research to become the preferred alternative

(1) M. Ravanelli and Y. Bengio, “Speaker recognition from raw waveform with SincNet”. In Proc. of SLT 2018
(2) I. López-Espejo et al., “Exploring filterbank learning for keyword spotting”. In Proc. of EUSIPCO 2021
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Other Speech Features

Multi-frame shifted time similarity (MFSTS): Time-domain two-dimensional
speech representation comprised of constrained-lag autocorrelation values
- Simple but low performing

Fusion of dynamic time warping and deep KWS:

R. Shankar et al., “Spoken keyword detection using joint DTW-CNN”. In Proc. of Interspeech 2018

Open-vocabulary and language-independent scenarios

It is prone to overfitting
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FIGURE 2. General pipeline of a modern deep spoken keyword spotting system: 1) features are extracted from the speech signal, 2) a DNN acoustic model uses
these features to produce posteriors over the different keyword and filler (non-keyword) classes, and 3) the temporal sequence of these posteriors is processed
(Posterior Handling) to determine the possible existence of keywords.

II. DEEP SPOKEN KEYWORD SPOTTING APPROACH
Figure 2 depicts the general pipeline of a modern deep
spoken keyword spotting system [15], [22], [28], [41]–[43],
which is composed of three main blocks: 1) the speech
feature extractor converting the input signal to a compact
speech representation, 2) the deep learning-based acoustic
model producing posteriors over the different keyword and
filler (non-keyword) classes from the speech features (see the
example of Figure 3), and 3) the posterior handler processing
the temporal sequence of posteriors to determine the possible
existence of keywords in the input signal.

Let x(m) be a finite acoustic time signal comprising
speech. In the first place, the speech feature extractor com-
putes an alternative representation of x(m), namely, X. It is
desirable X to be compact (i.e., lower-dimensional, to limit
the computational complexity of the task), discriminative in
terms of the phonetic content and robust to acoustic varia-
tions [44]. Speech features X are traditionally represented by
a two-dimensional matrix composed of a time sequence of
K-dimensional feature vectors xt (t = 0, ..., T − 1) as in

X = (x0, ...,xt, ...,xT−1) ∈ RK×T , (1)

where T , the total number of feature vectors, depends on the
length of the signal x(m). Speech features X can be based on
a diversity of representation types, such as, e.g., spectral [22],
[28], [45], cepstral [16], [46] and time-domain ones [47].
Further details about the different types of speech features
used for KWS are provided in Section III.

The DNN acoustic model receives X as input and outputs a
sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments

X{i} = (xis−P , ...,xis, ...,xis+F ) (2)

of X until the whole feature sequence X is processed. In Eq.
(2), i = dPs e, ..., b

T−1−F
s c is an integer segment index and s

represents the time frame shift. Moreover, P and F denote,
respectively, the number of past and future frames (temporal
context) in each segment X{i} ∈ RK×(P+F+1). While s is
typically designed to have some degree of overlap between

2A proof of this is the organization of events like Auto-KWS 2021
Challenge [40].
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FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords “right” and “left”,
other speech and silence/noise. The acoustic model receives a speech segment
X{i} (log-Mel spectrogram) comprising the keyword “left”. The DNN produces
a posterior distribution over the N = 4 different classes. Keyword “left” is
given the highest posterior probability, 0.8.

consecutive segments X{i} and X{i+1}, many works con-
sider acoustic models classifying non-overlapping segments
that are sufficiently long (e.g., one second) to cover an entire
keyword [16], [30], [48]–[53]. With regard to P and F , a
number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].

Then, let us suppose that the DNN acoustic model f(·|θ) :
RK×(P+F+1) → IN has N output nodes meaning N differ-
ent classes, where θ and I = [0, 1] denote the parameters
of the acoustic model and the unit interval, respectively.
Normally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62],
the latter especially in the context of sequence-to-sequence
models [63]–[65] (see Subsection IV-C for further details).
Let subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, ..., N, (3)

where y
{i}
n = P

(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]

VOLUME 4, 2016 3

The natural trend is the design of increasingly accurate models while decreasing
computational complexity

Fully-connected feedforward neural networks

Convolutional neural networks

Recurrent and time-delay neural networks
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Fully-Connected Feedforward Neural Networks

G. Chen et al., “Small-footprint keyword spotting using deep neural networks”. In Proc. of ICASSP 2014

Three fully-connected layers with 128 neurons each

Rectified linear unit (ReLU) activations

Softmax output layer

It outperforms, with fewer parameters, keyword/filler HMM in both clean
and noisy conditions
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Fully-Connected Feedforward Neural Networks

G. Chen et al., “Small-footprint keyword spotting using deep neural networks”. In Proc. of ICASSP 2014

The use of fully-connected feedforward neural networks was quickly
relegated to a secondary level

Nowadays

State-of-the-art acoustic models use convolutional and recurrent neural networks,
since they can provide better performance with fewer parameters
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Fully-Connected Feedforward Neural Networks

There are closely related and computationally cheaper alternatives to
fully-connected feedforward neural networks

1) Single value decomposition filter (SVDF) neural networks
- They approximate fully-connected layers by low-rank approximations
- An SVDF neural network is a special case of a stacked one-dimensional CNN

SVDF achieved to reduce by 75% the acoustic model size of the first deep
KWS system with no drop in performance(1)

The performance of the first deep KWS system was improved by increasing
the number of neurons while keeping the original number of
multiplications(2)

(1) P. Nakkiran et al., “Compressing deep neural networks using a rank-constrained topology”. In Proc. of Interspeech 2015
(2) G. Tucker et al., “Model compression applied to small-footprint keyword spotting”. In Proc. of Interspeech 2016
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Fully-Connected Feedforward Neural Networks

There are closely related and computationally cheaper alternatives to
fully-connected feedforward neural networks

2) Spiking neural networks (SNNs)
- They are human brain-inspired and process the information in an event-driven manner
- The way information is processed alleviates the computational load when information is sparse
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Figure 1: Illustration of the spiking neuron model

these spiking neurons that are organized in a feedforward or
recurrent structure. Early classification decision can be made
from the SNN after the generation of the first output spike.
However, the quality of the classification decision is typically
improved over time with the accumulating evidence. This is
fundamentally different than the synchronous information pro-
cessing of the conventional ANN, in which the output layer is
not activated until all preceding layers are fully updated.

In this work, we use the integrate-and-fire (IF) neuron
model with reset by subtraction scheme [14], which can effec-
tively process these quasi-stationary frame-based acoustic fea-
tures with minimal computational costs. At each time step t of
a discrete-time simulation, the incoming spikes to neuron j at
layer l are integrated into subthreshold membrane potential V l

j

as follows:

V l
j [t] = V l

j [t− 1] +RIlj [t]− ϑSl
j [t− 1] (1)

with
Ilj [t] =

∑
i
wl−1

ji Sl−1
i [t] + blj , (2)

where wl−1
ji denotes the synaptic weight that connects presy-

naptic neuron i from layer l − 1 and blj can be interpreted as a

constant injecting current. In addition, Sl−1
i [t] indicates the oc-

currence of an input spike from afferent neuron i at time step t.
Ilj [t] denotes the resulted synaptic current from incoming spike
trains. Without loss of generality, a unitary membrane resis-
tance R is assumed here. An output spike is generated whenever
V l
j [t] crosses the firing threshold ϑ as per Eq. 3, which is set to

1 in the experiments by assuming that all synaptic weights are
normalized with respect to ϑ. Following a spike generation, the
membrane potential is reset by subtracting the firing threshold
ϑ as described by the last term of Eq. 1. The V l

j [0] is reset and
initialized to zero for every new input frame,

Sl
j [t] = Θ

(
V l
j [t]− ϑ

)
with Θ(x) =

{
1, if x ≥ 0
0, otherwise.

(3)
According to Eqs. 1 and 2, the free aggregated membrane

potential of neuron j (no firing) in layer l across the simulation
time window Ns can be expressed as

V l,f
j =

∑
i
wl−1

ji cl−1
i + bljNs, (4)

where cl−1
i is the input spike count from pre-synaptic neuron i

at layer l − 1 as

cl−1
i =

∑Ns

t=1
Sl−1
i [t]. (5)

The V l,f
j summarizes the aggregate membrane potential contri-

butions of the incoming spike trains while ignoring their tem-
poral distribution. As detailed in Section 2.3, this intermediate
quantity links the SNN layers to the coupled ANN layers for the
parameter optimization.

2.2. Neural Coding Scheme

SNN process information transmitted via spike trains which
requires encoding the continuous-valued feature vectors into
spike trains at the front-end and perform classification based
on the activity of output neurons.

To encode the frame-based input feature vector X
(MFCC features in this case) into spike trains, where X =
[x1, x2, · · ·, xn]

T , we take X as the synaptic current and di-
rectly apply it into Eq. 1 at the first time step. Comparing
to the commonly used rate coding scheme, whereby the real-
valued inputs are sampled into spike trains following a Pos-
sion or Bernoulli distribution [15], this neural encoding scheme
eliminates the sampling errors. Moreover, it allows the input
information to be encoded within the first few time steps that
is beneficial for rapid inference. Starting from this neural en-
coding layer, the spike count cl and spike train Sl are input to
subsequent ANN and SNN layers for tandem learning.

To ensure a smooth learning with high precision error gra-
dients derived at the output layer, instead of using spike count
for neural decoding, we use the free aggregate membrane po-
tential of output spiking neurons as the posterior probability for
different output classes.

2.3. Training Deep SNNs with Tandem Learning

The tandem learning rule used for training deep SNNs exploits
the connection between the activation value of ANN neurons
and the spike count of IF neurons. Within the tandem learn-
ing framework, a SNN is coupled with an ANN through weight
sharing. The SNN layers are used to determine the exact spike
representation, which then propagate the aggregate spike counts
and spike trains to the subsequent ANN and SNN layers, respec-
tively. It ensures the information that forward propagated to the
coupled ANN and SNN layers are synchronized. It is important
to note that the ANN is just an auxiliary structure to facilitate
the training of SNN and only SNN is used during inference.

As the input features are effectively encoded as spike
counts, the temporal structure of the spike trains carries negligi-
ble information. Hence, the non-linear transformation of SNN
layers can be formulated as

clj = f
(
Sl−1;wl−1

j , blj

)
(6)

where f() denotes the effective transformation performed by
spiking neurons. However, an analytical expression from Sl−1

to clj cannot be determined directly due to the state-dependent
nature of spike generation. Therefore, we simplify the spike
generation process by assuming the resulting synaptic contribu-
tions from Sl−1 are evenly distributed over the simulation time
window. With this assumption, the interspike interval can be
determined as follows

ISIlj = ρ

(
ϑ

V l,f
j /Ns

)
= ρ

⎛
⎜⎝ ϑ

(
∑
i

wl−1
ji cl−1

i + bljNs)/Ns

⎞
⎟⎠
(7)

The approximated ‘spike count’ al
j can be obtained as

al
j =

Ns

ISIlj
=

1

ϑ
ρ

(∑
i

wl−1
ji cl−1

i + bljNs

)
(8)

Given a unitary firing threshold ϑ, al
j can be effectively deter-

mined from an ANN layer of ReLU neurons by setting the spike

2558

(1) E. Yılmaz et al., “Deep convolutional spiking neural networks for keyword spotting”. In Proc. of Interspeech 2020

Similar performance, >80% computational cost reduction(2), dozens of times
energy saving(1)

(2) B. U. Pedroni et al., “Small-footprint spiking neural networks for power-efficient keyword spotting”. In Proc. of BioCAS 2018
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Convolutional Neural Networks

From fully-connected feedforward to convolutional neural networks −→ A
natural step taken back in 2015(1)

- Exploitation of local speech time-frequency correlations, fewer parameters

words in the keyword phrase to be detected, plus a single ad-
ditional output target which represents all frames that do not
belong to any of the words in the keyword (denoted as ‘filler’
in Figure 1). The network weights are trained to optimize a
cross-entropy criterion using distributed asynchronous gradient
descent [10]. Finally, in the posterior handling module, individ-
ual frame-level posterior scores from the DNN are combined
into a single score corresponding to the keyword. We refer the
reader to [2] for more details about the three modules.

Figure 1: Framework of Deep KWS system, components from
left to right: (i) Feature Extraction (ii) Deep Neural Network
(iii) Posterior Handling

3. CNN Architectures
In this section, we describe CNN architectures as an alternative
to the DNN described in Section 2. The feature extraction and
posterior handling stages remain the same as Section 2.

3.1. CNN Description

A typical CNN architecture is shown in Figure 2. First, we are
given an input signal V ∈ <t×f , where t and f are the input
feature dimension in time and frequency respectively. A weight
matrix W ∈ <(m×r)×n is convolved with the full input V . The
weight matrix spans across a small local time-frequency patch
of size m×r, where m <= t and r <= f . This weight sharing
helps to model local correlations in the input signal. The weight
matrix has n hidden units (i.e., feature maps). The filter can
stride by a non-zero amount s in time and v in frequency. Thus,
overall the convolutional operation produces n feature maps of
size (t−m+1)

s
× (f−r+1)

v
.

After performing convolution, a max-pooling layer helps to
remove variability in the time-frequency space that exists due
to speaking styles, channel distortions, etc. Given a pooling
size of p × q, pooling performs a sub-sampling operation to
reduce the time-frequency space. For the purposes of this paper,
we consider non-overlapping pooling as it has not shown to be
helpful for speech [8]. After pooling, the time-frequency space
has dimension (t−m+1)

s·p × (f−r+1)
v·q .

W
n ⇥ m ⇥ r

m ⇥ r
convolutions

t ⇥ f
input layer

n feature maps
t � m + 1

s
⇥ f � r + 1

v

n feature maps
t � m + 1

s · p
⇥ f � r + 1

v · q

p ⇥ q
subsampling

Figure 2: Diagram showing a typical convolutional network ar-
chitecture consisting of a convolutional and max-pooling layer.

3.2. Typical Convolutional Architecture

An typical convolutional architecture that has been heavily
tested and shown to work well on many LVCSR tasks [6, 11]

is to use two convolutional layers. Assuming that the log-mel
input into the CNN is t × f = 32 × 40, then typically the first
layer has a filter size in frequency of r = 9. The architecture is
less sensitive to the filter size in time, though a common practice
is to choose a filter size in time which spans 2/3 of the overall
input size in time, i.e. m = 20. Convolutional multiplication
is performed by striding the filter by s = 1 and v = 1 across
both time and frequency. Next, non-overlapping max-pooling
in frequency only is performed, with a pooling region of q = 3.
The second convolutional filter has a filter size of r = 4 in fre-
quency, and no max-pooling is performed.

For example, in our task if we want to keep the number
of parameters below 250K, a typical architecture CNN archi-
tecture is shown in Table 1. We will refer to this architecture
as cnn-trad-fpool3 in this paper. The architecture has 2
convolutional, one linear low-rank and one DNN layer. In Sec-
tion 5, we will show the benefit of this architecture for KWS,
particularly the pooling in frequency, compared to a DNN.

However, a main issue with this architecture is the huge
number of multiplies in the convolutional layers, which get ex-
acerbated in the second layer because of the 3-dimensional in-
put, spanning across time, frequency and feature maps. This
type of architecture is infeasible for power-constrained small-
footprint KWS tasks where multiplies are limited. Furthermore,
even if our application is limited by parameters and not mul-
tiplies, other architectures which pool in time might be better
suited for KWS. Below we present alternative CNN architec-
tures to address the tasks of limiting parameters or multiplies.

type m r n p q Par. Mul.
conv 20 8 64 1 3 10.2K 4.4M
conv 10 4 64 1 1 164.8K 5.2M
lin - - 32 - - 65.5K 65.5K
dnn - - 128 - - 4.1K 4.1K

softmax - - 4 - - 0.5K 0.5K
Total - - - - - 244.2K 9.7M

Table 1: CNN Architecture for cnn-trad-fpool3

3.3. Limiting Multiplies

Our first problem is to find a suitable CNN architecture where
we limit the number of multiplies to 500K. After experiment-
ing with several architectures, one solution to limit the num-
ber of multiplies is to have one convolutional layer rather than
two, and also have the time filter span all of time. The output
of this convolutional layer is then passed to a linear low-rank
layer and then 2 DNN layers. Table 2, show a CNN architec-
ture with only one convolutional layer, which we refer to as
cnn-one-fpool3. For simplicity, we have omitted s = 1
and v = 1 from the Table. Notice by using one convolutional
layer, the number of multiplies after the first convolutional layer
is cut by a factor of 10, compared to cnn-trad-fpool3.

type m r n p q Params Mult
conv 32 8 54 1 3 13.8K 456.2K
linear - - 32 - - 19.8K 19.8K
dnn - - 128 - - 4.1K 4.1K
dnn - - 128 - - 16.4K 16.4K

softmax - - 4 - - 0.5K 0.5K
Total - - 4 - - 53.8K 495.6K

Table 2: CNN Architecture for cnn-one-fpool3

(1) T. N. Sainath and C. Parada, “Convolutional neural networks for small-footprint keyword spotting”. In Proc. of Interspeech
2015

The number of multiplications of the model can be easily limited to meet
the computational constraints:
- Filter striding, kernel size, pooling size...
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Residual learning is widely considered to implement state-of-the-art
acoustic models for deep KWS
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Fig. 1. Our full architecture, with a magnified residual block.

spotting—they have a straightforward architecture, are rel-
atively easy to tune, and have implementations in multiple
deep learning frameworks (at least TensorFlow [9] and Py-
Torch [10]). We are not aware of any publicly-available im-
plementations of recurrent architectures to compare against.
We believe that residual learning techniques form a yet unex-
plored direction for the keyword spotting task, and that our
use of dilated convolutions achieves the same goal that pro-
ponents of recurrent architectures tout, the ability to capture
long(er)-range dependencies.

3. MODEL IMPLEMENTATION

This section describes our base model and its variants. All
code necessary to replicate our experiments has been made
open source in our GitHub repository.1

3.1. Feature Extraction and Input Preprocessing

For feature extraction, we first apply a band-pass filter
of 20Hz/4kHz to the input audio to reduce noise. Forty-
dimensional Mel-Frequency Cepstrum Coefficient (MFCC)
frames are then constructed and stacked using a 30ms win-
dow and a 10ms frame shift. All frames are stacked across a
1s interval to form the two-dimensional input to our models.

3.2. Model Architecture

Our architecture is similar to that of He et al. [2], who pos-
tulated that it may be easier to learn residuals than to learn
the original mapping for deep convolutional neural networks.
They found that additional layers in deep networks cannot

1https://github.com/castorini/honk/

Layer 1 Layer 1 + k Layer 1 + 2k 

⋯ ⋯ 

Convolution filter 

Receptive field 

Fig. 2. Exponentially increasing dilated convolutions; in this
case, k = 1.

type m r n dw dh Par. Mult.
conv 3 3 45 - - 405 1.52M

res × 6 3 3 45 2b
i
3 c 2b

i
3 c 219K 824M

conv 3 3 45 16 16 18.2K 68.6M
bn - - 45 - - - 169K

avg-pool - - 45 - - - 45
softmax - - 12 - - 540 540

Total - - - - - 238K 894M

Table 1. Parameters used for res15, along with the number
of parameters and multiplies.

be merely “tacked on” to shallower nets. Specifically, He
et al. proposed that it may be easier to learn the residual
H(x) = F (x) + x instead of the true mapping F (x), since
it is empirically difficult to learn the identity mapping for F
when the model has unnecessary depth. In residual networks
(ResNets), residuals are expressed via connections between
layers (see Figure 1), where an input x to layer i is added
to the output of some downstream layer i + k, enforcing the
residual definition H(x) = F (x) + x.

Following standard ResNet architectures, our residual
block begins with a bias-free convolution layer with weights
W ∈ R(m×r)×n, where m and r are the width and height,
respectively, and n the number of feature maps. After the con-
volution layer, there are ReLU activation units and—instead
of dropout—a batch normalization [11] layer. In addition
to using residual blocks, we also use a (dw, dh) convolution
dilation [12] to increase the receptive field of the network,
which allows us to consider the one-second input in its en-
tirety using a smaller number of layers. To expand our input
for the residual blocks, which requires inputs and outputs of
equal size throughout, our entire architecture starts with a
convolution layer with weights W ∈ R(m×r)×n. A separate
non-residual convolution layer and batch normalization layer
are further appended to the chain of residual blocks, as shown
in Figure 1 and Table 1.

Our base model, which we refer to as res15, comprises
six such residual blocks and n = 45 feature maps (see Fig-
ure 1). For dilation, as illustrated in Figure 2, an exponential
sizing schedule [12] is used: at layer i, the dilation is dw =

3x3 conv, 45 

3x3 conv, 45 

3x3 conv, 45 

Avg pool 

softmax 

3x3 conv, 45 

MFCCs 

⋮ 

3x3 conv, 45 

3x3 Convolution 

Batch Normalization 

ReLU 

3x3 Convolution 

Batch Normalization 

ReLU 

Add 

3x3 conv, 45 

Fig. 1. Our full architecture, with a magnified residual block.

spotting—they have a straightforward architecture, are rel-
atively easy to tune, and have implementations in multiple
deep learning frameworks (at least TensorFlow [9] and Py-
Torch [10]). We are not aware of any publicly-available im-
plementations of recurrent architectures to compare against.
We believe that residual learning techniques form a yet unex-
plored direction for the keyword spotting task, and that our
use of dilated convolutions achieves the same goal that pro-
ponents of recurrent architectures tout, the ability to capture
long(er)-range dependencies.

3. MODEL IMPLEMENTATION

This section describes our base model and its variants. All
code necessary to replicate our experiments has been made
open source in our GitHub repository.1

3.1. Feature Extraction and Input Preprocessing

For feature extraction, we first apply a band-pass filter
of 20Hz/4kHz to the input audio to reduce noise. Forty-
dimensional Mel-Frequency Cepstrum Coefficient (MFCC)
frames are then constructed and stacked using a 30ms win-
dow and a 10ms frame shift. All frames are stacked across a
1s interval to form the two-dimensional input to our models.

3.2. Model Architecture

Our architecture is similar to that of He et al. [2], who pos-
tulated that it may be easier to learn residuals than to learn
the original mapping for deep convolutional neural networks.
They found that additional layers in deep networks cannot

1https://github.com/castorini/honk/
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Fig. 2. Exponentially increasing dilated convolutions; in this
case, k = 1.

type m r n dw dh Par. Mult.
conv 3 3 45 - - 405 1.52M

res × 6 3 3 45 2b
i
3 c 2b

i
3 c 219K 824M

conv 3 3 45 16 16 18.2K 68.6M
bn - - 45 - - - 169K

avg-pool - - 45 - - - 45
softmax - - 12 - - 540 540

Total - - - - - 238K 894M

Table 1. Parameters used for res15, along with the number
of parameters and multiplies.

be merely “tacked on” to shallower nets. Specifically, He
et al. proposed that it may be easier to learn the residual
H(x) = F (x) + x instead of the true mapping F (x), since
it is empirically difficult to learn the identity mapping for F
when the model has unnecessary depth. In residual networks
(ResNets), residuals are expressed via connections between
layers (see Figure 1), where an input x to layer i is added
to the output of some downstream layer i + k, enforcing the
residual definition H(x) = F (x) + x.

Following standard ResNet architectures, our residual
block begins with a bias-free convolution layer with weights
W ∈ R(m×r)×n, where m and r are the width and height,
respectively, and n the number of feature maps. After the con-
volution layer, there are ReLU activation units and—instead
of dropout—a batch normalization [11] layer. In addition
to using residual blocks, we also use a (dw, dh) convolution
dilation [12] to increase the receptive field of the network,
which allows us to consider the one-second input in its en-
tirety using a smaller number of layers. To expand our input
for the residual blocks, which requires inputs and outputs of
equal size throughout, our entire architecture starts with a
convolution layer with weights W ∈ R(m×r)×n. A separate
non-residual convolution layer and batch normalization layer
are further appended to the chain of residual blocks, as shown
in Figure 1 and Table 1.

Our base model, which we refer to as res15, comprises
six such residual blocks and n = 45 feature maps (see Fig-
ure 1). For dilation, as illustrated in Figure 2, an exponential
sizing schedule [12] is used: at layer i, the dilation is dw =

(1) R. Tang and J. Lin, “Deep residual learning for small-footprint keyword spotting”. In Proc. of ICASSP 2018

Tang and Lin established a new state-of-the-art back in 2018(1)
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TC-ResNet(1): One-dimensional convolutions along the time axis
(temporal convolutions) while treating the (MFCC) features as input
channels −→ Simultaneously capturing both high and low quefrency features

(a) Block (s = 1) (b) Block (s = 2)
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(d) TC-ResNet14
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(c) TC-ResNet8

Block, 𝑠 = 2, c = 24𝑘

conv 3 × 1, 
𝑠 = 1, c = 16𝑘

Block, 𝑠 =2, c = 32𝑘

Block, 𝑠 =2, c = 48𝑘

Average pooling
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Softmax

conv 3 × 1, 
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Figure 2: The building block (denoted Block) of TC-ResNet
when (a) stride = 1 and (b) stride = 2. (c) Architecture for TC-
ResNet8 and (d) TC-ResNet14. Each of them utilizes ResNet8
and ResNet14 as the backbone-CNN, respectively. BN and FC
denote batch normalization and fully connected layer. Note that
‘s’, ‘c’, and ‘k’ indicates stride, channel size, and width multi-
plier, respectively.

noises provided in the dataset, and multiply it with a random co-
efficient sampled from uniform distribution, U(0, 0.1). The au-
dio file is decoded to a float tensor and shifted by s seconds with
zero padding, where s is sampled from U(−0.1, 0.1). Then, it
is blended with the background noise. The raw audio is decom-
posed into a sequence of frames following the settings of the
previous study [8] where the window length is 30 ms and the
stride is 10 ms for feature extraction. We use 40 MFCC features
for each frame and stack them over time-axis.

Training. We trained and evaluated the models using Ten-
sorFlow [18]. We use a weight decay of 0.001 and dropout with
a probability of 0.5 to alleviate overfitting. Stochastic gradient
descent is used with a momentum of 0.9 on a mini-batch of 100
samples. Models are trained from scratch for 30k iterations.
Learning rate starts at 0.1 and is divided by 10 at every 10k
iterations. We employ early stopping [19] with the validation
split.

Evaluation. We use accuracy as the main metric to eval-
uate how well the model performs. We trained each model 15
times and report its average performance. Receiver operating
characteristic (ROC) curves, of which the x-axis is the false
alarm rate and the y-axis is the false reject rate, are plotted to
compare different models. To extend the ROC curve to multi-
classes, we perform micro-averaging over multiple classes per
experiment, then vertically average them over the experiments
for the final plot.

We report the number of operations and parameters which
faithfully reflect the real-world environment for mobile deploy-
ment. Unlike previous works which only reported the num-
bers for part of the computation such as the number of mul-
tiply operations [8] or the number of multiplications and ad-
ditions only in the matrix-multiplication operations [7], we in-
clude FLOPs [20], computed by TensorFlow profiling tool [21],
and the number of all parameters instead of only trainable pa-
rameters reported by previous studies [8].

Inference speed can be estimated by FLOPs but it is well
known that FLOPs are not always proportional to speed. There-
fore, we also measure inference time on a mobile device using
the TensorFlow Lite Android benchmark tool [22]. We mea-

sured inference time on a Google Pixel 1 and forced the model
to be executed on a single little core in order to emulate the
always-on nature of KWS. The benchmark program measures
the inference time 50 times for each model and reports the av-
erage. Note that the inference time is measured from the first
layer of models that receives MFCC as input to focus on the
performance of the model itself.

3.2. Baseline Implementations

We carefully selected baselines and verified advantages of the
proposed models in terms of accuracy, the number of parame-
ters, FLOPs, and inference time on mobile devices. Below are
the baseline models:

• CNN-1 and CNN-2 [6]. We followed the implementa-
tions of [7] where window size is 40 ms and the stride
is 20 ms using 40 MFCC features. CNN-1 and CNN-
2 represent cnn-trad-fpool3 and cnn-one-fstride4 in [6],
respectively.

• DS-CNN-S, DS-CNN-M, and DS-CNN-L [7]. DS-CNN
utilizes depthwise convolutions. It aims to achieve the
best accuracy when memory and computation resources
are constrained. We followed the implementation of [7]
which utilizes 40 ms window size with 20 ms stride and
only uses 10 MFCCs to reduce the number of opera-
tions. DS-CNN-S, DS-CNN-M, and DS-CNN-L represent
small-, medium-, and large-size model, respectively.

• Res8, Res8-Narrow, Res15, and Res15-Narrow [8].
Res-variants employ a residual architecture for keyword
spotting. The number following Res (e.g., 8 and 15) de-
notes the number of layers and the -Narrow suffix rep-
resents that the number of channels is reduced. Res15
has shown the best accuracy with Google Speech Com-
mands Dataset among the KWS studies which are based
on CNNs. The window size is 30 ms, the stride is 10 ms,
and MFCC feature size is 40.

We release our end-to-end pipeline codebase for training, evalu-
ating, and benchmarking the baseline models and together with
the proposed models. It consists of TensorFlow implementation
of models, scripts to convert the models into the TensorFlow
Lite models that can run on mobile devices, and the pre-built
TensorFlow Lite Android benchmark tool.

4. Experimental Results
4.1. Google Speech Command Dataset

Table 1 shows the experimental results. Utilizing advantages of
temporal convolutions, we improve the inference time measured
on mobile device dramatically while achieving better accuracy
compared to the baseline KWS models. TC-ResNet8 achieves
29x speedup while improving 5.4%p in accuracy compared to
CNN-1, and improves 11.5%p in accuracy while maintaining
a comparable latency to CNN-2. Since DS-CNN is designed
for the resource-constrained environment, it shows better accu-
racy compared to the naive CNN models without using large
number of computations. However, TC-ResNet8 achieves 1.5x
/ 4.7x / 15.3x speedup, and improves 1.7%p / 1.2%p / 0.7%p
accuracy compared to DS-CNN-S / DS-CNN-M / DS-CNN-L,
respectively. In addition, the proposed models show better accu-
racy and speed compared to Res which shows the best accuracy
among baselines. TC-ResNet8 achieves 385x speedup while im-
proving 0.3%p accuracy compared to deep and complex Res

3374

(1) S. Choi et al., “Temporal convolution for real-time keyword spotting on mobile devices”. In Proc. of Interspeech 2019

TC-ResNet matches Tang and Lin’s KWS performance while dramatically
decreasing both latency and the amount of FLOPs on a mobile device
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E. Bendersky, “Depthwise separable convolutions
for machine learning”. 2018

Depthwise separable (DS) convolutions
to reduce the computation and size of
standard CNNs

Reproducing the performance of TC-ResNet
using less parameters(1)

Depthwise separable convolutions +
residual learning: It generally outperforms
all standard residual networks, plain
DS-CNNs and TC-ResNet with less
computational complexity

(1) S. Mittermaier et al., “Small-footprint keyword spotting on raw audio
data with sinc-convolutions”. In Proc. of ICASSP 2020
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We believe that a modern CNN-based acoustic model should ideally
encompass the following three aspects:

A mechanism to exploit long time-frequency dependencies like, e.g., dilated
convolutions

Depthwise separable convolutions to substantially reduce both the memory
footprint and computation of the model without sacrificing performance

Residual connections to fast and effectively train deeper models providing
enhanced KWS performance
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Speech is a temporal sequence with strong time dependencies −→
Recurrent neural networks (RNNs) and time-delay neural networks
(TDNNs)

Long short-term memory (LSTM) networks clearly outperform feedforward
fully-connected neural networks for KWS acoustic modeling(1)

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Figure 1. Long Short-term Memory Cell.

Figure 2. Bidirectional Recurrent Neural Network.

do this by processing the data in both directions with two
separate hidden layers, which are then fed forwards to the
same output layer. As illustrated in Fig. 2, a BRNN com-
putes the forward hidden sequence

−→
h , the backward hid-

den sequence
←−
h and the output sequence y by iterating the

backward layer from t = T to 1, the forward layer from
t = 1 to T and then updating the output layer:

−→
h t = H

(
W
x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h

)
(8)

←−
h t = H

(
W
x
←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h

)
(9)

yt =W−→
h y

−→
h t +W←−

h y

←−
h t + bo (10)

Combing BRNNs with LSTM gives bidirectional
LSTM (Graves & Schmidhuber, 2005), which can
access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNs can be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence of
one layer forming the input sequence for the next, as shown
in Fig. 3. Assuming the same hidden layer function is used

Figure 3. Deep Recurrent Neural Network.

for all N layers in the stack, the hidden vector sequences
hn are iteratively computed from n = 1 to N and t = 1 to
T :

hnt = H
(
Whn−1hnhn−1t +Whnhnhnt−1 + bnh

)
(11)

where h0 = x. The network outputs yt are

yt =WhNyh
N
t + bo (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequence hn with the forward and backward
sequences

−→
h n and

←−
h n, and ensuring that every hidden

layer receives input from both the forward and backward
layers at the level below. If LSTM is used for the hidden
layers the complete architecture is referred to as deep bidi-
rectional LSTM (Graves et al., 2013).

3. Connectionist Temporal Classification
Neural networks (whether feedforward or recurrent) are
typically trained as frame-level classifiers in speech recog-
nition. This requires a separate training target for ev-
ery frame, which in turn requires the alignment between
the audio and transcription sequences to be determined by
the HMM. However the alignment is only reliable once
the classifier is trained, leading to a circular dependency
between segmentation and recognition (known as Sayre’s
paradox in the closely-related field of handwriting recog-
nition). Furthermore, the alignments are irrelevant to most
speech recognition tasks, where only the word-level tran-
scriptions matter. Connectionist Temporal Classification
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural networks”. In Proc. of ICML 2014

(1) M. Sun et al., “Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting”. In
Proc. of SLT 2016
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When latency is not a strong constraint −→ Bidirectional RNNs to capture
causal and anticausal dependencies for improved KWS performance

Bidirectional LSTMs vs. bidirectional gated recurrent units (GRUs)
- In KWS, there is no need to model very long time dependencies
- GRUs demand less memory and are faster to train than LSTMs
- GRUs perform similarly to or even better than LSTMs(1)

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Figure 1. Long Short-term Memory Cell.

Figure 2. Bidirectional Recurrent Neural Network.

do this by processing the data in both directions with two
separate hidden layers, which are then fed forwards to the
same output layer. As illustrated in Fig. 2, a BRNN com-
putes the forward hidden sequence

−→
h , the backward hid-

den sequence
←−
h and the output sequence y by iterating the

backward layer from t = T to 1, the forward layer from
t = 1 to T and then updating the output layer:

−→
h t = H

(
W
x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h

)
(8)

←−
h t = H

(
W
x
←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h

)
(9)

yt =W−→
h y

−→
h t +W←−

h y

←−
h t + bo (10)

Combing BRNNs with LSTM gives bidirectional
LSTM (Graves & Schmidhuber, 2005), which can
access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNs can be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence of
one layer forming the input sequence for the next, as shown
in Fig. 3. Assuming the same hidden layer function is used

Figure 3. Deep Recurrent Neural Network.

for all N layers in the stack, the hidden vector sequences
hn are iteratively computed from n = 1 to N and t = 1 to
T :

hnt = H
(
Whn−1hnhn−1t +Whnhnhnt−1 + bnh

)
(11)

where h0 = x. The network outputs yt are

yt =WhNyh
N
t + bo (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequence hn with the forward and backward
sequences

−→
h n and

←−
h n, and ensuring that every hidden

layer receives input from both the forward and backward
layers at the level below. If LSTM is used for the hidden
layers the complete architecture is referred to as deep bidi-
rectional LSTM (Graves et al., 2013).

3. Connectionist Temporal Classification
Neural networks (whether feedforward or recurrent) are
typically trained as frame-level classifiers in speech recog-
nition. This requires a separate training target for ev-
ery frame, which in turn requires the alignment between
the audio and transcription sequences to be determined by
the HMM. However the alignment is only reliable once
the classifier is trained, leading to a circular dependency
between segmentation and recognition (known as Sayre’s
paradox in the closely-related field of handwriting recog-
nition). Furthermore, the alignments are irrelevant to most
speech recognition tasks, where only the word-level tran-
scriptions matter. Connectionist Temporal Classification
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural networks”. In Proc. of ICML 2014

(1) S. O. Arik et al., “CRNNs for small-footprint keyword spotting”. In Proc. of Interspeech 2017
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CNNs might have difficulties to model long time dependencies

Convolutional recurrent neural networks (CRNNs) bring the best of two
worlds:
- 1) Convolutional layers model local spectro-temporal correlations of speech
- 2) Recurrent layers follow suit by modeling long-term time dependencies of speech
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CRNNs generally outperform standalone CNNs and RNNs in KWS(1)

(1) M. Zeng and N. Xiao, “Effective combination of DenseNet and BiLSTM for keyword spotting”. IEEE Access, 2019
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At training time, frame-level annotated data are typically required by, e.g.,
cross-entropy loss

Frame-level annotated data may be cumbersome to get

For RNN acoustic modeling

Connectionist temporal classification (CTC) is an attractive alternative
letting the model unsupervisedly locate and align the phonetic unit labels at
training time!(1)

(1) In other words, frame-level alignments of the target label sequences are not required for
training
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Let C = (c0, ..., cm−1) be the sequence of, e.g.,
characters corresponding to X = (x0, ..., xT−1)

We ignore an accurate alignment between C and X,
and m < T

CTC introduces the so-called blank token (ε)

CTC is an alignment-free algorithm maximizing

P (C|X) =
∑

A∈AX,C

∏T−1
t=0 Pt (c|x0, ..., xt)

e.g., c = {h, e, l , o, ε}

The acoustic model outputs can be understood as
the probability distribution over all the possible
label sequences given X
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2007: The very first attempt to apply CTC to
KWS using a bidirectional LSTM(1)

- At training time, this system just needs the list of training

words in order of occurrence in the speech signals

Different RNN architectures and phonetic units
like phonemes and Mandarin syllables

CTC KWS systems are superior to LVCSR and
keyword/filler HMM with less or no additional
computational cost

CTC requires searching for the keyword phonetic
unit sequence on a lattice −→ Suitable for
open-vocabulary KWS

(1) S. Fernández et al., “An application of recurrent neural networks to discriminative
keyword spotting”. In Proc of ICANN 2007
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CTC assumes conditional label independence, i.e., past model outputs do
not influence current predictions:

P (C|X) =
∑

A∈AX,C

∏T−1
t=0 Pt (c|x0, ..., xt)

CTC may need an external language model to perform well

Seq2Seq: A more convenient approach for KWS acoustic modeling
I. López-Espejo et al.: Deep Spoken KWS: An Overview

3) Residual connections [126] to fast and effectively train
deeper models providing enhanced KWS performance.

C. RECURRENT AND TIME-DELAY NEURAL
NETWORKS
Speech is a temporal sequence with strong time depen-
dencies. Therefore, the utilization of RNNs for acoustic
modeling —and also time-delay neural networks (TDNNs),
which are shaped by a set of layers performing on different
time scales— naturally arises. For example, LSTM neural
networks [137], which overcome the exploding and van-
ishing gradient problems suffered by standard RNNs, are
used for KWS acoustic modeling in, e.g., [4], [29], [76],
[78], [84], clearly outperforming FFNNs [29]. When latency
is not a strong constraint, bidirectional LSTMs (BiLSTMs)
can be used instead to capture both causal and anticausal
dependencies for improved KWS performance [76], [138].
Alternatively, bidirectional GRUs are explored in [32] for
KWS acoustic modeling. When there is no need to model
very long time dependencies, as it is the case in KWS, GRUs
might be preferred over LSTMs since the former demand less
memory and are faster to train while performing similarly or
even better [93].

Besides, [58] studies a two-stage TDNN consisting of
an LVCSR acoustic model followed by a keyword classi-
fier. The authors of [58] also investigate the integration of
frame skipping and caching to decrease computation, thereby
outperforming classical CNN acoustic modeling [28] while
halving the number of multiplications.

As we already suggested in Subsection IV-B, CNNs might
have difficulties to model long time dependencies. To over-
come this point, they can be combined with RNNs to build
the so-called CRNNs. Thus, it may be stated that CRNNs
bring the best of two worlds: first, convolutional layers
model local spectro-temporal correlations of speech and,
then, recurrent layers follow suit by modeling long-term time
dependencies in the speech signal. Some works explore the
use of CRNNs for acoustic modeling in deep spoken KWS
using either unidirectional or bidirectional LSTMs or GRUs
[32], [48], [76], [93], [109], [118]. Generally, the use of
CRNNs allows us for outperforming standalone CNNs and
RNNs [48].

1) Connectionist Temporal Classification
As for the majority of acoustic models, the above-reviewed
RNN acoustic models are typically trained to produce frame-
level posterior probabilities. At training time, in case of em-
ploying, e.g., cross-entropy loss, frame-level annotated data
are required, which may be cumbersome to get. In the context
of RNN acoustic modeling, connectionist temporal classifi-
cation (CTC) [63] is an attractive alternative letting the model
unsupervisedly locate and align the phonetic unit labels at
training time [4]. In other words, frame-level alignments of
the target label sequences are not required for training.

Mathematically speaking, let C = (c0, ..., cm−1) be the
sequence of phonetic units or, e.g., characters corresponding
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. . . . . .
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FIGURE 7. Example of sequence-to-sequence (Seq2Seq) model. Here,
“<sos>” stands for “start of sequence”. See the text for further details.

to the sequence of feature vectors X = (x0, ...,xT−1), where
m < T and the accurate alignment between C and X is
unknown. CTC is an alignment-free algorithm whose goal
is to maximize [63]

P (C|X) =
∑

A∈AX,C

T−1∏
t=0

Pt (c|x0, ...,xt) , (5)

where c is the whole set of recognizable phonetic units
or characters plus a blank symbol (modeling confusion in-
formation of the speech signal [4]), and the summation is
performed over the set of all valid alignments AX,C . From
Eq. (5), the acoustic model outputs can be understood as the
probability distribution over all the possible label sequences
given the sequence of input features X [46].

The very first attempt to apply CTC to KWS was carried
out by Fernández et al. [46] using a BiLSTM for acoustic
modeling. At training time, this system just needs, along with
the training speech signals, the list of training words in order
of occurrence. After this first attempt, several works have
explored variants of this approach using different RNN ar-
chitectures like LSTMs [4], [60], [61], [139], BiLSTMs [84],
[98] and GRUs [61], [140], as well as considering different
phonetic units such as phonemes [60], [84] and Mandarin
syllables [8], [139]. In general, these systems are shown to
be superior to both LVCSR- and keyword/filler HMM-based
KWS systems with less or no additional computational cost
[4], [8], [139]. Notice that since CTC requires searching
for the keyword phonetic unit sequence on a lattice, this
approach is also suitable for open-vocabulary KWS.

2) Sequence-to-Sequence Models
CTC assumes conditional label independence, i.e., past
model outputs do not influence current predictions (see Eq.
(5)). Hence, in the context of KWS and ASR in general, CTC
may need an external language model to perform well. There-
fore, a more convenient approach for KWS acoustic mod-
eling might be the use of sequence-to-sequence (Seq2Seq)
models, first proposed in [141] for language translation.
Figure 7 illustrates an example of Seq2Seq model. In short,
Seq2Seq models are comprised of an RNN encoder7 sum-

7In [9], Shan et al. show, for KWS, the superiority of CRNN encoders
with respect to GRU ones, which, in turn, are better than LSTM encoders.

8 VOLUME 4, 2016
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RNN-Transducer, integrating both acoustic and language models (and
predicting phonemes), is able to outperform a CTC KWS system even when
the latter exploits an external phoneme N-gram language model(1)

I. López-Espejo et al.: Deep Spoken KWS: An Overview

3) Residual connections [126] to fast and effectively train
deeper models providing enhanced KWS performance.

C. RECURRENT AND TIME-DELAY NEURAL
NETWORKS
Speech is a temporal sequence with strong time depen-
dencies. Therefore, the utilization of RNNs for acoustic
modeling —and also time-delay neural networks (TDNNs),
which are shaped by a set of layers performing on different
time scales— naturally arises. For example, LSTM neural
networks [137], which overcome the exploding and van-
ishing gradient problems suffered by standard RNNs, are
used for KWS acoustic modeling in, e.g., [4], [29], [76],
[78], [84], clearly outperforming FFNNs [29]. When latency
is not a strong constraint, bidirectional LSTMs (BiLSTMs)
can be used instead to capture both causal and anticausal
dependencies for improved KWS performance [76], [138].
Alternatively, bidirectional GRUs are explored in [32] for
KWS acoustic modeling. When there is no need to model
very long time dependencies, as it is the case in KWS, GRUs
might be preferred over LSTMs since the former demand less
memory and are faster to train while performing similarly or
even better [93].

Besides, [58] studies a two-stage TDNN consisting of
an LVCSR acoustic model followed by a keyword classi-
fier. The authors of [58] also investigate the integration of
frame skipping and caching to decrease computation, thereby
outperforming classical CNN acoustic modeling [28] while
halving the number of multiplications.

As we already suggested in Subsection IV-B, CNNs might
have difficulties to model long time dependencies. To over-
come this point, they can be combined with RNNs to build
the so-called CRNNs. Thus, it may be stated that CRNNs
bring the best of two worlds: first, convolutional layers
model local spectro-temporal correlations of speech and,
then, recurrent layers follow suit by modeling long-term time
dependencies in the speech signal. Some works explore the
use of CRNNs for acoustic modeling in deep spoken KWS
using either unidirectional or bidirectional LSTMs or GRUs
[32], [48], [76], [93], [109], [118]. Generally, the use of
CRNNs allows us for outperforming standalone CNNs and
RNNs [48].

1) Connectionist Temporal Classification
As for the majority of acoustic models, the above-reviewed
RNN acoustic models are typically trained to produce frame-
level posterior probabilities. At training time, in case of em-
ploying, e.g., cross-entropy loss, frame-level annotated data
are required, which may be cumbersome to get. In the context
of RNN acoustic modeling, connectionist temporal classifi-
cation (CTC) [63] is an attractive alternative letting the model
unsupervisedly locate and align the phonetic unit labels at
training time [4]. In other words, frame-level alignments of
the target label sequences are not required for training.

Mathematically speaking, let C = (c0, ..., cm−1) be the
sequence of phonetic units or, e.g., characters corresponding
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FIGURE 7. Example of sequence-to-sequence (Seq2Seq) model. Here,
“<sos>” stands for “start of sequence”. See the text for further details.

to the sequence of feature vectors X = (x0, ...,xT−1), where
m < T and the accurate alignment between C and X is
unknown. CTC is an alignment-free algorithm whose goal
is to maximize [63]

P (C|X) =
∑

A∈AX,C

T−1∏
t=0

Pt (c|x0, ...,xt) , (5)

where c is the whole set of recognizable phonetic units
or characters plus a blank symbol (modeling confusion in-
formation of the speech signal [4]), and the summation is
performed over the set of all valid alignments AX,C . From
Eq. (5), the acoustic model outputs can be understood as the
probability distribution over all the possible label sequences
given the sequence of input features X [46].

The very first attempt to apply CTC to KWS was carried
out by Fernández et al. [46] using a BiLSTM for acoustic
modeling. At training time, this system just needs, along with
the training speech signals, the list of training words in order
of occurrence. After this first attempt, several works have
explored variants of this approach using different RNN ar-
chitectures like LSTMs [4], [60], [61], [139], BiLSTMs [84],
[98] and GRUs [61], [140], as well as considering different
phonetic units such as phonemes [60], [84] and Mandarin
syllables [8], [139]. In general, these systems are shown to
be superior to both LVCSR- and keyword/filler HMM-based
KWS systems with less or no additional computational cost
[4], [8], [139]. Notice that since CTC requires searching
for the keyword phonetic unit sequence on a lattice, this
approach is also suitable for open-vocabulary KWS.

2) Sequence-to-Sequence Models
CTC assumes conditional label independence, i.e., past
model outputs do not influence current predictions (see Eq.
(5)). Hence, in the context of KWS and ASR in general, CTC
may need an external language model to perform well. There-
fore, a more convenient approach for KWS acoustic mod-
eling might be the use of sequence-to-sequence (Seq2Seq)
models, first proposed in [141] for language translation.
Figure 7 illustrates an example of Seq2Seq model. In short,
Seq2Seq models are comprised of an RNN encoder7 sum-

7In [9], Shan et al. show, for KWS, the superiority of CRNN encoders
with respect to GRU ones, which, in turn, are better than LSTM encoders.

8 VOLUME 4, 2016

(1) Y. He et al., “Streaming small-footprint keyword spotting using sequence-to-sequence models”. In Proc. of ASRU 2017
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The encoder has to condense all the needed information into a
fixed-dimensional vector regardless the (variable) length of the input
sequence

The attention mechanism might assist by focusing on the speech sections
that are more likely to comprise a keyword

I. López-Espejo et al.: Deep Spoken KWS: An Overview

3) Residual connections [126] to fast and effectively train
deeper models providing enhanced KWS performance.

C. RECURRENT AND TIME-DELAY NEURAL
NETWORKS
Speech is a temporal sequence with strong time depen-
dencies. Therefore, the utilization of RNNs for acoustic
modeling —and also time-delay neural networks (TDNNs),
which are shaped by a set of layers performing on different
time scales— naturally arises. For example, LSTM neural
networks [137], which overcome the exploding and van-
ishing gradient problems suffered by standard RNNs, are
used for KWS acoustic modeling in, e.g., [4], [29], [76],
[78], [84], clearly outperforming FFNNs [29]. When latency
is not a strong constraint, bidirectional LSTMs (BiLSTMs)
can be used instead to capture both causal and anticausal
dependencies for improved KWS performance [76], [138].
Alternatively, bidirectional GRUs are explored in [32] for
KWS acoustic modeling. When there is no need to model
very long time dependencies, as it is the case in KWS, GRUs
might be preferred over LSTMs since the former demand less
memory and are faster to train while performing similarly or
even better [93].

Besides, [58] studies a two-stage TDNN consisting of
an LVCSR acoustic model followed by a keyword classi-
fier. The authors of [58] also investigate the integration of
frame skipping and caching to decrease computation, thereby
outperforming classical CNN acoustic modeling [28] while
halving the number of multiplications.

As we already suggested in Subsection IV-B, CNNs might
have difficulties to model long time dependencies. To over-
come this point, they can be combined with RNNs to build
the so-called CRNNs. Thus, it may be stated that CRNNs
bring the best of two worlds: first, convolutional layers
model local spectro-temporal correlations of speech and,
then, recurrent layers follow suit by modeling long-term time
dependencies in the speech signal. Some works explore the
use of CRNNs for acoustic modeling in deep spoken KWS
using either unidirectional or bidirectional LSTMs or GRUs
[32], [48], [76], [93], [109], [118]. Generally, the use of
CRNNs allows us for outperforming standalone CNNs and
RNNs [48].

1) Connectionist Temporal Classification
As for the majority of acoustic models, the above-reviewed
RNN acoustic models are typically trained to produce frame-
level posterior probabilities. At training time, in case of em-
ploying, e.g., cross-entropy loss, frame-level annotated data
are required, which may be cumbersome to get. In the context
of RNN acoustic modeling, connectionist temporal classifi-
cation (CTC) [63] is an attractive alternative letting the model
unsupervisedly locate and align the phonetic unit labels at
training time [4]. In other words, frame-level alignments of
the target label sequences are not required for training.

Mathematically speaking, let C = (c0, ..., cm−1) be the
sequence of phonetic units or, e.g., characters corresponding
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FIGURE 7. Example of sequence-to-sequence (Seq2Seq) model. Here,
“<sos>” stands for “start of sequence”. See the text for further details.

to the sequence of feature vectors X = (x0, ...,xT−1), where
m < T and the accurate alignment between C and X is
unknown. CTC is an alignment-free algorithm whose goal
is to maximize [63]

P (C|X) =
∑

A∈AX,C

T−1∏
t=0

Pt (c|x0, ...,xt) , (5)

where c is the whole set of recognizable phonetic units
or characters plus a blank symbol (modeling confusion in-
formation of the speech signal [4]), and the summation is
performed over the set of all valid alignments AX,C . From
Eq. (5), the acoustic model outputs can be understood as the
probability distribution over all the possible label sequences
given the sequence of input features X [46].

The very first attempt to apply CTC to KWS was carried
out by Fernández et al. [46] using a BiLSTM for acoustic
modeling. At training time, this system just needs, along with
the training speech signals, the list of training words in order
of occurrence. After this first attempt, several works have
explored variants of this approach using different RNN ar-
chitectures like LSTMs [4], [60], [61], [139], BiLSTMs [84],
[98] and GRUs [61], [140], as well as considering different
phonetic units such as phonemes [60], [84] and Mandarin
syllables [8], [139]. In general, these systems are shown to
be superior to both LVCSR- and keyword/filler HMM-based
KWS systems with less or no additional computational cost
[4], [8], [139]. Notice that since CTC requires searching
for the keyword phonetic unit sequence on a lattice, this
approach is also suitable for open-vocabulary KWS.

2) Sequence-to-Sequence Models
CTC assumes conditional label independence, i.e., past
model outputs do not influence current predictions (see Eq.
(5)). Hence, in the context of KWS and ASR in general, CTC
may need an external language model to perform well. There-
fore, a more convenient approach for KWS acoustic mod-
eling might be the use of sequence-to-sequence (Seq2Seq)
models, first proposed in [141] for language translation.
Figure 7 illustrates an example of Seq2Seq model. In short,
Seq2Seq models are comprised of an RNN encoder7 sum-

7In [9], Shan et al. show, for KWS, the superiority of CRNN encoders
with respect to GRU ones, which, in turn, are better than LSTM encoders.
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ht = Encoder (xt ,ht−1)

To assist the decoder, a context-relevant subset of {h0, ...,hT−1} can be
attended to yield A (to be used instead of hT−1):

A =
T−1∑
t=0

αtht

αt = Attend (ht)
∑

t αt = 1

I. López-Espejo et al.: Deep Spoken KWS: An Overview

3) Residual connections [126] to fast and effectively train
deeper models providing enhanced KWS performance.

C. RECURRENT AND TIME-DELAY NEURAL
NETWORKS
Speech is a temporal sequence with strong time depen-
dencies. Therefore, the utilization of RNNs for acoustic
modeling —and also time-delay neural networks (TDNNs),
which are shaped by a set of layers performing on different
time scales— naturally arises. For example, LSTM neural
networks [137], which overcome the exploding and van-
ishing gradient problems suffered by standard RNNs, are
used for KWS acoustic modeling in, e.g., [4], [29], [76],
[78], [84], clearly outperforming FFNNs [29]. When latency
is not a strong constraint, bidirectional LSTMs (BiLSTMs)
can be used instead to capture both causal and anticausal
dependencies for improved KWS performance [76], [138].
Alternatively, bidirectional GRUs are explored in [32] for
KWS acoustic modeling. When there is no need to model
very long time dependencies, as it is the case in KWS, GRUs
might be preferred over LSTMs since the former demand less
memory and are faster to train while performing similarly or
even better [93].

Besides, [58] studies a two-stage TDNN consisting of
an LVCSR acoustic model followed by a keyword classi-
fier. The authors of [58] also investigate the integration of
frame skipping and caching to decrease computation, thereby
outperforming classical CNN acoustic modeling [28] while
halving the number of multiplications.

As we already suggested in Subsection IV-B, CNNs might
have difficulties to model long time dependencies. To over-
come this point, they can be combined with RNNs to build
the so-called CRNNs. Thus, it may be stated that CRNNs
bring the best of two worlds: first, convolutional layers
model local spectro-temporal correlations of speech and,
then, recurrent layers follow suit by modeling long-term time
dependencies in the speech signal. Some works explore the
use of CRNNs for acoustic modeling in deep spoken KWS
using either unidirectional or bidirectional LSTMs or GRUs
[32], [48], [76], [93], [109], [118]. Generally, the use of
CRNNs allows us for outperforming standalone CNNs and
RNNs [48].

1) Connectionist Temporal Classification
As for the majority of acoustic models, the above-reviewed
RNN acoustic models are typically trained to produce frame-
level posterior probabilities. At training time, in case of em-
ploying, e.g., cross-entropy loss, frame-level annotated data
are required, which may be cumbersome to get. In the context
of RNN acoustic modeling, connectionist temporal classifi-
cation (CTC) [63] is an attractive alternative letting the model
unsupervisedly locate and align the phonetic unit labels at
training time [4]. In other words, frame-level alignments of
the target label sequences are not required for training.

Mathematically speaking, let C = (c0, ..., cm−1) be the
sequence of phonetic units or, e.g., characters corresponding
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FIGURE 7. Example of sequence-to-sequence (Seq2Seq) model. Here,
“<sos>” stands for “start of sequence”. See the text for further details.

to the sequence of feature vectors X = (x0, ...,xT−1), where
m < T and the accurate alignment between C and X is
unknown. CTC is an alignment-free algorithm whose goal
is to maximize [63]

P (C|X) =
∑

A∈AX,C

T−1∏
t=0

Pt (c|x0, ...,xt) , (5)

where c is the whole set of recognizable phonetic units
or characters plus a blank symbol (modeling confusion in-
formation of the speech signal [4]), and the summation is
performed over the set of all valid alignments AX,C . From
Eq. (5), the acoustic model outputs can be understood as the
probability distribution over all the possible label sequences
given the sequence of input features X [46].

The very first attempt to apply CTC to KWS was carried
out by Fernández et al. [46] using a BiLSTM for acoustic
modeling. At training time, this system just needs, along with
the training speech signals, the list of training words in order
of occurrence. After this first attempt, several works have
explored variants of this approach using different RNN ar-
chitectures like LSTMs [4], [60], [61], [139], BiLSTMs [84],
[98] and GRUs [61], [140], as well as considering different
phonetic units such as phonemes [60], [84] and Mandarin
syllables [8], [139]. In general, these systems are shown to
be superior to both LVCSR- and keyword/filler HMM-based
KWS systems with less or no additional computational cost
[4], [8], [139]. Notice that since CTC requires searching
for the keyword phonetic unit sequence on a lattice, this
approach is also suitable for open-vocabulary KWS.

2) Sequence-to-Sequence Models
CTC assumes conditional label independence, i.e., past
model outputs do not influence current predictions (see Eq.
(5)). Hence, in the context of KWS and ASR in general, CTC
may need an external language model to perform well. There-
fore, a more convenient approach for KWS acoustic mod-
eling might be the use of sequence-to-sequence (Seq2Seq)
models, first proposed in [141] for language translation.
Figure 7 illustrates an example of Seq2Seq model. In short,
Seq2Seq models are comprised of an RNN encoder7 sum-

7In [9], Shan et al. show, for KWS, the superiority of CRNN encoders
with respect to GRU ones, which, in turn, are better than LSTM encoders.
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Different works find that incorporating attention provides KWS performance
gains with respect to counterpart Seq2Seq models without attention(1−3)

(1) D. C. de Andrade et al., “A neural attention model for speech command recognition”. arXiv:1808.08929v1, 2018

(2) Z. Zhao and W.-Q. Zhang, “End-to-end keyword search based on attention and energy scorer for low resource languages”.
In Proc. of Interspeech 2020

(3) Z. Liu et al., “RNN-T based open-vocabulary keyword spotting in Mandarin with multi-level detection”. In Proc. of ICASSP
2021
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3) Residual connections [126] to fast and effectively train
deeper models providing enhanced KWS performance.

C. RECURRENT AND TIME-DELAY NEURAL
NETWORKS
Speech is a temporal sequence with strong time depen-
dencies. Therefore, the utilization of RNNs for acoustic
modeling —and also time-delay neural networks (TDNNs),
which are shaped by a set of layers performing on different
time scales— naturally arises. For example, LSTM neural
networks [137], which overcome the exploding and van-
ishing gradient problems suffered by standard RNNs, are
used for KWS acoustic modeling in, e.g., [4], [29], [76],
[78], [84], clearly outperforming FFNNs [29]. When latency
is not a strong constraint, bidirectional LSTMs (BiLSTMs)
can be used instead to capture both causal and anticausal
dependencies for improved KWS performance [76], [138].
Alternatively, bidirectional GRUs are explored in [32] for
KWS acoustic modeling. When there is no need to model
very long time dependencies, as it is the case in KWS, GRUs
might be preferred over LSTMs since the former demand less
memory and are faster to train while performing similarly or
even better [93].

Besides, [58] studies a two-stage TDNN consisting of
an LVCSR acoustic model followed by a keyword classi-
fier. The authors of [58] also investigate the integration of
frame skipping and caching to decrease computation, thereby
outperforming classical CNN acoustic modeling [28] while
halving the number of multiplications.

As we already suggested in Subsection IV-B, CNNs might
have difficulties to model long time dependencies. To over-
come this point, they can be combined with RNNs to build
the so-called CRNNs. Thus, it may be stated that CRNNs
bring the best of two worlds: first, convolutional layers
model local spectro-temporal correlations of speech and,
then, recurrent layers follow suit by modeling long-term time
dependencies in the speech signal. Some works explore the
use of CRNNs for acoustic modeling in deep spoken KWS
using either unidirectional or bidirectional LSTMs or GRUs
[32], [48], [76], [93], [109], [118]. Generally, the use of
CRNNs allows us for outperforming standalone CNNs and
RNNs [48].

1) Connectionist Temporal Classification
As for the majority of acoustic models, the above-reviewed
RNN acoustic models are typically trained to produce frame-
level posterior probabilities. At training time, in case of em-
ploying, e.g., cross-entropy loss, frame-level annotated data
are required, which may be cumbersome to get. In the context
of RNN acoustic modeling, connectionist temporal classifi-
cation (CTC) [63] is an attractive alternative letting the model
unsupervisedly locate and align the phonetic unit labels at
training time [4]. In other words, frame-level alignments of
the target label sequences are not required for training.

Mathematically speaking, let C = (c0, ..., cm−1) be the
sequence of phonetic units or, e.g., characters corresponding
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to the sequence of feature vectors X = (x0, ...,xT−1), where
m < T and the accurate alignment between C and X is
unknown. CTC is an alignment-free algorithm whose goal
is to maximize [63]

P (C|X) =
∑

A∈AX,C

T−1∏
t=0

Pt (c|x0, ...,xt) , (5)

where c is the whole set of recognizable phonetic units
or characters plus a blank symbol (modeling confusion in-
formation of the speech signal [4]), and the summation is
performed over the set of all valid alignments AX,C . From
Eq. (5), the acoustic model outputs can be understood as the
probability distribution over all the possible label sequences
given the sequence of input features X [46].

The very first attempt to apply CTC to KWS was carried
out by Fernández et al. [46] using a BiLSTM for acoustic
modeling. At training time, this system just needs, along with
the training speech signals, the list of training words in order
of occurrence. After this first attempt, several works have
explored variants of this approach using different RNN ar-
chitectures like LSTMs [4], [60], [61], [139], BiLSTMs [84],
[98] and GRUs [61], [140], as well as considering different
phonetic units such as phonemes [60], [84] and Mandarin
syllables [8], [139]. In general, these systems are shown to
be superior to both LVCSR- and keyword/filler HMM-based
KWS systems with less or no additional computational cost
[4], [8], [139]. Notice that since CTC requires searching
for the keyword phonetic unit sequence on a lattice, this
approach is also suitable for open-vocabulary KWS.

2) Sequence-to-Sequence Models
CTC assumes conditional label independence, i.e., past
model outputs do not influence current predictions (see Eq.
(5)). Hence, in the context of KWS and ASR in general, CTC
may need an external language model to perform well. There-
fore, a more convenient approach for KWS acoustic mod-
eling might be the use of sequence-to-sequence (Seq2Seq)
models, first proposed in [141] for language translation.
Figure 7 illustrates an example of Seq2Seq model. In short,
Seq2Seq models are comprised of an RNN encoder7 sum-

7In [9], Shan et al. show, for KWS, the superiority of CRNN encoders
with respect to GRU ones, which, in turn, are better than LSTM encoders.
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Apart from CTC, cross-entropy loss is, by far, the most popular loss
function for training deep spoken KWS acoustic models:

- l
{i}
n : Binary true (training) label corresponding to the input feature segment X{i}

LCE = −
∑
i

N∑
n=1

l{i}n log
(

y{i}n

)

Subword-level posteriors: Training labels are generated by force alignment
using an LVCSR system (which will condition the subsequent KWS system
performance)
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Max-pooling loss: Teaching the acoustic model to only trigger at the
highest confidence time near the end of the keyword:

- L̂: Set of all indices of the input feature segments in a minibatch belonging to any
non-keyword class
- y∗p : Largest target posterior corresponding to the p-th keyword sample in the minibatch
(p = 1, ...,P, and P is the total number of keyword samples in the minibatch)

LMP = −
∑
i∈L̂

N∑
n=1

l{i}n log
(

y{i}n

)
−

P∑
p=1

log
(
y∗p
)

Max-pooling is superior to cross-entropy loss (especially when the acoustic
model is initialized by cross-entropy loss training)(1)

(1) M. Sun et al., “Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting”. In
Proc. of SLT 2016

Iván López-Espejo (Interspeech 2022) Deep Spoken KWS: 2. Approach Sunday 18th September, 2022 34 / 45



Acoustic Modeling CASPR
Centre for Acoustic Signal Processing Research

Acoustic Model Training

M. Sun et al., “Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting”. In Proc. of
SLT 2016

Variants: Weakly-constrained max-pooling, smoothed max-pooling...
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Stochastic gradient descent (normally with momentum) and Adam

Learning rate decay

Parameter regularization: Weight decay, dropout...

Initialization based on transfer learning from LVCSR acoustic models leads
to better KWS models by, e.g., alleviating overfitting(1)

(1) Y. Tian et al., “Improving RNN transducer modeling for small-footprint keyword spotting”. In Proc. of ICASSP 2021
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Deep Learning-based Keyword
Spotting Acoustic Model

Posterior HandlingSpeech Feature
Extraction

Speech signal

Decision

x(m) X{i} y{i}

f(·|θ)

FIGURE 2. General pipeline of a modern deep spoken keyword spotting system: 1) features are extracted from the speech signal, 2) a DNN acoustic model uses
these features to produce posteriors over the different keyword and filler (non-keyword) classes, and 3) the temporal sequence of these posteriors is processed
(Posterior Handling) to determine the possible existence of keywords.

II. DEEP SPOKEN KEYWORD SPOTTING APPROACH
Figure 2 depicts the general pipeline of a modern deep
spoken keyword spotting system [15], [22], [28], [41]–[43],
which is composed of three main blocks: 1) the speech
feature extractor converting the input signal to a compact
speech representation, 2) the deep learning-based acoustic
model producing posteriors over the different keyword and
filler (non-keyword) classes from the speech features (see the
example of Figure 3), and 3) the posterior handler processing
the temporal sequence of posteriors to determine the possible
existence of keywords in the input signal.

Let x(m) be a finite acoustic time signal comprising
speech. In the first place, the speech feature extractor com-
putes an alternative representation of x(m), namely, X. It is
desirable X to be compact (i.e., lower-dimensional, to limit
the computational complexity of the task), discriminative in
terms of the phonetic content and robust to acoustic varia-
tions [44]. Speech features X are traditionally represented by
a two-dimensional matrix composed of a time sequence of
K-dimensional feature vectors xt (t = 0, ..., T − 1) as in

X = (x0, ...,xt, ...,xT−1) ∈ RK×T , (1)

where T , the total number of feature vectors, depends on the
length of the signal x(m). Speech features X can be based on
a diversity of representation types, such as, e.g., spectral [22],
[28], [45], cepstral [16], [46] and time-domain ones [47].
Further details about the different types of speech features
used for KWS are provided in Section III.

The DNN acoustic model receives X as input and outputs a
sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments

X{i} = (xis−P , ...,xis, ...,xis+F ) (2)

of X until the whole feature sequence X is processed. In Eq.
(2), i = dPs e, ..., b

T−1−F
s c is an integer segment index and s

represents the time frame shift. Moreover, P and F denote,
respectively, the number of past and future frames (temporal
context) in each segment X{i} ∈ RK×(P+F+1). While s is
typically designed to have some degree of overlap between

2A proof of this is the organization of events like Auto-KWS 2021
Challenge [40].
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FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords “right” and “left”,
other speech and silence/noise. The acoustic model receives a speech segment
X{i} (log-Mel spectrogram) comprising the keyword “left”. The DNN produces
a posterior distribution over the N = 4 different classes. Keyword “left” is
given the highest posterior probability, 0.8.

consecutive segments X{i} and X{i+1}, many works con-
sider acoustic models classifying non-overlapping segments
that are sufficiently long (e.g., one second) to cover an entire
keyword [16], [30], [48]–[53]. With regard to P and F , a
number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].

Then, let us suppose that the DNN acoustic model f(·|θ) :
RK×(P+F+1) → IN has N output nodes meaning N differ-
ent classes, where θ and I = [0, 1] denote the parameters
of the acoustic model and the unit interval, respectively.
Normally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62],
the latter especially in the context of sequence-to-sequence
models [63]–[65] (see Subsection IV-C for further details).
Let subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, ..., N, (3)

where y
{i}
n = P

(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]
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Non-streaming mode: Isolated word classification

Since non-streaming deep KWS systems tend to produce very peaked
posterior distributions (no inter-class transition data),

Ĉ{i} = argmaxCn
y
{i}
n = argmaxCn

P
(
Cn|X{i}, θ

)
Lack of realism from a practical point of view

Non-streaming performance and streaming performance seem to be highly
correlated, which makes non-streaming KWS research more relevant than it
might look at first sight
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Streaming mode: Continuous processing (normally in real-time) of an
input audio stream in which keywords are not isolated/segmented

Y =
{
..., y{i−1}, y{i}, y{i+1}, ...

}
Y has strong local correlations

Y, which is inherently noisy, is typically smoothed over time on a class basis
before further processing:

Y −→ Smoothing −→ Ȳ =
{
..., ȳ{i−1}, ȳ{i}, ȳ{i+1}, ...

}
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Case 1: Each of the N classes of a deep KWS system represents a whole word

1) ȳ{i} can be compared with a sensitivity threshold

OR

2) The class with the highest posterior within a time sliding window can be
picked from ȳ{i}

Consecutive input segments
{
...,X{i−1},X{i},X{i+1}, ...

}
may cover

fragments of the same keyword realization −→ False alarms!

To prevent false alarms, a simple, yet effective mechanism consists of forcing
the KWS system not to trigger for a short period of time right after a
keyword has been spotted
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Case 2: Each of the N classes still represents a whole word but keywords are
composed of multiple words (e.g., “OK Google”) OR each of the N classes
represents a subword unit (e.g., a syllable) instead of a whole word

Let us assume that the first class C1 corresponds to the non-keyword class
and that the remaining N − 1 classes represent subunits of a single
keyword(1):

S
{i}
c = N−1

√√√√ N∏
n=2

max
hmax(i)≤k≤i

ȳ{k}n

A keyword is detected every time S
{i}
c exceeds a sensitivity threshold to be

tuned

(1) G. Chen et al., “Small-footprint keyword spotting using deep neural networks”. In Proc. of ICASSP 2014
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Case 2: Each of the N classes still represents a whole word but keywords are
composed of multiple words (e.g., “OK Google”) OR each of the N classes
represents a subword unit (e.g., a syllable) instead of a whole word

Let us assume that the first class C1 corresponds to the non-keyword class
and that the remaining N − 1 classes represent subunits of a single keyword:

S
{i}
c = N−1

√√√√ N∏
n=2

max
hmax(i)≤k≤i

ȳ{k}n

Decreasing false alarms

The above equation can be subject to the constraint that the keyword subunits
trigger in the correct order of occurrence within the keyword(1)

(1) R. Prabhavalkar et al., “Automatic gain control and multi-style training for robust small-footprint keyword spotting with
deep neural networks”. In Proc. of ICASSP 2015
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Typically done in the context of CTC:

From a posterior lattice, the goal is to find the most similar subword unit sequence to that
of the target keyword

A keyword is spotted if the score upon the search on the lattice is greater than a threshold

Figure 1: Framework of the proposed LSTM-CTC method.

the whole paper and discusses future works.

2. LSTM-CTC for KWS
The proposed LSTM-CTC KWS framework is illustrated in
Figure 1. First, acoustic feature extraction is performed to
reduce the redundant information of the input speech signal.
Then, these feature vectors are fed frame by frame as input
to a well-trained acoustic LSTM-CTC network. A phone lat-
tice generation module receives the peaky phone posteriors of
LSTM-CTC output and produces a searchable phone lattice for
doing hypothesized phone sequence search, which will find out
the most similar phone sequence to the target keyword phone
sequence in the lattice. A decision then will be made by com-
paring the score of the resulting phone sequences from previous
search with a pre-estimated threshold. A threshold estimation
module is used to estimate different thresholds for different key-
words based on a set of training data and a lexicon, rather than
using a single fixed threshold for all keywords.

2.1. Phone Lattice Generation

As is shown in Figure 2, a typical LSTM-CTC network predic-
tion consists of a series of spikes or peaks separated by blanks.
Each spike corresponds to an output activation, which repre-
sents the posteriors of observing phones at a particular frame.
Blank means null prediction.

The lower portion of Figure 2 shows the generated phone
lattice corresponding to the above LSTM-CTC output. The first
step to obtain the lattice is to locate spikes. In this paper, the
most intuitive approach is adopted, i.e. by scanning the whole
time range, if at a frame the total posteriors of all non-blank
phones exceed a predefined threshold, hspike, then that frame
is a spike. Since actually the LSTM-CTC output is not perfect,
continuous frames may be considered as spikes in this way and
it will impair the efficiency and performance in later processes.
To address this problem, the phone of the highest posterior at
each frame is considered as the primary phone of that frame. If
continuous frames are considered as spikes and they share the
same primary phone, all these spikes are discarded except the
one with highest total posterior. Experiments show that setting
hspike between 0.1 and 0.3 is reasonable.

In the phone lattice, each spike corresponds to a column of
nodes, and each node represents a phone which has relatively
large posterior in the frame where the spike locates. For a spike,
phones of posteriors larger than hnode are selected as potential
phones and appended into the corresponding nodes column.

The nodes in every two adjacent columns are fully con-
nected. Thereby, any path from one node to another represents a
potential phone sequence which consists of phones represented
by nodes through the path. There is no weight on the connec-
tions between two nodes, however, nodes have posteriors denot-
ing the probabilities of observing the phones at the spikes.

Figure 2: LSTM-CTC output of a speech segment and the cor-
responding lattice. Different colours represent the posteriors of
different phones. The black line in the lattice indicates a poten-
tial path and the grey dashed lines are all valid connections.

2.2. Hypothesis Search

The lattice explained in Section 2.1 is searchable. In this sec-
tion, it is described how to find out the most similar phone se-
quence. The term “the most similar phone sequence” means
(i) the phone sequence has relatively high observation probabil-
ity, and (ii) the minimum edit distance (MED) [24] between the
phone sequence and the phone sequence of keyword is small.

Suppose T = {t1, t2, · · · , tn} is a target keyword phone
sequence of length n, where ti denotes the i-th phone in T .
Similarly, let H = {nij1 , n(i+1)j2 , · · · , n(i+m−1)jm} be a hy-
pothesized phone sequence, where nij is the j-th phone node in
the i-th column of the lattice. For convenience, H is also rep-
resented by H = {h1, h2, · · · , hm}, that is, hk = n(i+k−1)jk .
For a test utterance, let LH represent the corresponding CTC
phone lattice containing all possible phone sequences. Then,
the probability of target keyword T existing in LH is

P (T |LH) ∝ P (LH |T )P (T ) ≈ P (Hmax|T )P (T ) (1)

where Hmax is the most similar phone sequence that we want
to find out and it should have the highest probability given T in
LH . Due to T is given, whether the keyword T exists or not in
the test utterance is decided on the value of P (Hmax|T ). Next,
we find Hmax.

Hmax = argmax
H

P (H|T ) = argmax
H

P (T |H)P (H)

P (T )

= argmax
H

P (T |H)P (H)
(2)

where P (H) is the observation probability of H , and it can
be calculated by multiplying the posterior probabilities of every
phone nodes of H under the unigram assumption, that is,

P (H) =

m∏
i=1

P (hi|H1:i−1) ≈
m∏
i=1

P (hi) (3)

P (T |H) is not strictly estimated through multiplying the prob-
abilities of each edit operation when computing the minimum
edit distance between H and T , that is,

P (T |H) ,
MED(T,H)∏

i=1

P (opi|R = T,E = H) (4)

P (opi|R = T,E = H) =


P (insert(ei)) if opi ∈ I
P (delete(ri)) if opi ∈ D
P (ri|ei) if opi ∈ S

(5)
whereMED(T,H) indicates the minimum number of edit op-
erations between T and H by insertions, deletions or substi-

939

Y. Zhuang et al., “Unrestricted vocabulary keyword spotting using LSTM-CTC”. In Proc. of Interspeech 2016
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FIGURE 2. General pipeline of a modern deep spoken keyword spotting system: 1) features are extracted from the speech signal, 2) a DNN acoustic model uses
these features to produce posteriors over the different keyword and filler (non-keyword) classes, and 3) the temporal sequence of these posteriors is processed
(Posterior Handling) to determine the possible existence of keywords.

II. DEEP SPOKEN KEYWORD SPOTTING APPROACH
Figure 2 depicts the general pipeline of a modern deep
spoken keyword spotting system [15], [22], [28], [41]–[43],
which is composed of three main blocks: 1) the speech
feature extractor converting the input signal to a compact
speech representation, 2) the deep learning-based acoustic
model producing posteriors over the different keyword and
filler (non-keyword) classes from the speech features (see the
example of Figure 3), and 3) the posterior handler processing
the temporal sequence of posteriors to determine the possible
existence of keywords in the input signal.

Let x(m) be a finite acoustic time signal comprising
speech. In the first place, the speech feature extractor com-
putes an alternative representation of x(m), namely, X. It is
desirable X to be compact (i.e., lower-dimensional, to limit
the computational complexity of the task), discriminative in
terms of the phonetic content and robust to acoustic varia-
tions [44]. Speech features X are traditionally represented by
a two-dimensional matrix composed of a time sequence of
K-dimensional feature vectors xt (t = 0, ..., T − 1) as in

X = (x0, ...,xt, ...,xT−1) ∈ RK×T , (1)

where T , the total number of feature vectors, depends on the
length of the signal x(m). Speech features X can be based on
a diversity of representation types, such as, e.g., spectral [22],
[28], [45], cepstral [16], [46] and time-domain ones [47].
Further details about the different types of speech features
used for KWS are provided in Section III.

The DNN acoustic model receives X as input and outputs a
sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments

X{i} = (xis−P , ...,xis, ...,xis+F ) (2)

of X until the whole feature sequence X is processed. In Eq.
(2), i = dPs e, ..., b

T−1−F
s c is an integer segment index and s

represents the time frame shift. Moreover, P and F denote,
respectively, the number of past and future frames (temporal
context) in each segment X{i} ∈ RK×(P+F+1). While s is
typically designed to have some degree of overlap between

2A proof of this is the organization of events like Auto-KWS 2021
Challenge [40].

"Left"

"Right"

"Left"

Other speech

Silence/noise

:

:

:

:

0.1

0.1

0.8

0.0

X{i}

f(·|θ)
y{i}

FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords “right” and “left”,
other speech and silence/noise. The acoustic model receives a speech segment
X{i} (log-Mel spectrogram) comprising the keyword “left”. The DNN produces
a posterior distribution over the N = 4 different classes. Keyword “left” is
given the highest posterior probability, 0.8.

consecutive segments X{i} and X{i+1}, many works con-
sider acoustic models classifying non-overlapping segments
that are sufficiently long (e.g., one second) to cover an entire
keyword [16], [30], [48]–[53]. With regard to P and F , a
number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].

Then, let us suppose that the DNN acoustic model f(·|θ) :
RK×(P+F+1) → IN has N output nodes meaning N differ-
ent classes, where θ and I = [0, 1] denote the parameters
of the acoustic model and the unit interval, respectively.
Normally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62],
the latter especially in the context of sequence-to-sequence
models [63]–[65] (see Subsection IV-C for further details).
Let subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, ..., N, (3)

where y
{i}
n = P

(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]
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 Introduction: Robustness, Machine Learning & Data – Challenges

Speech Data:  Mismatch (Intrinsic, Extrinsic, and Context based issues)

Speech Task ML Challenges:  (know your problem, know your data)

KWS – Naturalistic Spaces; Spontaneous Speech, Distance Capture

Example Studies

Building ML Models: Dialect ID “Is the secret in the silence?”

Conversational Analysis:  Prof-Life-Log: Word Count Estimation, KWS

KWS: Various Speech Corpora (Clean – Noisy – Naturalistic)

KWS: DARPA  RATS example 

KWS: Naturalistic Learning Spaces 

Summary
[1] J.H.L. Hansen, H. Boril, "On the issues of intra-speaker variability and realism in speech, speaker, and language 

recognition tasks," Speech Communication, vol. 101, pp. 94-108, July 2018.

[2] M. Mirsamadi, J.H.L. Hansen, "Multi-domain adversarial training of neural network acoustic models for distant speech 

recognition," Speech Communication, vol. 106, pp. 21-30, Jan. 2020

[3] I. López-Espejo, Z.-H. Tan, J.H.L. Hansen, J. Jensen, "Deep Spoken Keyword Spotting: An Overview," IEEE Access, vol, 

10, pp.4169 - 4199, 2022.

[4] J.H.L. Hansen, T. Hasan, "Speaker Recognition by Machines and Humans: A Tutorial Review," IEEE Signal Processing 

Magazine, pp. 74-99, Nov. 2015.

1.  Outline
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 Machine Learning vs. Deep Learning

 Data drives models and solutions for 

ML/Deep Learning

 Architectures include:

 CNN: convolutional neural network

 DNN: deep neural network

 RNN: recurrent neural network

 AE : auto-encoder

 LSTM: long-short term memory module

 GANs: generative adversarial networks

 Speech Technology & ML/Deep Learning

 ASR/KWS, SID, Diarization, LID/DID/AID 

(Language, dialect, accent), 

Emotion / Stress Recognition, 

Conversational Analysis, etc. 

Speech Data NEEDED for effective Network Training

1.  Machine Learning  & Data
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Future Speech Communication Research Directions: 

(1) Naturalistic Data; (2) Multi-Speaker Context; (3) Massive “Big” Data; 

(4) STEM / Team-Based communications; (5) Voice Enabled & Distant

 Historically, speech communication and engineering design for 

electronic communications has focused on 1-on-1 scenario

VS.

 Most human-to-human speech studies, have also focused on 

1-on-1 context.

1.  Speech Communications
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EXTRINSICINTRINSIC CONTEXT

1. Speech Data: 

Mismatch is Everywhere, and Growing
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/#/  &  speech (1 or more speakers)

joe  ate  his soup.     This field  of  beets   is    ripe   and ready.   orange juice tastes funny

Audio Stream

(a) Text  

Sequence:

(c) Speaker  ID

& Tracking:

(b) Keyword 

locations:

(d) Topic 

locations:

(e) Environment 

Identity:

soup                             beets                                             orange juice

sports                             politics                 sports    politics                  sports         news  health

S1       S2     S1            S1      S2                                                            S3    S1          S3    S2

Env1           Env2                 Env3      Env1              Env3                  Env8                   Env2

 Diarization can be MUCH Richer for Knowledge Extraction

 Speech Recognition – challenges in spontaneous conversational speech 

(not “prompted” like Apple SIRI,etc), coarticulation issues, group/overlap, etc.

 ML/Deep Learning Models:   SAD, ASR, KWS, SID, LID/DID/AID, 

Emotion/Stress/Sentiment recognition, Conversational Analysis, etc. 

1. Audio  Diarization: Naturalistic Data
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Challenges in ML Speech Tasks (know your problem, know your data)

 Speech Data – know context, speakers, scenarios for data collection

 Obtain as much “Meta-Data” as possible for corresponding audio

 ML training methods explore: (a) Data Augmentation (e.g., expanding data by 

adding noise/reverb/distortion to “clean” data); (b) use Meta-Data for tiered 

training (e.g., curriculum training, “Student-Teacher” modeling, etc.)

 RISKY  to use “found data” in a blind manner!!!

Building ML Models on Found Data: 

Dialect ID  “Is the secret in the silence?”

 J.H.L. Hansen, H. Boril, "On the issues of intra-speaker variability and realism in speech, 

speaker, and language recognition tasks," Speech Communication, vol. 101, pp. 94-108, 

July 2018.

H. Boril, A. Sangwan, J.H.L. Hansen, "Arabic Dialect Identification - 'Is the Secret in the 

Silence?' and Other Observations," ISCA Interspeech-2012, Portland, OR, Sept. 9-13, 2012

2. Naturalistic Data Streams
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Building ML Models: Dialect ID “Is the secret in the silence?”

[2] F. Biadsy, J. Hirschberg, and D. P. W. Ellis, “Dialect and accent recognition using phonetic-segmentation supervectors,” in 

INTERSPEECH’11, Florence, Italy, 2011.

[3] M. Akbacak, D. Vergyri, A. Stolcke, N. Scheffer, and A. Mandal, “Effective Arabic dialect classification using diverse 

phonotactic models,” INTERSPEECH’11, Florence, Italy, 2011.

 Conversational telephone speech (CTS)

 4 dialects – Gulf, Iraqi, Egyptian, Levantine

 LDC sets: (1) Gulf Arabic CTS;  (2)  Iraqi Arabic CTS; 

(3) CALLHOME & CALLFRIEND Egyptian Arabic Speech

(4) Arabic CTS Levantine Fisher Training Data Set 3

 Past studies [1–3] used Levantine Arabic CTS instead of Fisher corpus

Linguistic Data Consortium (LDC) Corpora

[1] F. Biadsy, J. Hirschberg, and N. Habash, “Spoken Arabic dialect identification using phonotactic modeling,” in Proceedings 

of the EACL 2009 Workshop on Computational Approaches to Semitic Languages, Athens, Greece, 2009.

2.1 Data Example:  Dialect ID 
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 Conversational speech; lapel microphone (hands-free)

 5 dialects – United Arab Emirates, Egyptian, Iraqi, Palestinian, Syrian

 100 speakers per dialect (gender balanced)

 Each session – 2 speakers, 4 combined conversational recordings

 4 dialects (blue) used in current experiments

In-House Pan-Arabic Corpus [4] (UTD-CRSS)

[4] Y. Lei and J. H. L. Hansen, “Dialect classification via text-independent training and testing for Arabic, 

Spanish, and Chinese,” IEEE Trans. on Audio, Speech, Lang. Proc. 19:1, pp. 85 –96, Jan. 2011.

 LDC Corpora In-House Pan-Arabic 
 

GLF IRQ LEV EGY PS IRQ SY EGY 

Train Set (Hrs) 32.7 16.1 11.9 33.9 10.6 9.3 10.8 9.9 

Test Set (Hrs) 2.0 2.3 1.6 10.1 2.8 2.7 2.5 2.6 

Avg. Chunk Length 11.3 sec 11.9 sec 

 

2.2 Arabic Corpora for DID 
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 Initial ‘Toy’ Experiment

DID on LDC Corpora – Speech Chunks

 
 Assigned Dialect (Speech Chunks) 

Ground Truth Gulf Iraqi Levantine Egyptian 

Acc (%) 
 

[Avg 82.0] 

Gulf 510 120 4 1 80.3 

Iraqi 184 527 1 2 73.8 

Levantine 120 10 370 0 74.0 

Egyptian 8 0 0 3174 99.7 

 

 Naïve GMM ML classifier; 32 mixtures, modified MFCC front-end (20 

rectangular non-overlapping filters), 25/10 ms windowing, static+D+DD

 Closed in-set DID task (pick 1-of-4 dialects)

 Suspiciously high accuracy 

– do we detect dialects or something else…          …?

2.2 Speech – Based   DID 

 H. Boril, A. Sangwan, J.H.L. Hansen, "Arabic Dialect Identification - 'Is the Secret in the 

Silence?' and Other Observations," ISCA Interspeech-2012, Portland, OR, Sept. 9-13, 2012
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Dialect-Specific Transfer Functions in In-House Corpus
Silence Segments

DID on Pan-Arabic Corpus – Silence Chunks

 Repeated GMM-based DID experiment on silence chunks as in LDC 

case → Acc = 24.7% (chance) → speech needed for DID here!

 Long-term channel characteristics – similar trend across dialects

→ meaningful corpus for Arabic DID

2.2 Silence – Based   DID 
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DID on LDC Corpora – Silence Chunks
 Suspiciously high accuracy in previous case – do we detect dialects or 

something else…          …?

 Task 2 – similar to previous task, but now on silence chunks

 The overall DID accuracy is higher on silence segments (82.0→83.3%)

 For our naïve classifier, the presence of speech actually hurts DID

2.2 Silence – Based   DID 

 
 Assigned Dialect (Silence Chunks) 

Ground Truth Gulf Iraqi Levantine Egyptian 

Acc (%) 
 

[Avg 83.3] 

Gulf 260 78 0 0 76.9 

Iraqi 96 228 0 0 70.4 

Levantine 24 1 158 1 85.9 

Egyptian 0 0 0 1973 100 

 

DID on “Silence” segments
DID on 

“Speech” 
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Search for Non-Linguistic Cues
 Analysis of long-term channel characteristics in silence segments
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2.2 Silence – Based   DID 

For KWS network model training,  

Know your problem,  Know your data
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Unscripted speech collection in natural environments

Excellent Naturalistic Audio for DIARIZATION advancements

Unrestricted topics, vocabulary, language; 8-16hrs/day; +100days

Good for: Diarization; SID; KWS; Co-Speaker research

PLL Corpus

2010-2019

2.3 Prof-Life-Log: Massive Data
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 Similarity measurements between days….

 Most similar: A & I (ρ=0.87); Most diverse : B & F (ρ=0.27) 

2.3 Prof-Life-Log: Daily Word Count
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 Phone Confusion Network (PCN) based Keyword Recognition

 Advantages of phone based approach

 Faster than LVCSR (large vocab. continuous speech recognition)

 No issues with OOV (out of vocabulary) queries (unlike LVCSR)

 Flexibility in dealing with pronunciation variations (unlike LVCSR)

 Useful where LMs (language models) are hard to build 

(LM required in LVCSR)

 Disadvantages

 High false-alarm rates

 Cannot take advantage of higher level lexical knowledge 

(due to lack of both pronunciation & language models)

 Phone Confusion Network based Keyword Recognition

 Search for keywords inside PCNs using maximum likelihood criterion

 Keyword represented as a phone graph; Algorithm framework capable 

of incorporating pronunciation variations

Abhijeet Sangwan  and  John H.L. Hansen

2.3 Prof-Life-Log: Keyword Recognition
Phone Confusion Network (PCN) based Search Strategy
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ASR

Speech

Signal

Lattice

Confusion Network

DM-PLS

PCN-KWS

PCN = Phone Confusion Network

DM-PLS = Dynamic Match-Phone Lattice Search

2.3 Keyword Recognition (KWS): 

KWS System Description:  PCN-KWS vs. DM-PLS

2.3 Keyword Recognition (KWS): 

KWS System Description:  PCN-KWS vs. DM-PLS

Abhijeet Sangwan  and  John H.L. Hansen
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Speech
Recognition

Phone 
Confusion 

Network (PCN)
Generation

Voice Activity 
Detection

SNR-based 
Rejection

PCN-based
Keyword Search

1

2

34

Speech Input

“really”

2.3  Keyword Recognition (KWS / ASR):

Phone Confusion Network (PCN): Prof-Life-Log:

2.3  Keyword Recognition (KWS / ASR):

Phone Confusion Network (PCN): Prof-Life-Log:

Keyword
Threshold 
Estimation
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2.3 Keyword Spotting/Recognition: 

High Level View (PCN-KWS)

2.3 Keyword Spotting/Recognition: 

High Level View (PCN-KWS)
M

is
s
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e
) Prof-Life-Log

Hub5 (Call Home English + Switchboard)

NOTEL (noisy field cell corpus)
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 KWS
1. PCN:  Phone Confusion Networks – explore Query Expansion

2. Things that work: Cepstral Based Normalization methods, 
Query Length, SNR based KW rejection

 3. Ideas: Hybrid Sub-Word solution: between “word” and “phone” 
level sub-word system; On Demand Discriminative Keyword 
Modeling; Front-End Processing

2.4 KWS/ASR:   DARPA RATS Task

Communications Noise Field

(Farsi, Arabic, Dari, Urdu, Pashtu)

2.4 KWS/ASR:   DARPA RATS Task

Communications Noise Field

(Farsi, Arabic, Dari, Urdu, Pashtu)

Center for Robust Speech Systems

University  of Texas at Dallas

http://crss.utdallas.edu/

DARPA  RATS
SCENIC TEAM

John H.L. Hansen, Abhijeet Sangwan, Wooil Kim, 

Omid Sadjadi, Keith Godin

(2012)
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Keyword Spotting:  DARPA RATS Keyword Spotting:  DARPA RATS 
Baseline Performance (PCN-KWS) on RATS-Farsi

(2012)

2.4 Keyword Spotting:   DARPA RATS
Baseline Performance (PCN-KWS) on RATS-Farsi 

2.4 Keyword Spotting:   DARPA RATS
Baseline Performance (PCN-KWS) on RATS-Farsi 
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As expected, better KWS results with longer queries

Automatic Query Expansion also considered to reduce False-Alarms

2.4 Keyword Spotting:  DARPA RATS 2.4 Keyword Spotting:  DARPA RATS 
Impact of Query Length:  (PCN-KWS) on RATS-Farsi

(2012)
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2.5 Child Speech Diarization Technology:

Motivation, System & Results: WH-words

2.5 Child Speech Diarization Technology:

Motivation, System & Results: WH-words

 Engagement: Quality interactions of children 

during formative years crucial for development

 Corpus: day-long speech recordings of 33 

children (2.5-5 yrs) using LENA devices

 Tagging: communication metric calculation 

(word count, talk time for child w/ adult, etc.)

 RESULTS: Diarization w/ CRSS-diar v1 toolkit 

provides diarization error rate of 40.44% in 

tagging adult vs. children’s speech

Child – Adult Vocal Engagement: “Hot Spot” Detection

Ubisense device LENA device
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2.5 Child Learning Spaces: WH-words & Verbs

WH-words (who, what, when, where, why, how)

2.5 Child Learning Spaces: WH-words & Verbs

WH-words (who, what, when, where, why, how)

 WH-WORDS & VERBS: language learning milestones established by ASLHA; 

adopted by CDC’s; (WH = child curiosity; Verbs = Grammar knowledge)

 GOAL: capture young children’s interactions with teachers in  

naturalistic preschool classroom environments

 ASR/KWS in preschool child classrooms -> Challenging task
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 ASR Acoustic Model: TDNN-F + CNN + Attention

 ASR Language Model: RNN 

[1] S. Dutta, S.A. Tao, J.C. Reyna, R.E. Hacker, D.W. Irvin, J.F. Buzhardt, J.H.L. Hansen. “Challenges remain in Building ASR for 

Spontaneous Preschool Children Speech in Naturalistic Educational Environments.” ISCA Interspeech-2022, Sept. 2022.

 Test Split: 14 preschool 

children (3-5 yrs) with & w/o 

speech/language delays

 Primary child  wears LENA, 

Secondary children are 

background speakers 

2.5 KWS Child Learning Spaces: WH-words, Verbs

Impact of Child ASR on Language Learning Milestones

2.5 KWS Child Learning Spaces: WH-words, Verbs

Impact of Child ASR on Language Learning Milestones
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WH-
Word 
/Location 

WHAT WHEN WHERE HOW WHY WHO 

Science 65.2% 100.0% 50.0% 83.3% 100.0% 66.7% 

Reading 85.3% 92.3% 81.8% 94.1% 92.3% 75.0% 

All 72.2% 69.0% 71.0% 72.8% 52.4% 73.2% 

 

Adult WH-word metrics

Child WH-word metrics
WH-
Word 
/Location 

WHAT WHEN WHERE HOW WHY WHO 

Science 41.5% 0% 53.3% 28.6% 50.0% 0% 

Reading 56.0% 60% 40.0% 58.9% 66.6% 0% 

All 47.3% 39.1% 30.2% 44.5% 56.0% 39.8% 

 Most F1-scores better in reading vs. science; suggested 

due to better audio environmental conditions

2.6 Child Speech Recognition: WH-words

KWS Recognition Results (Child vs Adult)

2.6 Child Speech Recognition: WH-words

KWS Recognition Results (Child vs Adult)
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WH-
Word 
/Location 

WHAT WHEN WHERE HOW WHY WHO 

Science 65.2% 100.0% 50.0% 83.3% 100.0% 66.7% 

Reading 85.3% 92.3% 81.8% 94.1% 92.3% 75.0% 

All 72.2% 69.0% 71.0% 72.8% 52.4% 73.2% 

 

Adult WH-word metrics

Child WH-word metrics
WH-
Word 
/Location 

WHAT WHEN WHERE HOW WHY WHO 

Science 41.5% 0% 53.3% 28.6% 50.0% 0% 

Reading 56.0% 60% 40.0% 58.9% 66.6% 0% 

All 47.3% 39.1% 30.2% 44.5% 56.0% 39.8% 

 Most F1-scores better in reading vs. science; suggested 

due to better audio environmental conditions

2.6 Child Speech Recognition: WH-words

KWS Recognition Results (Child vs Adult)

2.6 Child Speech Recognition: WH-words

KWS Recognition Results (Child vs Adult)

755 163 152 173 97 141 Total=1481All zones
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Annotated (speaker label) 100-hours of audio 

from 5 critical loops

 3 Apollo-11 Mission Events: 

 Lift-off: 25 hours 

 Lunar Landing: 50 hours

 Lunar Walking: 25 hours

 Dataset used for various tasks including 

speech activity detection, speaker 

recognition, and diarization; “human team 

assessment”

Challenge

 +160 Academic & Industry Organizations 

from 35 Countries have participated!!

 110 System Submissions from 15 teams 

received and evaluated (FS-3)! 

Results announced at the exact time of the First Step taken on the Moon!

2.7 Fearless Steps Challenges (2019/22) 2.7 Fearless Steps Challenges (2019/22) 
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 Five Challenges:

SAD: Speech Activity Detection

SD: Speaker Diarization

SID: Speaker Identification

ASR: Automatic Speech Recognition

SENT: Sentiment Detection

 Data from Five NASA 

Audio Channels:

MOCR: Mission 

Operations Control Room

FD:  Flight Director

EECOM: Electrical, 

Environmental, and 

Consumables Manager

GNC: Guidance, 

Navigation, and Control

NTWK: Network Controller

 Three Apollo-11 Mission Stages:

 Lift-Off

 Lunar 

Landing 

 Lunar 

Walking

2.7 Fearless Steps Challenges (2019/22) 2.7 Fearless Steps Challenges (2019/22) 
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WORLD:  Academic & Other USA:  Academic & Other 

USA

ASIA

AUS

EUROPE
COMMUNITY  OF  FEARLESS STEPS  (FS-1) 

PARTNERS:  +160 Academic & Industry 

Organizations, and Independent Researchers

2.7 Fearless Steps Challenges (2019/22) 2.7 Fearless Steps Challenges (2019/22) 
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 Introduction: Robustness, Machine Learning & Data – Challenges

Speech Data:  Mismatch (Intrinsic, Extrinsic, and Context based issues)

Speech Task ML Challenges:  (know your problem, know your data)

KWS – Robustness (Distance based Speech Capture, Data, Systems)

Case Studies

 Conversational Analysis:  Prof-Life-Log: Word Count Estimation, KWS

 Building ML Models: Dialect ID “Is the secret in the silence?”

 KWS: Various Speech Corpora (Clean – Noisy – Naturalistic)

 KWS: DARPA  RATS; Naturalistic Learning Spaces(Child-Teacher; Apollo, etc.)

[1] J.H.L. Hansen, H. Boril, "On the issues of intra-speaker variability and realism in speech, speaker, and language 

recognition tasks," Speech Communication, vol. 101, pp. 94-108, July 2018.

[2] M. Mirsamadi, J.H.L. Hansen, "Multi-domain adversarial training of neural network acoustic models for distant speech 

recognition," Speech Communication, vol. 106, pp. 21-30, Jan. 2020

[3] I. López-Espejo, Z.-H. Tan, J.H.L. Hansen, J. Jensen, "Deep Spoken Keyword Spotting: An Overview," IEEE Access, vol, 

10, pp.4169 - 4199, 2022.

[4] J.H.L. Hansen, T. Hasan, "Speaker Recognition by Machines and Humans: A Tutorial Review," IEEE Signal Processing 

Magazine, pp. 74-99, Nov. 2015.
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[1] J.H.L. Hansen, A. Stauffer, W. Xia, "Nonlinear Waveform Distortion: Assessment and Detection of Clipping on Speech Data 

and Systems," Speech Communication. vol. 134, pp. 20-31, Sept. 2021. (https://doi.org/10.1016/j.specom.2021.07.007) 

[2] J.H.L. Hansen, H. Boril, "On the issues of intra-speaker variability and realism in speech, speaker, and language 

recognition tasks," Speech Communication, vol. 101, pp. 94-108, July 2018.

[3] J.H.L. Hansen, H. Boril, “Robustness in Speech, Speaker, and Language Recognition: “You’ve Got to Know Your 

Limitations,” ISCA INTERSPEECH-2016, Paper ID: 1395, pp. 2766-2770, San Francisco, CA, Sept. 8-12, 2016.

[4] H. Boril, A. Sangwan, J.H.L. Hansen, "Arabic Dialect Identification - 'Is the Secret in the Silence?' and Other Observations," 

ISCA Interspeech-2012, Mon-O1b-01, pg. 1-4,, Portland, OR, Sept. 9-13, 2012

[5] V. Kothapally, J.H.L. Hansen, "SkipConvGAN: Monaural Speech Dereverberation using Generative Adversarial Networks 

via Complex Time-Frequency Masking," IEEE Trans. Audio, Speech, Lang. Proc., . vol, 30, pp. 1600-1613, Mar.. 2022

[6] R. Lileikyte, D. Irvin, J.H.L. Hansen, "Assessing Child Communication Engagement and Statistical Speech Patterns for 

American English via Speech Recognition in Naturalistic Active Learning Spaces," Speech Communication, pp. 98-108, 2022

[7] I. López-Espejo, Z.-H. Tan, J.H.L. Hansen, J. Jensen, "Deep Spoken Keyword Spotting: An Overview," IEEE Access, vol, 

10, pp.4169 - 4199, 2022.

[8] S. Ranjan, C. Zhang, J.H.L. Hansen, "Curriculum Learning Based Approaches for Robust End-to-End Far-Field Speech 

Recognition," Speech Communication, vol. 132, pp. 123-131, Sept. 2021

[9] D.W. Irvin, Y. Luo, J.M. Huffman, N. Grasley-Boy, B. Rous, J.H.L. Hansen, “Capturing talk and proximity in the classroom: 

Advances in measuring features of young children's friendships", Early Childhood Research Quarterly, pp. 102-109, 2021. 

[10] M. Yousefi, J.H.L. Hansen, “Block-based high performance CNN architectures for frame-level Overlapping Speech 

Detection", IEEE Trans. Audio, Speech and Language Processing, vol, 29, pp. 28-40, Nov. 2020. 

[11] M. Mirsamadi, J.H.L. Hansen, "Multi-domain adversarial training of neural network acoustic models for distant speech 

recognition," Speech Communication, vol. 106, pp. 21-30, Jan. 2020

[12] J.H.L. Hansen, M. Najafian, R. Lileikyte, D. Irvin, B. Rous, "Speech and Language Processing for Assessing Child-Adult 

Interaction Based on Diarization and Location," Inter. Journal of Speech Tech., Vol. 22, pp. 697-709, June 2019.

[13] L.N. Kaushik, A.Sangwan, J.H.L. Hansen, "Speech Activity Detection In Naturalistic Audio Environments: Fearless Steps 

Apollo Corpus," IEEE Signal Processing Letters, vol. 25, no. 9, pp. 1290-1294, Sept. 2018. 

[14] Q. Zhang, J.H.L. Hansen,"Language/Dialect Recognition based on Unsupervised Deep Learning," IEEE Trans. on Audio, 

Speech and Lang. Proc., vol. 26, no. 5, pp. 873-882, May 2018. 

https://doi.org/10.1016/j.specom.2021.07.007
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[15] S. Ghaffarzadegan, H. Boril, J.H.L. Hansen, "Deep Neural Network Training for Whisper Speech Recognition using Small 

Databases and Generative Model Sampling," Inter. Journal of Speech Technology, Vol. 20, Issue 4, pp. 1063-1075, Dec. 2017

[16] C. Yu, J.H.L. Hansen, "A study of voice production characteristics of astronaut speech during Apollo-11 for long-term 

speaker modeling in space," Journal of the Acoustical Society of America, Vol. 141, No. 3, pp.1605-1614, March 2017 

[17] F. Weng, P. Angkititrakul, E. Shriberg, L. Heck, S. Peters, J.H.L. Hansen, "Conversational In-Vehicle Dialog Systems: The 

past, present, and future," IEEE Signal Processing Magazine: Special Issue - Signal Processing for Smart Vehicle 

Technologies, vol. 33, no. 6, , pp. 49-60, Nov. 2016.

[18] A. Ziaei, A. Sangwan, J.H.L. Hansen, "Effective word count estimation for long duration daily naturalistic audio 

recordings," Speech Communication, vol. 84, pp. 15-23, Nov. 2016.

[19] S.M. Mirsamadi, J.H.L. Hansen, "A Generalized Nonnegative Tensor Factorization Approach for Distant Speech 

Recognition with Distributed Microphones" IEEE Trans. Audio, Speech, Lang. Proc., vol. 24, No.10, pp. 1721-1731, Oct. 2016.

[20] J.H.L. Hansen, T. Hasan, "Speaker Recognition by Machines and Humans: A Tutorial Review," IEEE Signal Processing 

Magazine, pp. 74-99, Nov. 2015.

[21] S.O. Sadjadi, J.H.L. Hansen, "Blind Spectral Weighting for Robust Speaker Identification under Reverberation Mismatch 

Conditions,“ IEEE Trans. Audio, Speech Lang. Proc., vol. 22, no. 5, pp. 935-943, May. 2014

[22] J.H.L. Hansen, J.-W. Suh, P. Angkititrakul, Y. Lei, "Effective Background Data Selection for SVM-Based Speaker 

Recognition for Unseen Test Environments: More is Not Always Better," Inter. Journal Speech Technology, vol. 17, issue 3, pp. 

211-221, Sept. 2014.

[23] S.O. Sadjadi, J.H.L. Hansen,"Unsupervised Speech Activity Detection using Voicing Measures and Perceptual Spectral 

Flux," IEEE Signal Processing Letters, vol. 20, no. 3, pp. 197-200, March 2013 

[24] M. Akbacak, J.H.L. Hansen, "Spoken Proper Name Retrieval for Limited Resource Languages Using Multilingual Hybrid 

Representations," IEEE Trans. Audio, Speech and Language Processing, vol. 18, no. 6, pp. 1486-1495, Aug. 2010

[25] J.H.L. Hansen, V.S.Varadarajan, "Analysis and Compensation of Lombard Speech Across Noise Types and Levels with 

Application to In-Set/Out-of-Set Speaker Recognition, IEEE Trans. Audio, Speech & Lang. Proc., pp. 366-378, Feb. 2009

[26] S. Ranjan, G. Liu, J.H.L. Hansen, “An i-Vector PLDA based Gender Identification Approach for Severely Distorted and 

Multilingual DARPA RATS Data," IEEE ASRU-2015: Workshop, Paper#1243, Scottsdale, Arizona (USA), Dec.13-17, 2015

[27] H. Dubey, A. Sangwan, J.H.L. Hansen,"Using Speech Technology for Quantifying Behavioral Characteristics in Peer-Led 

Team Learning Sessions," Computer Speech & Language, vol. 46, pp. 343-366, 2017. 
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Outline

• AV KWS Framework 
• Visual feature extraction 
• Audio-visual fusion
• Noise-robustness
• Benchmark datasets   
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• Human speech perception uses both auditory and visual 
information (e.g., lips)

• KWS can benefit from visual info., esp. in noisy conditions  
• Audio visual KWS framework [1]

• Speech & visual feature extraction, and audio-visual fusion 

Introduction and framework

[1] López-Espejo, I., Tan, Z. H., Hansen, J., & Jensen, J. (2021). Deep spoken keyword spotting: An overview. IEEE Access.

on whether and where a 
user specified keyword 
occurs
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Deep learning setup

Deep model

Output 

Training target

Deep modelFeature 
extraction

Deep model

Multimodal (e.g., AV)
Multitask (e.g., SV)

Objective 
function

Feature 
extraction
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• A two-step approach:
• Face detection and lip localization (via landmark estimation)
• (Classical) visual feature extraction itself from the lips crop, 

e.g., in [1]
• Alternatively, a deep learning model can take as input raw 

images containing the uncropped speaker’s face (as a 
preferred approach)

• E.g., in [2], a clip of talking face is fed into 18-layer spatio-
temporal ResNet for visual feature extraction

• 3D CNN is used in [3] as well

Visual feature extraction 

[1] P. Wu, H. Liu, X. Li, T. Fan, and X. Zhang, ‘‘A novel lip descriptor for audio-visual keyword spotting based on adaptive 
decision fusion,’’ IEEE Trans. Multimedia, vol. 18, no. 3, pp. 326–338, Mar. 2016
[2] L. Momeni, T. Afouras, T. Stafylakis, S. Albanie, and A. Zisserman, ‘‘Seeing wake words: Audio-visual keyword 
spotting,’’ in Proc. Brit. Mach. Vis. Virtual Conf., Sep. 2020.
[3] R. Ding, C. Pang, and H. Liu, ‘‘Audio-visual keyword spotting based on multidimensional convolutional neural 
network,’’ in Proc. IEEE Int. Conf. Image Process., Athens, Greece, Aug. 2018
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• Feature-level fusion: Speech and visual features are 
concatenated before their joint classification 

• Decision-level fusion: The final decision is made by 
combining decisions from separate speech and visual 
classifiers (preferred)

• In [1], the softmax outputs of the audio and visual networks 
are combined through a summation, with fixed weights, to 
estimate the posterior probability of each keyword

• Similarly in [2]. Adaptive weights based on the reliabilities of 
two modalities are used in [3]

Fusion strategies 

[1] R. Ding, C. Pang, and H. Liu, ‘‘Audio-visual keyword spotting based on multidimensional convolutional neural 
network,’’ in Proc. IEEE Int. Conf. Image Process., Athens, Greece, Aug. 2018
[2] L. Momeni, T. Afouras, T. Stafylakis, S. Albanie, and A. Zisserman, ‘‘Seeing wake words: Audio-visual keyword 
spotting,’’ in Proc. Brit. Mach. Vis. Virtual Conf., Sep. 2020.
[3] P. Wu, H. Liu, X. Li, T. Fan, and X. Zhang, ‘‘A novel lip descriptor for audio-visual keyword spotting based on adaptive 
decision fusion,’’ IEEE Trans. Multimedia, vol. 18, no. 3, pp. 326–338, Mar. 2016

𝑃𝑃 𝑥𝑥𝑙𝑙|𝐴𝐴,𝑽𝑽,𝑾𝑾 = 𝛼𝛼𝑃𝑃 𝑥𝑥𝑙𝑙|𝐴𝐴,𝑾𝑾𝑎𝑎 + (1 − 𝛼𝛼)𝑃𝑃 𝑥𝑥𝑙𝑙|𝑽𝑽,𝑾𝑾𝑣𝑣
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• Video frames -> a visual front-end (e.g., CNN) (to extract 
low-level visual features) -> Nv Transformer layers (to encode 
temporal information) 

• The phoneme sequence of the keyword -> Nt Transformer 
layers

• Text embedding + visual embedding -> a joint multi-modal 
Transformer to predict: 

• the probability the keyword occurs in the video
• frame-level probabilities indicating the location of the word 

• It outperforms the prior state-of-the-art methods on the 
challenging LRW, LRS2, LRS3 datasets by a large margin

Visual keyword spotting with attention

[1] Prajwal, K. R., Momeni, L., Afouras, T., & Zisserman, A. (2021). Visual keyword spotting with attention. BMVC 2021.
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• Keyword transformer (KWT) model

Self-supervised learning for KWS

[1] H. S. Bovbjerg, Z.-H. Tan (2022). Improving Label-Deficient Keyword Spotting Using Self-Supervised Pretraining.

Results for the three KWT models on 
Google Speech Commands V2 data set. 
Baseline (Full) indicates models trained 
on the full training set.

20% trn 100% trn 80% + 20%
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• Audio-visual KWS achieves the greatest relative 
improvements with respect to audio-only KWS at lower 
SNRs, while it improves the performance at high SNRs as 
well, as consistently found in the literature, e.g., those in the 
previous slide

• AV KWS surpasses the performance of both video-only and 
audio-only KWS within a wide range of SNRs

• Robustness against lighting conditions and head pose 
variation has been less studied systematically

Noise robustness 
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Realistic and challenging audio-visual benchmarks 
• Lip Reading in the Wild (LRW) [1]

• One of the first visual speech databases in-the-wild, ca 170h
• Single-word utterances from BBC TV broadcasts
• Over a million word instances, spoken by 1000+ people

• Lip Reading Sentences 2 (LRS2) [2]
• 100,000+ natural spoken sentences from BBC TV

• Lip Reading Sentences 3 (LRS3) [3]
• 400+ hours from TED(x) talks

Benchmark data sets 

[1] J. S. Chung and A. Zisserman, ‘‘Lip reading in the wild,’’ in Proc. Asian Conf. Comput. Vis., Taipei, Taiwan, 2016. 
[2] J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman, ‘‘Lip reading sentences in the wild,’’ in Proc. Conf. Comput. Vis. 
Pattern Recognit., Honolulu, HI, USA, 2017. 
[3] T. Afouras, J. Son Chung, and A. Zisserman, ‘‘LRS3-TED: A large-scale dataset for visual speech recognition,’’ 2018, 
arXiv:1809.00496.



11Sunday 18th September, 2022Zheng-Hua Tan (Interspeech 2022)         Deep Spoken KWS: 5. AV KWS

Recap

on whether and where a 
user specified keyword 
occurs

acoustic noise

lighting condition 
and pose
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Outline

• Applications in general 
• Voice activation of voice assistants 
• Personalized keyword spotting systems
• Voice control of hearing assistive devices
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• the activation of voice assistants
• speech retrieval 
• voice-dialing, and interaction with a call center 
• assistive technology for vision-impaired people in special 

scenarios, e.g., the activation of pedestrian call buttons in 
crosswalks

• hands-free voice control in in-vehicle systems, videogames, 
home automation

• human robot interaction  
• etc.

Applications

López-Espejo, I., Tan, Z. H., Hansen, J., & Jensen, J. (2021). Deep spoken keyword spotting: An overview. IEEE Access.
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• The flagship application of (deep) KWS
• By 2024, the number of voice assistant units is expected to 

reach 8.4b, exceeding the world’s population [1].
• Typical voice assistant client-server framework [2]

• The client device has an always-on KWS system to detect 
whether a user utters a wakes-up keyword/phrase

• When the keyword is spotted, the supposed wake-up word 
audio and subsequent query audio are sent to a server to be 
processed by LVCSR

Voice activation of voice assistants 

[1] https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
[2] López-Espejo, I., Tan, Z. H., Hansen, J., & Jensen, J. (2021). Deep spoken keyword spotting: An 
overview. IEEE Access.
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• Personalization of the KWS system can be desirable
• Personalized queries 
• Personalized control of devices like hearing aids

• Combining KWS and speaker verification
• Independently trained deep learning models to perform both 

tasks. 
• In [1], d-vector based TI-SV (separately trained) is applied to largely 

reduce the false acceptence rate
• A multi-task learning scheme, joint KWS and speaker 

verification
• In [2], d-vector based TD-SV is jointly trained with KWS by sharing one 

convolutional layer operating on log filter bank energy 

Personalized keyword spotting systems

[1] Rikhye, R., Wang, Q., Liang, Q., He, Y., Zhao, D., Narayanan, A., & McGraw, I. Personalized keyphrase detection using 
speaker and environment information. Interspeech 2021.
[2] Kumar, R., Yeruva, V., & Ganapathy, S. On Convolutional LSTM Modeling for Joint Wake-Word Detection and Text 
Dependent Speaker Verification. In Interspeech 2018.
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• Manually operating small, body-worn devices like hearing 
aids is not always feasible or can be cumbersome.

• An alternative way to speaker verification to provide 
personalization in KWS for hearing aids [1]:

• Multitask learning 
• Exploiting GCC-PHAT coefficients from dual-microphone 

hearing aids, achieves almost flawless users’ own 
voice/external speaker detection (reducing FAR)

Voice control of hearing assistive devices

[1] López-Espejo, I., Tan, Z. H., & Jensen, J. (2020). Improved external speaker-robust keyword spotting for 
hearing assistive devices. IEEE/ACM Transactions on Audio, Speech, and Language Processing.
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Summary

• Applications in general 
• Voice activation of voice assistants 
• Personalized keyword spotting systems
• Voice control of hearing assistive devices

Thank you for your attention! 
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Datasets CASPR
Centre for Acoustic Signal Processing Research

Data are an essential ingredient of any machine learning system for both
training the parameters of the algorithm and validating it

Corpora used over the years in ASR are now also being employed for deep
KWS:
- LibriSpeech
- TIDIGITS
- TIMIT
- Wall Street Journal (WSJ) corpus
- ...

These corpora do not standardize a way of utilization facilitating KWS
technology reproducibility and comparison (e.g., the set of considered
keywords)

Iván López-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18th September, 2022 3 / 39



Datasets CASPR
Centre for Acoustic Signal Processing Research

Datasets are normally comprised of hundreds or thousands of speakers who do not overlap
across sets
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Datasets CASPR
Centre for Acoustic Signal Processing Research

The advancement of the KWS technology is led by the private sector of the United States
of America and China
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Datasets CASPR
Centre for Acoustic Signal Processing Research

Except for the “Narc Ya” corpus (in Korean), all the datasets shown are in either English
or Mandarin Chinese
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Datasets CASPR
Centre for Acoustic Signal Processing Research

The majority of the speech corpora of interest are for company internal use only
(Mobvoi’s TicKasa Fox, Google’s Google Home and Xiaomi’s AI Speaker smart speakers)
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Datasets CASPR
Centre for Acoustic Signal Processing Research

The great majority of datasets are noisy (signals are distorted by, e.g., natural and
realistic background acoustic noise or room acoustics)
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Datasets CASPR
Centre for Acoustic Signal Processing Research

We will want to minimize the mismatch between the KWS performance at the lab
phase and that one observable in the inherently-noisy real-life conditions

1) Natural noisy speech: Some datasets were created from natural noisy
speech recorded, many times in far-field conditions, by smart speakers,
smartphones and tablets
- Home environments with background music or TV sound

2) Simulated noisy speech: Some datasets were generated by artificially
distorting clean speech signals through data augmentation
- Noise types: Babble, café, car, music, street...
- SNR levels commonly within the range [-5, 20] dB (Filtering and Noise-adding Tool(1))
- Noise datasets: TUT, DEMAND, MUSAN, NOISEX-92, CHiME...
- Alteration of room acoustics, e.g., to simulate far-field conditions from close-talk speech

(1) H. G. Hirsch, “FaNT - Filtering and noise adding tool”. https://github.com/i3thuan5/FaNT

Iván López-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18th September, 2022 9 / 39
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Datasets CASPR
Centre for Acoustic Signal Processing Research

Collecting a good amount of natural noisy speech data in the desired
acoustic conditions is not always feasible!

Alternative
Simulation of noisy speech is a smart and cheaper alternative allowing us for
obtaining similar technology performance(1)

(1) T. Ko et al., “A study on data augmentation of reverberant speech for robust speech recognition”. In Proc. of ICASSP 2017
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Datasets CASPR
Centre for Acoustic Signal Processing Research

Datasets mainly fit the application of KWS that, lately, is boosting research on this
technology: wake-up word detection for voice assistants
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Datasets CASPR
Centre for Acoustic Signal Processing Research

As a trend, publicly available datasets tend to be smaller than in-house ones
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- sampl.
+ sampl.

> 1 is to accurately reflect potential scenarios of use consisting of always-on

KWS applications like wake-up word detection
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Datasets CASPR
Centre for Acoustic Signal Processing Research

Google Speech Commands Dataset

The publicly available Google Speech Commands Dataset(1) has become the
de facto open benchmark for (deep) KWS development and evaluation
- Sampling rate of 16 kHz
- Recorded by phone and laptop microphones
- Noisy to some extent

One-second long speech segments
covering one word each

Version # of Speakers # of Words # of Utt.
v1 1,881 30 64,727
v2 2,618 35 105,829

(1) P. Warden, “Speech Commands: A dataset for limited-vocabulary speech recognition”. arXiv:1804.03209v1, 2018
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Datasets CASPR
Centre for Acoustic Signal Processing Research

Google Speech Commands Dataset

I. López-Espejo et al.: Deep Spoken KWS: An Overview

TABLE 1. A selection of the most significant speech datasets employed for training and validating deep KWS systems. “P.A.” stands for “publicly available”, while
“Y” and “N” mean “yes” and “no”, respectively. Furthermore, “+ sampl.” (“- sampl.”) refers to the size of the positive/keyword (negative/non-keyword) subset, and “Size”
denotes the magnitude of the whole set. Such sizes are given, depending on the available information, in terms of either the number of samples or time length in
hours (h). Unknown information is indicated by hyphens.

Ref. Name Developer P.A.? Language Noisy? No. of KW Training set Test set
Size + sampl. - sampl. Size + sampl. - sampl.

[193] - Alibaba N Mandarin Y 1 24k h - - - 12k 600 h
[93] - Baidu N English Y 1 12k - - 2k - -

[42] -
Chinese
Academy
of Sciences

N Mandarin Y 2 47.8k 8.8k 39k - 1.7k -

[58] - Fluent.ai N English Y 1 50 h 5.9k - 22 h 1.6k -
[22] - Google N English Y 10 >3k h 60.7k 133k 81.2k 11.2k 70k
[28] - Google N English Y 14 326.8k 10k 316.8k 61.3k 1.9k 59.4k

[61] -
Harbin
Institute
of Technology

N Mandarin - 1 115.2k 19.2k 96k 28.8k 4.8k 24k

[103] - Logitech N English - 14 - - - - - -
[26] - Mobvoi N Mandarin Y 1 67 h 20k 54k 7 h 2k 5.9k
[169] - Sonos Y English Y 16 0 0 0 1.1k 1.1k 0
[96] - Tencent N Mandarin Y 1 339 h 224k 100k - - -
[45] - Tencent N Mandarin Y 1 65.9 h 6.9 h 59 h 8.7 h 0.9 h 7.8 h
[56] - Tencent N Mandarin Y 42 22.2k 15.4k 6.8k 10.8k 7.4k 3.4k
[9] - Xiaomi N Mandarin - 1 1.7k h 188.9k 1M 52.2 h 28.8k 32.8k

[194] AISHELL-2 (13) AISHELL Y Mandarin N 13 24.8 h >24k - 16.7 h >8.4k -
[194] AISHELL-2 (20) AISHELL Y Mandarin N 20 35 h >34k - 23.9 h >12k -
[108] “Alexa” Amazon N English Y 1 495 h - - 100 h - -

[153] Google Speech
Commands Dataset v1 Google Y English Y 10 51.7k 18.9k 32.8k 6.5k 2.4k 4.1k

[154] Google Speech
Commands Dataset v2 Google Y English Y 10 84.6k 30.8k 53.8k 10.6k 3.9k 6.7k

[59] “Hey Siri” Apple N English Y 1 500k 250k 250k - 6.5k 2.7k h

[195] Hey Snapdragon
Keyword Dataset Qualcomm Y English N 4 - - - 4.3k 4.3k -

[78] Hey Snips Snips Y English Y 1 50.5 h 5.9k 45.3k 23.1 h 2.6k 20.8k
[152] “Narc Ya” Netmarble N Korean Y 1 130k 50k 80k 800 400 400
[31] “Ok/Hey Google” Google N English Y 2 - 1M - >3k h 434k 213k
[122] “Ok/Hey Google” Google N English Y 2 - - - 247 h 4.8k 7.5k
[17] Ticmini2 Mobvoi N Mandarin Y 2 157.5k 43.6k 113.9k 72.9k 21.3k 51.6k

tion for voice assistants.
Finally, the right part of Table 1 tells some informa-

tion about the sizes of the training and test sets14 of the
different corpora in terms of either the number of sam-
ples (i.e., words, normally) or time length in hours (h) —
depending on the available information—. Specifically, “+
sampl.” (“- sampl.”) refers to the size of the positive/keyword
(negative/non-keyword) subset, and “Size” denotes the mag-
nitude of the whole set. Unknown information is indicated by
hyphens. From this table, we note that, as a trend, publicly
available datasets tend to be smaller than in-house ones.
Furthermore, while the ratio between the sizes of the training
and test sets is greater than 1 in all the reported cases except
[169], ratio values tend to differ from one corpus to another.
Also, mainly, the ratio between the sizes of the correspond-
ing negative/non-keyword and positive/keyword subsets is
greater than 1, that is, - sampl.

+ sampl. > 1. This is purposely done

14Many of these corpora also include a development set. However, this
part has been omitted for the sake of clarity.

TABLE 2. List of the words included in the Google Speech Commands
Dataset v1 (first six rows) and v2 (all the rows). Words are broken down by the
standardized 10 keywords (first two rows) and non-keywords (last five rows).
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to accurately reflect potential scenarios of use consisting of
always-on KWS applications like wake-up word detection,
in which KWS systems, most of the time, will be exposed to
other types of words instead of keywords.

A. GOOGLE SPEECH COMMANDS DATASET
The publicly available Google Speech Commands Dataset
[153], [154] has become the de facto open benchmark for

VOLUME 4, 2016 17

This benchmark also standardizes...

...the training, development and test sets

...a training data augmentation procedure involving background noises

...

Iván López-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18th September, 2022 15 / 39



Datasets CASPR
Centre for Acoustic Signal Processing Research

Google Speech Commands Dataset

We can raise two relevant points of criticism:

1) Class balancing: The different keyword and non-keyword classes are
rather balanced, which is generally not realistic

2) Non-streaming mode: In multi-class classification of independent short
input segments, a full keyword or non-keyword is surely present within every
segment. However, real-life KWS involves the continuous processing of an
input audio stream!

A few works generate streaming versions of this database by concatenation of
one-second long utterances(1) in such a manner that the resulting word class
distribution is unbalanced ←− This point should be standardized for the sake of
reproducibility and comparison!

(1) I. López-Espejo et al., “A novel loss function and training strategy for noise-robust keyword spotting”. IEEE/ACM TASLP,
2021
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Datasets CASPR
Centre for Acoustic Signal Processing Research

Google Speech Commands Dataset

We produced three outcomes revolving around the Google Speech Commands
Dataset v2:

1) A variant of it emulating hearing aids as a capturing device(1)
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Figure 2: Every external speaker can be located in one of the
48 equidistantly spaced points (black dots) on a circumference
of 1.9 meter radius. An actual person wearing a 2-microphone
behind-the-ear hearing aid in her left ear is seated in the center
of the circumference. The blue and red dots symbolize the front
and rear microphones, respectively, of the hearing aid.

ratio can be understood as a measure of the inverse training rate
of task Tj [13]. Finally, we again normalize the loss weights
across tasks as described above. In this case, the lower the loss
ratio for a given task, the lower its loss weight.

Our preliminary experiments showed that there are no sta-
tistically significant differences in terms of both KWS and own-
voice/external speaker detection accuracies with respect to us-
ing constant equal loss weights, i.e., λj(i) = 1 ∀i, j. There-
fore, as using constant equal loss weights is also the less com-
putationally expensive approach, we will only present results
using this scheme.

4. Experimental Framework
4.1. Hearing Aid Speech Database

The Google Speech Commands Dataset (GSCD) [10] is a
speech database comprising 105,829 one second long utter-
ances from a total of 2,618 different speakers. As each utterance
contains only one word among a set of 35 possible words, this
database is well suited for research on KWS. The GSCD also
provides six different background noise files.

To create our speech database from the GSCD, we consider
the scenario depicted in Figure 2. In a low-reverberation listen-
ing room, a circular array of 16 loudspeakers are placed equidis-
tantly spaced around an actual sitting person with a diameter of
3.8 meters at eye-height. Then, 48 head-related transfer func-
tions (HRTFs) are measured at an angular resolution of 7.5 de-
grees by rotating the chair on which person sits [14]. Here, an
HRTF refers to the pair of acoustic transfer functions between
the source (loudspeaker) and the front and rear microphones of
the left ear hearing aid. Similarly, the own-voice transfer func-
tion (OVTF) from the mouth of the person to the microphones
of her left ear hearing aid is also measured using a reference
microphone placed 2 cm in front of the person’s mouth. As
measurements were recorded at a sampling rate of 44.1 kHz,
the GSCD was upsampled prior to filtering the GSCD signals
with the impulse responses.

Around 80% of the GSCD is reserved for model training,
while the validation and test sets span another 10% each. Speak-
ers do not overlap across sets. For each set, around 75% of

Table 1: Summary of the distinguishing features of the different
systems that are tested.

Architecture Training data Input type
Baseline res15 (KWS only) Own voice Front and rear mics

Front Multi-task Own and external voice Front mic
Rear Multi-task Own and external voice Rear mic
Dual Multi-task Own and external voice Front and rear mics

the speakers are randomly selected to simulate that they wear
hearing aids (own-voice subset). The rest of speakers (external
speaker subset) are used to simulate external speakers and the
external speaker angle with respect to the simulated user is ran-
domly chosen from the set of 48 angles (see Figure 2) on an
utterance basis.

For experimental purposes, we train our models to recog-
nize 10 keywords: “yes”, “no”, “up”, “down”, “left”, “right”,
“on”, “off”, “stop” and “go”. The remaining 25 words of the
GSCD are utilized to populate the unknown word class. This
class, which is balanced across sets, represents around 10% of
the utterances finally employed.

4.2. Implementation and Training Issues

Data augmentation is applied during training on an utterance ba-
sis by taking into consideration the procedure outlined in [15].
First, a time shift of u ms is applied to the utterance, where u is
drawn from the uniform distribution U(−100, 100). Next, with
a probability of 0.8, a noise segment is randomly cut from one
of the background noise files of the GSCD, scaled by a random
factor between 0 and 1, and added to the time-shifted utterance.
30% of the training data is regenerated at each epoch [9].

The multi-task deep residual network was implemented us-
ing Keras [16]. Similarly to [9], different models were trained
for a total of 26 epochs (which is more than enough for con-
vergence) by stochastic gradient descent with a momentum of
0.9. Learning rate and learning rate decay were set to 0.1 and
10−5, respectively. The minibatch size was of 64 training sam-
ples. For both KWS and own-voice/external speaker detection
tasks, accuracy (i.e., the ratio between the number of correct
predictions and the total number of predictions) was considered
as performance metric.

5. Results
We test the multi-task architecture by making use of the dual-
microphone signal (Dual) from the hearing assistive device and
compare it with using the single-microphone signal from the
front (Front) and rear (Rear) microphones, respectively. To as-
sess the KWS performance of existing systems, which do not
take the potential presence of external speakers into account,
we test the original res15 (i.e., with no own-voice/external
speaker detection output) using the dual-microphone signal as
input (Baseline). For Baseline model training, only own voice
—and not external speaker data— is employed. For the sake
of clarity, Table 1 summarizes the distinguishing features of the
different systems that are tested.

5.1. Own-Voice/External Speaker Detection Results

The left part of Table 2 presents the own-voice/external speaker
detection accuracy results1, in percentages, with 95% confi-
dence intervals across 10 different networks trained with dif-

1These results were obtained by making use of a sigmoid decision
threshold of 0.5, which is equivalent to detecting the most likely class.

2) Another noisier variant with a diversity of noisy conditions(2) (i.e., types
of noise and SNR levels)

3) Manually-annotated speaker gender labels(3)

(1) I. López-Espejo et al., “Keyword spotting for hearing assistive devices robust to external speakers”. In Proc. of Interspeech
2019
(2) http://ilopez.es.mialias.net/misc/NoisyGSCD.zip

(3) https://ilopezes.files.wordpress.com/2019/10/gscd_spk_gender.zip
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Evaluation Metrics CASPR
Centre for Acoustic Signal Processing Research

The gold plate test of any speech communication system is a test with
relevant end-users ←− Costly and time-consuming!

Objective evaluation metrics must allow us to determine the goodness of a
system and be highly correlated to the subjective user experience

We review and provide some criticism of the most common binary
classification metrics for KWS

In the event of having multiple keywords, a common approach consists of
applying the metric computation for every keyword and, then, the result is
averaged
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Accuracy

Accuracy: The ratio between the number of correct
predictions/classifications and the total number of them

Accuracy =
TP + TN

TP + TN + FP + FN
∈ [0, 1]

Accuracy tends to be an unsuitable evaluation metric yielding potentially
misleading conclusions!

I. López-Espejo et al.: Deep Spoken KWS: An Overview

(deep) KWS development and evaluation. This crowdsourced
database was captured at a sampling rate of 16 kHz by means
of phone and laptop microphones, being, to some extent,
noisy. Its first version, v1 [153], was released in August 2017
under a Creative Commons BY 4.0 license [211]. Recorded
by 1,881 speakers, this first version consists of 64,727 one-
second (or less) long speech segments covering one word
each out of 30 possible different words. The main difference
between the first version and the second version —which was
made publicly available in 2018— is that the latter incorpo-
rates 5 more words (i.e., a total of 35 words), more speech
segments, 105,829, and more speakers, 2,618. Table 2 lists
the words included in the Google Speech Commands Dataset
v1 (first six rows) and v2 (all the rows). In this table, words
are broken down by the standardized 10 keywords (first two
rows) and non-keywords (last five rows). To facilitate KWS
technology reproducibility and comparison, this benchmark
also standardizes the training, development and test sets, as
well as other crucial aspects of the experimental framework,
including a training data augmentation procedure involving
background noises (see, e.g., [30] for further details). Mul-
tiple recent deep KWS works have employed either the first
version [16], [30], [32], [43], [48]–[52], [57], [58], [67], [69],
[70], [86], [90], [100], [125] or the second version [32], [47],
[48], [53], [70], [82], [89], [90], [99], [100], [109], [128]–
[130], [159], [175] of the Google Speech Commands Dataset.

Despite how valuable this open reference is for KWS
research and development, we can raise two relevant points
of criticism:

1) Class balancing: The different keyword and non-
keyword classes are rather balanced (i.e., they ap-
pear with comparable frequencies) in this benchmark,
which, as we know, is generally not realistic. See Sub-
section IX-A for further comments on this question.

2) Non-streaming mode: Most of the above-referred
works using the Google Speech Commands Dataset
performs, due to the nature of this corpus, KWS eval-
uations in non-streaming mode, namely, multi-class
classification of independent short input segments. In
this mode, a full keyword or non-keyword is surely
present within every segment. However, real-life KWS
involves the continuous processing of an input audio
stream.

A few deep KWS research works [43], [58], [129], [130]
have proposed to overcome the above two limitations by
generating more realistic streaming versions of the Google
Speech Commands Dataset by concatenation of one-second
long utterances in such a manner that the resulting word class
distribution is unbalanced. Even though the author of the
Google Speech Commands Dataset reports some streaming
evaluations in the database description manuscript [154],
still, we think that this point should be standardized for the
sake of reproducibility and comparison, thereby enhancing
the usefulness of this valuable corpus.

Lastly, we wish to draw attention to the fact that we pro-

NK NK NK KW NK NKKWNK NKNK

NK NK NK NK NK NK NK NK NK NK

NK NK KW NK NK KW NK NK NK NKGround truth
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SYS2

FIGURE 11. Example of two different KWS systems SYS1 and SYS2
recognizing a sequence of keywords (KW) and non-keywords (NK). The
ground truth sequence is also shown on top.

duced three outcomes revolving around the Google Speech
Commands Dataset v2: 1) a variant of it emulating hearing
aids as a capturing device (employed, as mentioned in Sub-
section VII-C, for KWS for hearing assistive devices robust
to external speakers) [128], [129], 2) another noisier variant
with a diversity of noisy conditions15 (i.e., types of noise
and SNR levels) [130], and 3) manually-annotated speaker
gender labels16.

IX. EVALUATION METRICS
Obviously, the gold plate test of any speech communication
system is a test with relevant end-users. However, such tests
tend to be costly and time-consuming. Instead (or in addition
to subjective tests), one adheres to objective performance
metrics for estimating system performance. It is important to
choose a meaningful objective evaluation metric that allows
us to determine the goodness of a system and is highly
correlated to the subjective user experience. In what follows,
we review and provide some criticism of the most common
metrics considered in the field of KWS. These metrics are
rather intended for binary classification —e.g., keyword/non-
keyword— tasks. In the event of having multiple keywords, a
common approach consists of applying the metric computa-
tion for every keyword and, then, the result is averaged, e.g.,
see [30], [129], [130].

A. ACCURACY
Accuracy can be defined as the ratio between the number
of correct predictions/classifications and the total number
of them [212]. In the context of binary classification (e.g.,
keyword/non-keyword), accuracy can also be expressed from
the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) as follows [213]:

Accuracy =
TP + TN

TP + TN + FP + FN
. (14)

Accuracy ∈ [0, 1], where 0 and 1 indicate, respectively,
worst and perfect classification.

It is reasonable to expect that, in real-life applications like
wake-up word detection, KWS systems will hear other word
types rather than keywords most of the time. In other words,
KWS is a task in which, in principle, the keyword and non-
keyword classes are quite unbalanced. Under these circum-

15Tools to create this noisy dataset can be freely downloaded from http:
//ilopez.es.mialias.net/misc/NoisyGSCD.zip

16These labels are publicly available at https://ilopezes.files.wordpress.
com/2019/10/gscd_spk_gender.zip
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Accuracy

Accuracy is a widely used evaluation metric for deep KWS ←− Google
Speech Commands Dataset in non-streaming mode

Word classes are rather balanced in the Google Speech Commands Dataset
−→ Accuracy can still be considered a meaningful metric

We have experimentally observed(1) for KWS a strong correlation between
accuracy on a quite balanced scenario and more suitable metrics like F-score
on a more realistic, unbalanced scenario

Although not ideal, the employment of accuracy can still be useful under
certain experimental conditions

(1) I. López-Espejo et al., “Improved external speaker-robust keyword spotting for hearing assistive devices”. IEEE/ACM
TASLP, 2020
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ROC & DET Curves

The probability that a positive sample is correctly detected as such:

True Positive Rate (TPR) = Recall =
TP

TP + FN

The probability that a negative sample is wrongly classified as a positive one:

False Positive Rate (FPR) =
FP

FP + TN

The receiver operating characteristic (ROC) curve is obtained by
sweeping the sensitivity (decision) threshold:I. López-Espejo et al.: Deep Spoken KWS: An Overview
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FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].
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ROC & DET Curves

Area under the ROC curve (AUCROC ∈ [0, 1]): The probability that a
classifier ranks a randomly-chosen positive sample higher than a
randomly-chosen negative oneI. López-Espejo et al.: Deep Spoken KWS: An Overview

Ran
dom

 cl
ass

ifie
r

0.0      0.2      0.4      0.6      0.8      1.0

1.0


0.8


0.6


0.4


0.2


0.0


False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

 Receiver operating characteristic 
Perfect classifier

W
orse

Better

        Detection error trade-off        

1.0


0.8


0.6


0.4


0.2


0.0

0.0      0.2      0.4      0.6      0.8      1.0

False positive rate

Fa
ls

e 
ne

ga
tiv

e 
ra

te

Random classifier

Perfect classifier

W
or

se

Bett
er

SYS2

SYS1

SYS1

SYS2

FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].
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(deep) KWS development and evaluation. This crowdsourced
database was captured at a sampling rate of 16 kHz by means
of phone and laptop microphones, being, to some extent,
noisy. Its first version, v1 [153], was released in August 2017
under a Creative Commons BY 4.0 license [211]. Recorded
by 1,881 speakers, this first version consists of 64,727 one-
second (or less) long speech segments covering one word
each out of 30 possible different words. The main difference
between the first version and the second version —which was
made publicly available in 2018— is that the latter incorpo-
rates 5 more words (i.e., a total of 35 words), more speech
segments, 105,829, and more speakers, 2,618. Table 2 lists
the words included in the Google Speech Commands Dataset
v1 (first six rows) and v2 (all the rows). In this table, words
are broken down by the standardized 10 keywords (first two
rows) and non-keywords (last five rows). To facilitate KWS
technology reproducibility and comparison, this benchmark
also standardizes the training, development and test sets, as
well as other crucial aspects of the experimental framework,
including a training data augmentation procedure involving
background noises (see, e.g., [30] for further details). Mul-
tiple recent deep KWS works have employed either the first
version [16], [30], [32], [43], [48]–[52], [57], [58], [67], [69],
[70], [86], [90], [100], [125] or the second version [32], [47],
[48], [53], [70], [82], [89], [90], [99], [100], [109], [128]–
[130], [159], [175] of the Google Speech Commands Dataset.

Despite how valuable this open reference is for KWS
research and development, we can raise two relevant points
of criticism:

1) Class balancing: The different keyword and non-
keyword classes are rather balanced (i.e., they ap-
pear with comparable frequencies) in this benchmark,
which, as we know, is generally not realistic. See Sub-
section IX-A for further comments on this question.

2) Non-streaming mode: Most of the above-referred
works using the Google Speech Commands Dataset
performs, due to the nature of this corpus, KWS eval-
uations in non-streaming mode, namely, multi-class
classification of independent short input segments. In
this mode, a full keyword or non-keyword is surely
present within every segment. However, real-life KWS
involves the continuous processing of an input audio
stream.

A few deep KWS research works [43], [58], [129], [130]
have proposed to overcome the above two limitations by
generating more realistic streaming versions of the Google
Speech Commands Dataset by concatenation of one-second
long utterances in such a manner that the resulting word class
distribution is unbalanced. Even though the author of the
Google Speech Commands Dataset reports some streaming
evaluations in the database description manuscript [154],
still, we think that this point should be standardized for the
sake of reproducibility and comparison, thereby enhancing
the usefulness of this valuable corpus.

Lastly, we wish to draw attention to the fact that we pro-
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FIGURE 11. Example of two different KWS systems SYS1 and SYS2
recognizing a sequence of keywords (KW) and non-keywords (NK). The
ground truth sequence is also shown on top.

duced three outcomes revolving around the Google Speech
Commands Dataset v2: 1) a variant of it emulating hearing
aids as a capturing device (employed, as mentioned in Sub-
section VII-C, for KWS for hearing assistive devices robust
to external speakers) [128], [129], 2) another noisier variant
with a diversity of noisy conditions15 (i.e., types of noise
and SNR levels) [130], and 3) manually-annotated speaker
gender labels16.

IX. EVALUATION METRICS
Obviously, the gold plate test of any speech communication
system is a test with relevant end-users. However, such tests
tend to be costly and time-consuming. Instead (or in addition
to subjective tests), one adheres to objective performance
metrics for estimating system performance. It is important to
choose a meaningful objective evaluation metric that allows
us to determine the goodness of a system and is highly
correlated to the subjective user experience. In what follows,
we review and provide some criticism of the most common
metrics considered in the field of KWS. These metrics are
rather intended for binary classification —e.g., keyword/non-
keyword— tasks. In the event of having multiple keywords, a
common approach consists of applying the metric computa-
tion for every keyword and, then, the result is averaged, e.g.,
see [30], [129], [130].

A. ACCURACY
Accuracy can be defined as the ratio between the number
of correct predictions/classifications and the total number
of them [212]. In the context of binary classification (e.g.,
keyword/non-keyword), accuracy can also be expressed from
the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) as follows [213]:

Accuracy =
TP + TN

TP + TN + FP + FN
. (14)

Accuracy ∈ [0, 1], where 0 and 1 indicate, respectively,
worst and perfect classification.

It is reasonable to expect that, in real-life applications like
wake-up word detection, KWS systems will hear other word
types rather than keywords most of the time. In other words,
KWS is a task in which, in principle, the keyword and non-
keyword classes are quite unbalanced. Under these circum-

15Tools to create this noisy dataset can be freely downloaded from http:
//ilopez.es.mialias.net/misc/NoisyGSCD.zip

16These labels are publicly available at https://ilopezes.files.wordpress.
com/2019/10/gscd_spk_gender.zip

18 VOLUME 4, 2016
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Because

False Negative Rate (FNR) =
FN

FN + TP
= 1− TPR,

the detection error trade-off (DET) curve is nothing else but a
vertically-flipped version of the ROC curve:

I. López-Espejo et al.: Deep Spoken KWS: An Overview
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FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].
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Area under the DET curve (AUCDET ∈ [0, 1]): The smaller, the better

Equal error rate (EER): The intersection point between the identity line
and the DET curve (i.e., the point at which FNR = FPR)I. López-Espejo et al.: Deep Spoken KWS: An Overview
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FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].
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In voice activation of voice assistants, privacy is a major concern −→ EER
is not a good metric, since the cost of a false alarm is significantly greater
than that of a miss detection!
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A popular variant of the ROC and DET curves is that one replacing FPR
along the x-axis by the number of false alarms per hourI. López-Espejo et al.: Deep Spoken KWS: An Overview
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stances, accuracy tends to be an unsuitable evaluation metric
yielding potentially misleading conclusions [214], [215]. Let
us illustrate this statement with the following example. Let us
consider two different KWS systems SYS1 and SYS2. While
SYS1 is a relatively decent system, SYS2 is a totally useless
one, since it always outputs “non-keyword” regardless of
the input. Figure 11 depicts, along with an example ground
truth sequence, the sequences of keywords (KW) and non-
keywords (NK) predicted by SYS1 and SYS2. In this situation,
both KWS systems perform with 80% accuracy, even though
SYS2 is useless while SYS1 is not. Thus, particularly in
unbalanced situations, more appropriate evaluation metrics
than accuracy may be required, and these are discussed in the
next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91],
[99], [109], [125]. In this latter case, accuracy can still be
considered a meaningful metric, since the different word
classes are rather balanced in the Google Speech Commands
Dataset benchmark. Hence, the main criticism that might
be raised here is the lack of realism of the benchmark
itself, as discussed in Subsection VIII-A. Nevertheless, we
have experimentally observed for KWS a strong correlation
between accuracy on a quite balanced scenario and more
suitable metrics like F-score (see Subsection IX-C) on a
more realistic, unbalanced scenario [129], [130]. This might
suggest that the employment of accuracy, although not ideal,
can still be useful under certain experimental conditions to
adequately explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as recall
[216]—, which is defined as the ratio

TPR = Recall =
TP

TP + FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate —also known
as false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP + TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate values that
are obtained by sweeping the sensitivity (decision) threshold
[218]. The left part of Figure 12 outlines example ROC
curves. Coordinate (FPR = 0, TPR = 1) in the upper
left corner represents a perfect classifier. The closer to this
point a ROC curve is, the better a classification system. In
addition, a system performing on the ROC space identity
line would be randomly guessing. The area under the curve
(AUC), which equals the probability that a classifier ranks
a randomly-chosen positive sample higher than a randomly-
chosen negative one [218], is also often employed as a ROC
summary for KWS evaluation, e.g., [76], [85], [123], [145],
[152], [219]–[221]. The larger the AUC ∈ [0, 1], the better a
system is [222].

Let us return for a moment to the example of Figure 11.
It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0, TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN + TP
. (17)

This time, coordinate (FPR = 0, FNR = 0) in the bottom
left corner represents a perfect classifier. The closer to this
point a DET curve is, the better a classification system.
Therefore, the smaller the AUC ∈ [0, 1] in this case, the
better a system is. Notice that, as FNR = 1− TPR, the DET
curve is nothing else but a vertically-flipped version of the
ROC curve. From the DET curve we can also straightfor-
wardly obtain the equal error rate (EER) as the intersection
point between the identity line and the DET curve (i.e., the
point at which FNR = FPR) [226]. Certainly, the lower
the EER value, the better. Though the use of EER is much
more widespread in the field of speaker verification [227]–
[229], this DET summary is sometimes considered for KWS
evaluation [4], [76], [117], [123], [159], [220], [230].
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The probability that a sample that is classified as positive is actually a
positive sample:

Precision =
TP

TP + FP

The precision-recall (PR) curve is again obtained by sweeping the
sensitivity threshold:

I. López-Espejo et al.: Deep Spoken KWS: An Overview
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FIGURE 13. Outlining of the precision-recall (left) and F-score (right) curves.
See the text for further explanation.

In real-world KWS applications, typically, the cost of a
false alarm is significantly greater than that of a miss detec-
tion17 [231]. This is for example the case for voice activation
of voice assistants, where privacy is a major concern [232]
since this application involves streaming voice to a cloud
server. As a result, a popular variant of the ROC and DET
curves is that one replacing false positive rate along the x-
axis by the number of false alarms per hour [8], [28], [31],
[59], [60], [156], [162], [195]. By this, a practitioner can just
set a very small number of false alarms per hour (e.g., 1)
and identify the system with the highest (lowest) true positive
(false negative) rate for deployment. An alternative good se-
lection criterion consists of picking up the system maximiz-
ing, at a particular system-dependent sensitivity threshold,
the so-called term-weighted value (TWV) [88], [231], [233]–
[238]. Given a sensitivity threshold, TWV is a weighted
linear combination of the false negative and false positive
rates as in

TWV = 1− (FNR + βFPR) , (18)

where β � 1 (e.g., β = 999.9 [231]) is a constant expressing
the greater cost of a false alarm with respect to that of a miss
detection.

C. PRECISION-RECALL AND F-SCORE CURVES
The precision-recall curve [239] is another important visual
performance analysis tool for KWS systems (e.g., [12], [77],
[129], [140]). Let precision, also known as positive predictive
value [240], be the probability that a sample that is classified
as positive is actually a positive sample:

Precision =
TP

TP + FP
. (19)

Then, the precision-recall curve plots pairs of recall (equiva-
lently, TPR, see Eq. (15)) and precision values that, as in the
case of the ROC and DET curves, are obtained by sweeping
the sensitivity threshold. This definition is schematized by
the left part of Figure 13, where a perfect classifier lies on
the coordinate (Recall = 1, Precision = 1). The closer
to this point a precision-recall curve is and the larger the

17Evidently, in these circumstances, EER may not be a good metric
candidate for system comparison.

AUC ∈ [0, 1], the better a classifier. This time, a (precision-
recall) random guessing line has not been drawn, since it
depends on the proportion of the positive class within both
classes [240]. For example, while in a balanced scenario
random guessing would be characterized by a horizontal line
at a precision of 0.5, we can expect that such a line is closer
to 0 precision in the event of the KWS problem due to the
highly imbalance nature of it.

The close relationship between the ROC (and DET) and
precision-recall curves can be intuited, and, in fact, there
exists a one-to-one correspondence between both of them
[239]. However, the precision-recall curve is considered to
be a more informative visual analysis tool than the ROC one
in our context [240]. This is because, thanks to the use of
precision, the precision-recall curve allows us to better focus
on the minority positive (i.e., keyword) class of interest (see
Eq. (19)). On the precision-recall plane, while SYS1 lies on
the point (Recall = 0.5, Precision = 0.5), precision is
undefined (i.e., Precision = 0/0) for SYS2, which should
alert us to the existence of a problem with the latter system.

From precision and recall we can formulate the F-score
metric [241], F1, which is often used for KWS evaluation,
e.g., [12], [129], [130], [140], [151], [242]. F-score is the
harmonic mean of precision and recall, that is,

F1 =
2

Recall−1 + Precision−1
=

2TP
2TP + FP + FN

, (20)

where 0 ≤ F1 ≤ 1, and the larger F1, the better. Indeed,
as for precision and recall, F-score can be calculated as a
function of the sensitivity threshold and plotted as exempli-
fied by the right part of Figure 13. In this representation,
we assume that a KWS system provides confidence scores
resulting from posterior probabilities, and this is why the
sensitivity threshold ranges from 0 to 1. The larger the
AUC ∈ [0, 1], the better a system is. A perfect classifier
would be characterized by an AUC of 1. As in the case of
the precision-recall curve, a random guessing line has not
been drawn either on the F-score space, since this similarly
depends on the proportion between the positive and negative
classes. Finally, let us notice that F-score is 0.5 and 0 for
SYS1 and SYS2, respectively, which clearly indicates the
superiority of SYS1 with respect to SYS2.

X. PERFORMANCE COMPARISON
In this section, we present a performance comparison among
some of the latest and most relevant deep KWS systems
reviewed throughout this manuscript. This comparison is
carried out in terms of both KWS performance and compu-
tational complexity of the acoustic model, which is the main
distinctive component of every system.

To measure KWS performance, we examine accuracy of
systems in non-streaming mode on the Google Speech Com-
mands Dataset (GSCD) v1 and v2 (described in Subsection
VIII-A), which standardize 10 keywords (see Table 2). In
this way, since the publicly available GSCD has become the
de facto open benchmark for deep KWS, we can straightfor-
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The random guessing line depends on the proportion of the positive class
within both classes
- Balanced scenario: Horizontal line at a precision of 0.5
- In KWS: Horizontal line closer to 0
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FIGURE 13. Outlining of the precision-recall (left) and F-score (right) curves.
See the text for further explanation.

In real-world KWS applications, typically, the cost of a
false alarm is significantly greater than that of a miss detec-
tion17 [231]. This is for example the case for voice activation
of voice assistants, where privacy is a major concern [232]
since this application involves streaming voice to a cloud
server. As a result, a popular variant of the ROC and DET
curves is that one replacing false positive rate along the x-
axis by the number of false alarms per hour [8], [28], [31],
[59], [60], [156], [162], [195]. By this, a practitioner can just
set a very small number of false alarms per hour (e.g., 1)
and identify the system with the highest (lowest) true positive
(false negative) rate for deployment. An alternative good se-
lection criterion consists of picking up the system maximiz-
ing, at a particular system-dependent sensitivity threshold,
the so-called term-weighted value (TWV) [88], [231], [233]–
[238]. Given a sensitivity threshold, TWV is a weighted
linear combination of the false negative and false positive
rates as in

TWV = 1− (FNR + βFPR) , (18)

where β � 1 (e.g., β = 999.9 [231]) is a constant expressing
the greater cost of a false alarm with respect to that of a miss
detection.

C. PRECISION-RECALL AND F-SCORE CURVES
The precision-recall curve [239] is another important visual
performance analysis tool for KWS systems (e.g., [12], [77],
[129], [140]). Let precision, also known as positive predictive
value [240], be the probability that a sample that is classified
as positive is actually a positive sample:

Precision =
TP

TP + FP
. (19)

Then, the precision-recall curve plots pairs of recall (equiva-
lently, TPR, see Eq. (15)) and precision values that, as in the
case of the ROC and DET curves, are obtained by sweeping
the sensitivity threshold. This definition is schematized by
the left part of Figure 13, where a perfect classifier lies on
the coordinate (Recall = 1, Precision = 1). The closer
to this point a precision-recall curve is and the larger the

17Evidently, in these circumstances, EER may not be a good metric
candidate for system comparison.

AUC ∈ [0, 1], the better a classifier. This time, a (precision-
recall) random guessing line has not been drawn, since it
depends on the proportion of the positive class within both
classes [240]. For example, while in a balanced scenario
random guessing would be characterized by a horizontal line
at a precision of 0.5, we can expect that such a line is closer
to 0 precision in the event of the KWS problem due to the
highly imbalance nature of it.

The close relationship between the ROC (and DET) and
precision-recall curves can be intuited, and, in fact, there
exists a one-to-one correspondence between both of them
[239]. However, the precision-recall curve is considered to
be a more informative visual analysis tool than the ROC one
in our context [240]. This is because, thanks to the use of
precision, the precision-recall curve allows us to better focus
on the minority positive (i.e., keyword) class of interest (see
Eq. (19)). On the precision-recall plane, while SYS1 lies on
the point (Recall = 0.5, Precision = 0.5), precision is
undefined (i.e., Precision = 0/0) for SYS2, which should
alert us to the existence of a problem with the latter system.

From precision and recall we can formulate the F-score
metric [241], F1, which is often used for KWS evaluation,
e.g., [12], [129], [130], [140], [151], [242]. F-score is the
harmonic mean of precision and recall, that is,

F1 =
2

Recall−1 + Precision−1
=

2TP
2TP + FP + FN

, (20)

where 0 ≤ F1 ≤ 1, and the larger F1, the better. Indeed,
as for precision and recall, F-score can be calculated as a
function of the sensitivity threshold and plotted as exempli-
fied by the right part of Figure 13. In this representation,
we assume that a KWS system provides confidence scores
resulting from posterior probabilities, and this is why the
sensitivity threshold ranges from 0 to 1. The larger the
AUC ∈ [0, 1], the better a system is. A perfect classifier
would be characterized by an AUC of 1. As in the case of
the precision-recall curve, a random guessing line has not
been drawn either on the F-score space, since this similarly
depends on the proportion between the positive and negative
classes. Finally, let us notice that F-score is 0.5 and 0 for
SYS1 and SYS2, respectively, which clearly indicates the
superiority of SYS1 with respect to SYS2.

X. PERFORMANCE COMPARISON
In this section, we present a performance comparison among
some of the latest and most relevant deep KWS systems
reviewed throughout this manuscript. This comparison is
carried out in terms of both KWS performance and compu-
tational complexity of the acoustic model, which is the main
distinctive component of every system.

To measure KWS performance, we examine accuracy of
systems in non-streaming mode on the Google Speech Com-
mands Dataset (GSCD) v1 and v2 (described in Subsection
VIII-A), which standardize 10 keywords (see Table 2). In
this way, since the publicly available GSCD has become the
de facto open benchmark for deep KWS, we can straightfor-
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One-to-one correspondence between the PR and ROC/DET curves(1)

However, the PR curve is considered to be a more informative visual analysis
tool ←− We can better focus on the minority positive (i.e., keyword) class
of interest (Precision = TP/(TP + FP))
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In real-world KWS applications, typically, the cost of a
false alarm is significantly greater than that of a miss detec-
tion17 [231]. This is for example the case for voice activation
of voice assistants, where privacy is a major concern [232]
since this application involves streaming voice to a cloud
server. As a result, a popular variant of the ROC and DET
curves is that one replacing false positive rate along the x-
axis by the number of false alarms per hour [8], [28], [31],
[59], [60], [156], [162], [195]. By this, a practitioner can just
set a very small number of false alarms per hour (e.g., 1)
and identify the system with the highest (lowest) true positive
(false negative) rate for deployment. An alternative good se-
lection criterion consists of picking up the system maximiz-
ing, at a particular system-dependent sensitivity threshold,
the so-called term-weighted value (TWV) [88], [231], [233]–
[238]. Given a sensitivity threshold, TWV is a weighted
linear combination of the false negative and false positive
rates as in

TWV = 1− (FNR + βFPR) , (18)

where β � 1 (e.g., β = 999.9 [231]) is a constant expressing
the greater cost of a false alarm with respect to that of a miss
detection.

C. PRECISION-RECALL AND F-SCORE CURVES
The precision-recall curve [239] is another important visual
performance analysis tool for KWS systems (e.g., [12], [77],
[129], [140]). Let precision, also known as positive predictive
value [240], be the probability that a sample that is classified
as positive is actually a positive sample:

Precision =
TP

TP + FP
. (19)

Then, the precision-recall curve plots pairs of recall (equiva-
lently, TPR, see Eq. (15)) and precision values that, as in the
case of the ROC and DET curves, are obtained by sweeping
the sensitivity threshold. This definition is schematized by
the left part of Figure 13, where a perfect classifier lies on
the coordinate (Recall = 1, Precision = 1). The closer
to this point a precision-recall curve is and the larger the

17Evidently, in these circumstances, EER may not be a good metric
candidate for system comparison.

AUC ∈ [0, 1], the better a classifier. This time, a (precision-
recall) random guessing line has not been drawn, since it
depends on the proportion of the positive class within both
classes [240]. For example, while in a balanced scenario
random guessing would be characterized by a horizontal line
at a precision of 0.5, we can expect that such a line is closer
to 0 precision in the event of the KWS problem due to the
highly imbalance nature of it.

The close relationship between the ROC (and DET) and
precision-recall curves can be intuited, and, in fact, there
exists a one-to-one correspondence between both of them
[239]. However, the precision-recall curve is considered to
be a more informative visual analysis tool than the ROC one
in our context [240]. This is because, thanks to the use of
precision, the precision-recall curve allows us to better focus
on the minority positive (i.e., keyword) class of interest (see
Eq. (19)). On the precision-recall plane, while SYS1 lies on
the point (Recall = 0.5, Precision = 0.5), precision is
undefined (i.e., Precision = 0/0) for SYS2, which should
alert us to the existence of a problem with the latter system.

From precision and recall we can formulate the F-score
metric [241], F1, which is often used for KWS evaluation,
e.g., [12], [129], [130], [140], [151], [242]. F-score is the
harmonic mean of precision and recall, that is,

F1 =
2

Recall−1 + Precision−1
=

2TP
2TP + FP + FN

, (20)

where 0 ≤ F1 ≤ 1, and the larger F1, the better. Indeed,
as for precision and recall, F-score can be calculated as a
function of the sensitivity threshold and plotted as exempli-
fied by the right part of Figure 13. In this representation,
we assume that a KWS system provides confidence scores
resulting from posterior probabilities, and this is why the
sensitivity threshold ranges from 0 to 1. The larger the
AUC ∈ [0, 1], the better a system is. A perfect classifier
would be characterized by an AUC of 1. As in the case of
the precision-recall curve, a random guessing line has not
been drawn either on the F-score space, since this similarly
depends on the proportion between the positive and negative
classes. Finally, let us notice that F-score is 0.5 and 0 for
SYS1 and SYS2, respectively, which clearly indicates the
superiority of SYS1 with respect to SYS2.

X. PERFORMANCE COMPARISON
In this section, we present a performance comparison among
some of the latest and most relevant deep KWS systems
reviewed throughout this manuscript. This comparison is
carried out in terms of both KWS performance and compu-
tational complexity of the acoustic model, which is the main
distinctive component of every system.

To measure KWS performance, we examine accuracy of
systems in non-streaming mode on the Google Speech Com-
mands Dataset (GSCD) v1 and v2 (described in Subsection
VIII-A), which standardize 10 keywords (see Table 2). In
this way, since the publicly available GSCD has become the
de facto open benchmark for deep KWS, we can straightfor-
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(deep) KWS development and evaluation. This crowdsourced
database was captured at a sampling rate of 16 kHz by means
of phone and laptop microphones, being, to some extent,
noisy. Its first version, v1 [153], was released in August 2017
under a Creative Commons BY 4.0 license [211]. Recorded
by 1,881 speakers, this first version consists of 64,727 one-
second (or less) long speech segments covering one word
each out of 30 possible different words. The main difference
between the first version and the second version —which was
made publicly available in 2018— is that the latter incorpo-
rates 5 more words (i.e., a total of 35 words), more speech
segments, 105,829, and more speakers, 2,618. Table 2 lists
the words included in the Google Speech Commands Dataset
v1 (first six rows) and v2 (all the rows). In this table, words
are broken down by the standardized 10 keywords (first two
rows) and non-keywords (last five rows). To facilitate KWS
technology reproducibility and comparison, this benchmark
also standardizes the training, development and test sets, as
well as other crucial aspects of the experimental framework,
including a training data augmentation procedure involving
background noises (see, e.g., [30] for further details). Mul-
tiple recent deep KWS works have employed either the first
version [16], [30], [32], [43], [48]–[52], [57], [58], [67], [69],
[70], [86], [90], [100], [125] or the second version [32], [47],
[48], [53], [70], [82], [89], [90], [99], [100], [109], [128]–
[130], [159], [175] of the Google Speech Commands Dataset.

Despite how valuable this open reference is for KWS
research and development, we can raise two relevant points
of criticism:

1) Class balancing: The different keyword and non-
keyword classes are rather balanced (i.e., they ap-
pear with comparable frequencies) in this benchmark,
which, as we know, is generally not realistic. See Sub-
section IX-A for further comments on this question.

2) Non-streaming mode: Most of the above-referred
works using the Google Speech Commands Dataset
performs, due to the nature of this corpus, KWS eval-
uations in non-streaming mode, namely, multi-class
classification of independent short input segments. In
this mode, a full keyword or non-keyword is surely
present within every segment. However, real-life KWS
involves the continuous processing of an input audio
stream.

A few deep KWS research works [43], [58], [129], [130]
have proposed to overcome the above two limitations by
generating more realistic streaming versions of the Google
Speech Commands Dataset by concatenation of one-second
long utterances in such a manner that the resulting word class
distribution is unbalanced. Even though the author of the
Google Speech Commands Dataset reports some streaming
evaluations in the database description manuscript [154],
still, we think that this point should be standardized for the
sake of reproducibility and comparison, thereby enhancing
the usefulness of this valuable corpus.

Lastly, we wish to draw attention to the fact that we pro-

NK NK NK KW NK NKKWNK NKNK

NK NK NK NK NK NK NK NK NK NK

NK NK KW NK NK KW NK NK NK NKGround truth

SYS1

SYS2

FIGURE 11. Example of two different KWS systems SYS1 and SYS2
recognizing a sequence of keywords (KW) and non-keywords (NK). The
ground truth sequence is also shown on top.

duced three outcomes revolving around the Google Speech
Commands Dataset v2: 1) a variant of it emulating hearing
aids as a capturing device (employed, as mentioned in Sub-
section VII-C, for KWS for hearing assistive devices robust
to external speakers) [128], [129], 2) another noisier variant
with a diversity of noisy conditions15 (i.e., types of noise
and SNR levels) [130], and 3) manually-annotated speaker
gender labels16.

IX. EVALUATION METRICS
Obviously, the gold plate test of any speech communication
system is a test with relevant end-users. However, such tests
tend to be costly and time-consuming. Instead (or in addition
to subjective tests), one adheres to objective performance
metrics for estimating system performance. It is important to
choose a meaningful objective evaluation metric that allows
us to determine the goodness of a system and is highly
correlated to the subjective user experience. In what follows,
we review and provide some criticism of the most common
metrics considered in the field of KWS. These metrics are
rather intended for binary classification —e.g., keyword/non-
keyword— tasks. In the event of having multiple keywords, a
common approach consists of applying the metric computa-
tion for every keyword and, then, the result is averaged, e.g.,
see [30], [129], [130].

A. ACCURACY
Accuracy can be defined as the ratio between the number
of correct predictions/classifications and the total number
of them [212]. In the context of binary classification (e.g.,
keyword/non-keyword), accuracy can also be expressed from
the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) as follows [213]:

Accuracy =
TP + TN

TP + TN + FP + FN
. (14)

Accuracy ∈ [0, 1], where 0 and 1 indicate, respectively,
worst and perfect classification.

It is reasonable to expect that, in real-life applications like
wake-up word detection, KWS systems will hear other word
types rather than keywords most of the time. In other words,
KWS is a task in which, in principle, the keyword and non-
keyword classes are quite unbalanced. Under these circum-

15Tools to create this noisy dataset can be freely downloaded from http:
//ilopez.es.mialias.net/misc/NoisyGSCD.zip

16These labels are publicly available at https://ilopezes.files.wordpress.
com/2019/10/gscd_spk_gender.zip
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SYS1 −→ (Recall = 0.5, Precision = 0.5)
SYS2 −→ Precision = 0/0 is undefined

(1) J. Davis and M. Goadrich, “The relationship between precision-recall and ROC curves”. In Proc. of ICML 2006
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F-score, F1, is the harmonic mean of precision and recall:

F1 =
2

Recall−1 + Precision−1
=

2TP

2TP + FP + FN

The larger F1 ∈ [0, 1], the better

F-score can be calculated as a function of the sensitivity threshold:
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FIGURE 13. Outlining of the precision-recall (left) and F-score (right) curves.
See the text for further explanation.

In real-world KWS applications, typically, the cost of a
false alarm is significantly greater than that of a miss detec-
tion17 [231]. This is for example the case for voice activation
of voice assistants, where privacy is a major concern [232]
since this application involves streaming voice to a cloud
server. As a result, a popular variant of the ROC and DET
curves is that one replacing false positive rate along the x-
axis by the number of false alarms per hour [8], [28], [31],
[59], [60], [156], [162], [195]. By this, a practitioner can just
set a very small number of false alarms per hour (e.g., 1)
and identify the system with the highest (lowest) true positive
(false negative) rate for deployment. An alternative good se-
lection criterion consists of picking up the system maximiz-
ing, at a particular system-dependent sensitivity threshold,
the so-called term-weighted value (TWV) [88], [231], [233]–
[238]. Given a sensitivity threshold, TWV is a weighted
linear combination of the false negative and false positive
rates as in

TWV = 1− (FNR + βFPR) , (18)

where β � 1 (e.g., β = 999.9 [231]) is a constant expressing
the greater cost of a false alarm with respect to that of a miss
detection.

C. PRECISION-RECALL AND F-SCORE CURVES
The precision-recall curve [239] is another important visual
performance analysis tool for KWS systems (e.g., [12], [77],
[129], [140]). Let precision, also known as positive predictive
value [240], be the probability that a sample that is classified
as positive is actually a positive sample:

Precision =
TP

TP + FP
. (19)

Then, the precision-recall curve plots pairs of recall (equiva-
lently, TPR, see Eq. (15)) and precision values that, as in the
case of the ROC and DET curves, are obtained by sweeping
the sensitivity threshold. This definition is schematized by
the left part of Figure 13, where a perfect classifier lies on
the coordinate (Recall = 1, Precision = 1). The closer
to this point a precision-recall curve is and the larger the

17Evidently, in these circumstances, EER may not be a good metric
candidate for system comparison.

AUC ∈ [0, 1], the better a classifier. This time, a (precision-
recall) random guessing line has not been drawn, since it
depends on the proportion of the positive class within both
classes [240]. For example, while in a balanced scenario
random guessing would be characterized by a horizontal line
at a precision of 0.5, we can expect that such a line is closer
to 0 precision in the event of the KWS problem due to the
highly imbalance nature of it.

The close relationship between the ROC (and DET) and
precision-recall curves can be intuited, and, in fact, there
exists a one-to-one correspondence between both of them
[239]. However, the precision-recall curve is considered to
be a more informative visual analysis tool than the ROC one
in our context [240]. This is because, thanks to the use of
precision, the precision-recall curve allows us to better focus
on the minority positive (i.e., keyword) class of interest (see
Eq. (19)). On the precision-recall plane, while SYS1 lies on
the point (Recall = 0.5, Precision = 0.5), precision is
undefined (i.e., Precision = 0/0) for SYS2, which should
alert us to the existence of a problem with the latter system.

From precision and recall we can formulate the F-score
metric [241], F1, which is often used for KWS evaluation,
e.g., [12], [129], [130], [140], [151], [242]. F-score is the
harmonic mean of precision and recall, that is,

F1 =
2

Recall−1 + Precision−1
=

2TP
2TP + FP + FN

, (20)

where 0 ≤ F1 ≤ 1, and the larger F1, the better. Indeed,
as for precision and recall, F-score can be calculated as a
function of the sensitivity threshold and plotted as exempli-
fied by the right part of Figure 13. In this representation,
we assume that a KWS system provides confidence scores
resulting from posterior probabilities, and this is why the
sensitivity threshold ranges from 0 to 1. The larger the
AUC ∈ [0, 1], the better a system is. A perfect classifier
would be characterized by an AUC of 1. As in the case of
the precision-recall curve, a random guessing line has not
been drawn either on the F-score space, since this similarly
depends on the proportion between the positive and negative
classes. Finally, let us notice that F-score is 0.5 and 0 for
SYS1 and SYS2, respectively, which clearly indicates the
superiority of SYS1 with respect to SYS2.

X. PERFORMANCE COMPARISON
In this section, we present a performance comparison among
some of the latest and most relevant deep KWS systems
reviewed throughout this manuscript. This comparison is
carried out in terms of both KWS performance and compu-
tational complexity of the acoustic model, which is the main
distinctive component of every system.

To measure KWS performance, we examine accuracy of
systems in non-streaming mode on the Google Speech Com-
mands Dataset (GSCD) v1 and v2 (described in Subsection
VIII-A), which standardize 10 keywords (see Table 2). In
this way, since the publicly available GSCD has become the
de facto open benchmark for deep KWS, we can straightfor-
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In real-world KWS applications, typically, the cost of a
false alarm is significantly greater than that of a miss detec-
tion17 [231]. This is for example the case for voice activation
of voice assistants, where privacy is a major concern [232]
since this application involves streaming voice to a cloud
server. As a result, a popular variant of the ROC and DET
curves is that one replacing false positive rate along the x-
axis by the number of false alarms per hour [8], [28], [31],
[59], [60], [156], [162], [195]. By this, a practitioner can just
set a very small number of false alarms per hour (e.g., 1)
and identify the system with the highest (lowest) true positive
(false negative) rate for deployment. An alternative good se-
lection criterion consists of picking up the system maximiz-
ing, at a particular system-dependent sensitivity threshold,
the so-called term-weighted value (TWV) [88], [231], [233]–
[238]. Given a sensitivity threshold, TWV is a weighted
linear combination of the false negative and false positive
rates as in

TWV = 1− (FNR + βFPR) , (18)

where β � 1 (e.g., β = 999.9 [231]) is a constant expressing
the greater cost of a false alarm with respect to that of a miss
detection.

C. PRECISION-RECALL AND F-SCORE CURVES
The precision-recall curve [239] is another important visual
performance analysis tool for KWS systems (e.g., [12], [77],
[129], [140]). Let precision, also known as positive predictive
value [240], be the probability that a sample that is classified
as positive is actually a positive sample:

Precision =
TP

TP + FP
. (19)

Then, the precision-recall curve plots pairs of recall (equiva-
lently, TPR, see Eq. (15)) and precision values that, as in the
case of the ROC and DET curves, are obtained by sweeping
the sensitivity threshold. This definition is schematized by
the left part of Figure 13, where a perfect classifier lies on
the coordinate (Recall = 1, Precision = 1). The closer
to this point a precision-recall curve is and the larger the

17Evidently, in these circumstances, EER may not be a good metric
candidate for system comparison.

AUC ∈ [0, 1], the better a classifier. This time, a (precision-
recall) random guessing line has not been drawn, since it
depends on the proportion of the positive class within both
classes [240]. For example, while in a balanced scenario
random guessing would be characterized by a horizontal line
at a precision of 0.5, we can expect that such a line is closer
to 0 precision in the event of the KWS problem due to the
highly imbalance nature of it.

The close relationship between the ROC (and DET) and
precision-recall curves can be intuited, and, in fact, there
exists a one-to-one correspondence between both of them
[239]. However, the precision-recall curve is considered to
be a more informative visual analysis tool than the ROC one
in our context [240]. This is because, thanks to the use of
precision, the precision-recall curve allows us to better focus
on the minority positive (i.e., keyword) class of interest (see
Eq. (19)). On the precision-recall plane, while SYS1 lies on
the point (Recall = 0.5, Precision = 0.5), precision is
undefined (i.e., Precision = 0/0) for SYS2, which should
alert us to the existence of a problem with the latter system.

From precision and recall we can formulate the F-score
metric [241], F1, which is often used for KWS evaluation,
e.g., [12], [129], [130], [140], [151], [242]. F-score is the
harmonic mean of precision and recall, that is,

F1 =
2

Recall−1 + Precision−1
=

2TP
2TP + FP + FN

, (20)

where 0 ≤ F1 ≤ 1, and the larger F1, the better. Indeed,
as for precision and recall, F-score can be calculated as a
function of the sensitivity threshold and plotted as exempli-
fied by the right part of Figure 13. In this representation,
we assume that a KWS system provides confidence scores
resulting from posterior probabilities, and this is why the
sensitivity threshold ranges from 0 to 1. The larger the
AUC ∈ [0, 1], the better a system is. A perfect classifier
would be characterized by an AUC of 1. As in the case of
the precision-recall curve, a random guessing line has not
been drawn either on the F-score space, since this similarly
depends on the proportion between the positive and negative
classes. Finally, let us notice that F-score is 0.5 and 0 for
SYS1 and SYS2, respectively, which clearly indicates the
superiority of SYS1 with respect to SYS2.

X. PERFORMANCE COMPARISON
In this section, we present a performance comparison among
some of the latest and most relevant deep KWS systems
reviewed throughout this manuscript. This comparison is
carried out in terms of both KWS performance and compu-
tational complexity of the acoustic model, which is the main
distinctive component of every system.

To measure KWS performance, we examine accuracy of
systems in non-streaming mode on the Google Speech Com-
mands Dataset (GSCD) v1 and v2 (described in Subsection
VIII-A), which standardize 10 keywords (see Table 2). In
this way, since the publicly available GSCD has become the
de facto open benchmark for deep KWS, we can straightfor-

20 VOLUME 4, 2016

I. López-Espejo et al.: Deep Spoken KWS: An Overview

(deep) KWS development and evaluation. This crowdsourced
database was captured at a sampling rate of 16 kHz by means
of phone and laptop microphones, being, to some extent,
noisy. Its first version, v1 [153], was released in August 2017
under a Creative Commons BY 4.0 license [211]. Recorded
by 1,881 speakers, this first version consists of 64,727 one-
second (or less) long speech segments covering one word
each out of 30 possible different words. The main difference
between the first version and the second version —which was
made publicly available in 2018— is that the latter incorpo-
rates 5 more words (i.e., a total of 35 words), more speech
segments, 105,829, and more speakers, 2,618. Table 2 lists
the words included in the Google Speech Commands Dataset
v1 (first six rows) and v2 (all the rows). In this table, words
are broken down by the standardized 10 keywords (first two
rows) and non-keywords (last five rows). To facilitate KWS
technology reproducibility and comparison, this benchmark
also standardizes the training, development and test sets, as
well as other crucial aspects of the experimental framework,
including a training data augmentation procedure involving
background noises (see, e.g., [30] for further details). Mul-
tiple recent deep KWS works have employed either the first
version [16], [30], [32], [43], [48]–[52], [57], [58], [67], [69],
[70], [86], [90], [100], [125] or the second version [32], [47],
[48], [53], [70], [82], [89], [90], [99], [100], [109], [128]–
[130], [159], [175] of the Google Speech Commands Dataset.

Despite how valuable this open reference is for KWS
research and development, we can raise two relevant points
of criticism:

1) Class balancing: The different keyword and non-
keyword classes are rather balanced (i.e., they ap-
pear with comparable frequencies) in this benchmark,
which, as we know, is generally not realistic. See Sub-
section IX-A for further comments on this question.

2) Non-streaming mode: Most of the above-referred
works using the Google Speech Commands Dataset
performs, due to the nature of this corpus, KWS eval-
uations in non-streaming mode, namely, multi-class
classification of independent short input segments. In
this mode, a full keyword or non-keyword is surely
present within every segment. However, real-life KWS
involves the continuous processing of an input audio
stream.

A few deep KWS research works [43], [58], [129], [130]
have proposed to overcome the above two limitations by
generating more realistic streaming versions of the Google
Speech Commands Dataset by concatenation of one-second
long utterances in such a manner that the resulting word class
distribution is unbalanced. Even though the author of the
Google Speech Commands Dataset reports some streaming
evaluations in the database description manuscript [154],
still, we think that this point should be standardized for the
sake of reproducibility and comparison, thereby enhancing
the usefulness of this valuable corpus.

Lastly, we wish to draw attention to the fact that we pro-
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FIGURE 11. Example of two different KWS systems SYS1 and SYS2
recognizing a sequence of keywords (KW) and non-keywords (NK). The
ground truth sequence is also shown on top.

duced three outcomes revolving around the Google Speech
Commands Dataset v2: 1) a variant of it emulating hearing
aids as a capturing device (employed, as mentioned in Sub-
section VII-C, for KWS for hearing assistive devices robust
to external speakers) [128], [129], 2) another noisier variant
with a diversity of noisy conditions15 (i.e., types of noise
and SNR levels) [130], and 3) manually-annotated speaker
gender labels16.

IX. EVALUATION METRICS
Obviously, the gold plate test of any speech communication
system is a test with relevant end-users. However, such tests
tend to be costly and time-consuming. Instead (or in addition
to subjective tests), one adheres to objective performance
metrics for estimating system performance. It is important to
choose a meaningful objective evaluation metric that allows
us to determine the goodness of a system and is highly
correlated to the subjective user experience. In what follows,
we review and provide some criticism of the most common
metrics considered in the field of KWS. These metrics are
rather intended for binary classification —e.g., keyword/non-
keyword— tasks. In the event of having multiple keywords, a
common approach consists of applying the metric computa-
tion for every keyword and, then, the result is averaged, e.g.,
see [30], [129], [130].

A. ACCURACY
Accuracy can be defined as the ratio between the number
of correct predictions/classifications and the total number
of them [212]. In the context of binary classification (e.g.,
keyword/non-keyword), accuracy can also be expressed from
the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) as follows [213]:

Accuracy =
TP + TN

TP + TN + FP + FN
. (14)

Accuracy ∈ [0, 1], where 0 and 1 indicate, respectively,
worst and perfect classification.

It is reasonable to expect that, in real-life applications like
wake-up word detection, KWS systems will hear other word
types rather than keywords most of the time. In other words,
KWS is a task in which, in principle, the keyword and non-
keyword classes are quite unbalanced. Under these circum-

15Tools to create this noisy dataset can be freely downloaded from http:
//ilopez.es.mialias.net/misc/NoisyGSCD.zip

16These labels are publicly available at https://ilopezes.files.wordpress.
com/2019/10/gscd_spk_gender.zip
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TABLE 3. Performance comparison among some of the latest deep KWS systems in terms of both accuracy (%) and computational complexity (i.e., number of
parameters and multiplications) of the acoustic model. Accuracy, provided with confidence intervals for some systems, is on the Google Speech Commands Dataset
(GSCD) v1 and v2. The reported values are directly taken from the references in the “Description” column. Unknown information is indicated by hyphens.

ID Description Year Accuracy (%) Computational complexity
GSCD v1 GSCD v2 No. of params. No. of mults.

1 Standard FFNN with a pooling layer [32] 2020 91.2 90.6 447k –
2 DenseNet with trainable window function and mixup data augmentation [67] 2018 92.8 – – –
3 Two-stage TDNN [58] 2018 94.3 – 251k 25.1M
4 CNN with striding [32] 2018 95.4 95.6 529k –
5 BiLSTM with attention [133] 2018 95.6 96.9 202k –
6 Residual CNN res15 [30] 2018 95.8 ± 0.484 – 238k 894M
7 TDNN with shared weight self-attention [16] 2019 95.81 ± 0.191 – 12k 403k
8 DenseNet+BiLSTM with attention [48] 2019 96.2 97.3 223k –
9 Residual CNN with temporal convolutions TC-ResNet14 [50] 2019 96.2 – 137k –
10 SVDF [32] 2019 96.3 96.9 354k –
11 SincConv+(Grouped DS-CNN) [70] 2020 96.4 97.3 62k –
12 Graph convolutional network CENet-40 [49] 2019 96.4 – 61k 16.18M
13 GRU [32] 2020 96.6 97.2 593k –
14 SincConv+(DS-CNN) [70] 2020 96.6 97.4 122k –
15 Temporal CNN with depthwise convolutions TENet12 [52] 2020 96.6 – 100k 2.90M
16 Residual DS-CNN with squeeze-and-excitation DS-ResNet18 [51] 2020 96.71 ± 0.195 – 72k 285M
17 TC-ResNet14 with neural architecture search NoisyDARTS-TC14 [146] 2021 96.79 ± 0.30 97.18 ± 0.26 108k 6.3M
18 LSTM [32] 2020 96.9 97.5 – –
19 DS-CNN with striding [32] 2018 97.0 97.1 485k –
20 CRNN [32] 2020 97.0 97.5 467k –
21 BiGRU with multi-head attention [32] 2020 97.2 98.0 743k –
22 CNN with neural architecture search NAS2_6_36 [125] 2020 97.22 – 886k –
23 Keyword Transformer KWT-3 [90] 2021 97.49 ± 0.15 98.56 ± 0.07 5.3M –
24 Variant of TC-ResNet with self-attention LG-Net6 [91] 2021 97.67 96.79 313k –
25 Broadcasted residual CNN BC-ResNet-8 [100] 2021 98.0 98.7 321k 89.1M

94 95 96 97 98

Accuracy (%)

0

200

400

600

800

1000

N
o
. 
o
f 
p
a
ra

m
e
te

rs
 (

x
1
0
0
0
)

3

4

5
6

19

7

8

9

10

12

13

14
15

16

20

21

22

17

24 25

FIGURE 14. Location of some of the deep KWS systems of Table 3 on the
plane defined by the dimensions “number of parameters” and “accuracy” (on
the Google Speech Commands Dataset v1). Better systems can be found on
the lower right corner of this plane. The systems are identified by the numbers
in the “ID” column of Table 3. More recent systems are marked with a darker
color.

wardly use accuracy values reported in the literature in order
to rank the most prominent deep KWS systems. Regarding
accuracy as an evaluation metric, recall that this metric,
although not ideal, is still meaningful under the GSCD exper-
imental conditions to explain the goodness of KWS systems,
as discussed in Subsection IX-A.

On the other hand, the number of parameters and mul-
tiplications of the acoustic model is used to evaluate the
computational complexity of the systems. Notice that these
measures are a good approximation to the complexity of the
entire deep KWS system since the acoustic model is, by far,
the most demanding component in terms of computation. Ac-
tually, in [86], Tang et al. show that the number of parameters
and, especially, the number of multiplications of the acoustic
model are solid proxies predicting the power consumption of
these systems.

Table 3 shows a performance comparison among some of
the latest deep KWS systems in terms of both accuracy on
the GSCD v1 and v2 (in percentages), and complexity of the
acoustic model. The reported values are directly taken from
the references in the “Description” column, while hyphens
indicate non-available information. Notice that some of the
accuracy values in Table 3 are shown along with confidence
intervals that are calculated across different acoustic mod-
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Google Speech Commands Dataset v1 and v2 in non-streaming mode
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16 Residual DS-CNN with squeeze-and-excitation DS-ResNet18 [51] 2020 96.71 ± 0.195 – 72k 285M
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20 CRNN [32] 2020 97.0 97.5 467k –
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22 CNN with neural architecture search NAS2_6_36 [125] 2020 97.22 – 886k –
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FIGURE 14. Location of some of the deep KWS systems of Table 3 on the
plane defined by the dimensions “number of parameters” and “accuracy” (on
the Google Speech Commands Dataset v1). Better systems can be found on
the lower right corner of this plane. The systems are identified by the numbers
in the “ID” column of Table 3. More recent systems are marked with a darker
color.

wardly use accuracy values reported in the literature in order
to rank the most prominent deep KWS systems. Regarding
accuracy as an evaluation metric, recall that this metric,
although not ideal, is still meaningful under the GSCD exper-
imental conditions to explain the goodness of KWS systems,
as discussed in Subsection IX-A.

On the other hand, the number of parameters and mul-
tiplications of the acoustic model is used to evaluate the
computational complexity of the systems. Notice that these
measures are a good approximation to the complexity of the
entire deep KWS system since the acoustic model is, by far,
the most demanding component in terms of computation. Ac-
tually, in [86], Tang et al. show that the number of parameters
and, especially, the number of multiplications of the acoustic
model are solid proxies predicting the power consumption of
these systems.

Table 3 shows a performance comparison among some of
the latest deep KWS systems in terms of both accuracy on
the GSCD v1 and v2 (in percentages), and complexity of the
acoustic model. The reported values are directly taken from
the references in the “Description” column, while hyphens
indicate non-available information. Notice that some of the
accuracy values in Table 3 are shown along with confidence
intervals that are calculated across different acoustic mod-
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The number of parameters and multiplications of the acoustic model are solid proxies
predicting the power consumption of these systems(1)

(1) R. Tang et al., “An experimental analysis of the power consumption of convolutional neural networks for keyword spotting”.
In Proc. of ICASSP 2018
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FIGURE 14. Location of some of the deep KWS systems of Table 3 on the
plane defined by the dimensions “number of parameters” and “accuracy” (on
the Google Speech Commands Dataset v1). Better systems can be found on
the lower right corner of this plane. The systems are identified by the numbers
in the “ID” column of Table 3. More recent systems are marked with a darker
color.

wardly use accuracy values reported in the literature in order
to rank the most prominent deep KWS systems. Regarding
accuracy as an evaluation metric, recall that this metric,
although not ideal, is still meaningful under the GSCD exper-
imental conditions to explain the goodness of KWS systems,
as discussed in Subsection IX-A.

On the other hand, the number of parameters and mul-
tiplications of the acoustic model is used to evaluate the
computational complexity of the systems. Notice that these
measures are a good approximation to the complexity of the
entire deep KWS system since the acoustic model is, by far,
the most demanding component in terms of computation. Ac-
tually, in [86], Tang et al. show that the number of parameters
and, especially, the number of multiplications of the acoustic
model are solid proxies predicting the power consumption of
these systems.

Table 3 shows a performance comparison among some of
the latest deep KWS systems in terms of both accuracy on
the GSCD v1 and v2 (in percentages), and complexity of the
acoustic model. The reported values are directly taken from
the references in the “Description” column, while hyphens
indicate non-available information. Notice that some of the
accuracy values in Table 3 are shown along with confidence
intervals that are calculated across different acoustic mod-

VOLUME 4, 2016 21

The second version of this dataset has more word samples −→ Better trained acoustic
models
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FIGURE 14. Location of some of the deep KWS systems of Table 3 on the
plane defined by the dimensions “number of parameters” and “accuracy” (on
the Google Speech Commands Dataset v1). Better systems can be found on
the lower right corner of this plane. The systems are identified by the numbers
in the “ID” column of Table 3. More recent systems are marked with a darker
color.

wardly use accuracy values reported in the literature in order
to rank the most prominent deep KWS systems. Regarding
accuracy as an evaluation metric, recall that this metric,
although not ideal, is still meaningful under the GSCD exper-
imental conditions to explain the goodness of KWS systems,
as discussed in Subsection IX-A.

On the other hand, the number of parameters and mul-
tiplications of the acoustic model is used to evaluate the
computational complexity of the systems. Notice that these
measures are a good approximation to the complexity of the
entire deep KWS system since the acoustic model is, by far,
the most demanding component in terms of computation. Ac-
tually, in [86], Tang et al. show that the number of parameters
and, especially, the number of multiplications of the acoustic
model are solid proxies predicting the power consumption of
these systems.

Table 3 shows a performance comparison among some of
the latest deep KWS systems in terms of both accuracy on
the GSCD v1 and v2 (in percentages), and complexity of the
acoustic model. The reported values are directly taken from
the references in the “Description” column, while hyphens
indicate non-available information. Notice that some of the
accuracy values in Table 3 are shown along with confidence
intervals that are calculated across different acoustic mod-
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The most frequently used acoustic model type is based on CNN ←− Highly competitive
performance and lesser computational complexity!
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FIGURE 14. Location of some of the deep KWS systems of Table 3 on the
plane defined by the dimensions “number of parameters” and “accuracy” (on
the Google Speech Commands Dataset v1). Better systems can be found on
the lower right corner of this plane. The systems are identified by the numbers
in the “ID” column of Table 3. More recent systems are marked with a darker
color.

wardly use accuracy values reported in the literature in order
to rank the most prominent deep KWS systems. Regarding
accuracy as an evaluation metric, recall that this metric,
although not ideal, is still meaningful under the GSCD exper-
imental conditions to explain the goodness of KWS systems,
as discussed in Subsection IX-A.

On the other hand, the number of parameters and mul-
tiplications of the acoustic model is used to evaluate the
computational complexity of the systems. Notice that these
measures are a good approximation to the complexity of the
entire deep KWS system since the acoustic model is, by far,
the most demanding component in terms of computation. Ac-
tually, in [86], Tang et al. show that the number of parameters
and, especially, the number of multiplications of the acoustic
model are solid proxies predicting the power consumption of
these systems.

Table 3 shows a performance comparison among some of
the latest deep KWS systems in terms of both accuracy on
the GSCD v1 and v2 (in percentages), and complexity of the
acoustic model. The reported values are directly taken from
the references in the “Description” column, while hyphens
indicate non-available information. Notice that some of the
accuracy values in Table 3 are shown along with confidence
intervals that are calculated across different acoustic mod-
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Neural architecture search (17-NoisyDARTS-TC14 vs. 9-TC-ResNet14; 22-NAS2 6 36)
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FIGURE 14. Location of some of the deep KWS systems of Table 3 on the
plane defined by the dimensions “number of parameters” and “accuracy” (on
the Google Speech Commands Dataset v1). Better systems can be found on
the lower right corner of this plane. The systems are identified by the numbers
in the “ID” column of Table 3. More recent systems are marked with a darker
color.

wardly use accuracy values reported in the literature in order
to rank the most prominent deep KWS systems. Regarding
accuracy as an evaluation metric, recall that this metric,
although not ideal, is still meaningful under the GSCD exper-
imental conditions to explain the goodness of KWS systems,
as discussed in Subsection IX-A.

On the other hand, the number of parameters and mul-
tiplications of the acoustic model is used to evaluate the
computational complexity of the systems. Notice that these
measures are a good approximation to the complexity of the
entire deep KWS system since the acoustic model is, by far,
the most demanding component in terms of computation. Ac-
tually, in [86], Tang et al. show that the number of parameters
and, especially, the number of multiplications of the acoustic
model are solid proxies predicting the power consumption of
these systems.

Table 3 shows a performance comparison among some of
the latest deep KWS systems in terms of both accuracy on
the GSCD v1 and v2 (in percentages), and complexity of the
acoustic model. The reported values are directly taken from
the references in the “Description” column, while hyphens
indicate non-available information. Notice that some of the
accuracy values in Table 3 are shown along with confidence
intervals that are calculated across different acoustic mod-
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Effectiveness of CRNNs (8-DenseNet+BiLSTM with attention vs. 2-DenseNet and
5-BiLSTM with attention; 20-CRNN)
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TABLE 3. Performance comparison among some of the latest deep KWS systems in terms of both accuracy (%) and computational complexity (i.e., number of
parameters and multiplications) of the acoustic model. Accuracy, provided with confidence intervals for some systems, is on the Google Speech Commands Dataset
(GSCD) v1 and v2. The reported values are directly taken from the references in the “Description” column. Unknown information is indicated by hyphens.

ID Description Year Accuracy (%) Computational complexity
GSCD v1 GSCD v2 No. of params. No. of mults.

1 Standard FFNN with a pooling layer [32] 2020 91.2 90.6 447k –
2 DenseNet with trainable window function and mixup data augmentation [67] 2018 92.8 – – –
3 Two-stage TDNN [58] 2018 94.3 – 251k 25.1M
4 CNN with striding [32] 2018 95.4 95.6 529k –
5 BiLSTM with attention [133] 2018 95.6 96.9 202k –
6 Residual CNN res15 [30] 2018 95.8 ± 0.484 – 238k 894M
7 TDNN with shared weight self-attention [16] 2019 95.81 ± 0.191 – 12k 403k
8 DenseNet+BiLSTM with attention [48] 2019 96.2 97.3 223k –
9 Residual CNN with temporal convolutions TC-ResNet14 [50] 2019 96.2 – 137k –
10 SVDF [32] 2019 96.3 96.9 354k –
11 SincConv+(Grouped DS-CNN) [70] 2020 96.4 97.3 62k –
12 Graph convolutional network CENet-40 [49] 2019 96.4 – 61k 16.18M
13 GRU [32] 2020 96.6 97.2 593k –
14 SincConv+(DS-CNN) [70] 2020 96.6 97.4 122k –
15 Temporal CNN with depthwise convolutions TENet12 [52] 2020 96.6 – 100k 2.90M
16 Residual DS-CNN with squeeze-and-excitation DS-ResNet18 [51] 2020 96.71 ± 0.195 – 72k 285M
17 TC-ResNet14 with neural architecture search NoisyDARTS-TC14 [146] 2021 96.79 ± 0.30 97.18 ± 0.26 108k 6.3M
18 LSTM [32] 2020 96.9 97.5 – –
19 DS-CNN with striding [32] 2018 97.0 97.1 485k –
20 CRNN [32] 2020 97.0 97.5 467k –
21 BiGRU with multi-head attention [32] 2020 97.2 98.0 743k –
22 CNN with neural architecture search NAS2_6_36 [125] 2020 97.22 – 886k –
23 Keyword Transformer KWT-3 [90] 2021 97.49 ± 0.15 98.56 ± 0.07 5.3M –
24 Variant of TC-ResNet with self-attention LG-Net6 [91] 2021 97.67 96.79 313k –
25 Broadcasted residual CNN BC-ResNet-8 [100] 2021 98.0 98.7 321k 89.1M
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FIGURE 14. Location of some of the deep KWS systems of Table 3 on the
plane defined by the dimensions “number of parameters” and “accuracy” (on
the Google Speech Commands Dataset v1). Better systems can be found on
the lower right corner of this plane. The systems are identified by the numbers
in the “ID” column of Table 3. More recent systems are marked with a darker
color.

wardly use accuracy values reported in the literature in order
to rank the most prominent deep KWS systems. Regarding
accuracy as an evaluation metric, recall that this metric,
although not ideal, is still meaningful under the GSCD exper-
imental conditions to explain the goodness of KWS systems,
as discussed in Subsection IX-A.

On the other hand, the number of parameters and mul-
tiplications of the acoustic model is used to evaluate the
computational complexity of the systems. Notice that these
measures are a good approximation to the complexity of the
entire deep KWS system since the acoustic model is, by far,
the most demanding component in terms of computation. Ac-
tually, in [86], Tang et al. show that the number of parameters
and, especially, the number of multiplications of the acoustic
model are solid proxies predicting the power consumption of
these systems.

Table 3 shows a performance comparison among some of
the latest deep KWS systems in terms of both accuracy on
the GSCD v1 and v2 (in percentages), and complexity of the
acoustic model. The reported values are directly taken from
the references in the “Description” column, while hyphens
indicate non-available information. Notice that some of the
accuracy values in Table 3 are shown along with confidence
intervals that are calculated across different acoustic mod-
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Systems with IDs 14, 15, 16 and 17: Based on CNNs
- Most of them integrate residual connections and/or depthwise separable convolutions

- Systems 15, 16 and 17 integrate either dilated or temporal convolutions to exploit long time-frequency dependencies

Systems with IDs 24 and 25: Based on CNNs with residual connections
- System 24 has temporal convolutions and self-attention layers, and System 25 has dilated convolutions
- System 25 incorporates depthwise separable convolutions
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18 LSTM [32] 2020 96.9 97.5 – –
19 DS-CNN with striding [32] 2018 97.0 97.1 485k –
20 CRNN [32] 2020 97.0 97.5 467k –
21 BiGRU with multi-head attention [32] 2020 97.2 98.0 743k –
22 CNN with neural architecture search NAS2_6_36 [125] 2020 97.22 – 886k –
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FIGURE 14. Location of some of the deep KWS systems of Table 3 on the
plane defined by the dimensions “number of parameters” and “accuracy” (on
the Google Speech Commands Dataset v1). Better systems can be found on
the lower right corner of this plane. The systems are identified by the numbers
in the “ID” column of Table 3. More recent systems are marked with a darker
color.

wardly use accuracy values reported in the literature in order
to rank the most prominent deep KWS systems. Regarding
accuracy as an evaluation metric, recall that this metric,
although not ideal, is still meaningful under the GSCD exper-
imental conditions to explain the goodness of KWS systems,
as discussed in Subsection IX-A.

On the other hand, the number of parameters and mul-
tiplications of the acoustic model is used to evaluate the
computational complexity of the systems. Notice that these
measures are a good approximation to the complexity of the
entire deep KWS system since the acoustic model is, by far,
the most demanding component in terms of computation. Ac-
tually, in [86], Tang et al. show that the number of parameters
and, especially, the number of multiplications of the acoustic
model are solid proxies predicting the power consumption of
these systems.

Table 3 shows a performance comparison among some of
the latest deep KWS systems in terms of both accuracy on
the GSCD v1 and v2 (in percentages), and complexity of the
acoustic model. The reported values are directly taken from
the references in the “Description” column, while hyphens
indicate non-available information. Notice that some of the
accuracy values in Table 3 are shown along with confidence
intervals that are calculated across different acoustic mod-
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A state-of-the-art KWS system comprising a CNN acoustic model should cover...

A mechanism to exploit long time-frequency dependencies

Depthwise separable convolutions

Residual connections
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Conclusions

Speech features −→ DNN-based acoustic model (core) −→ Posterior
probability processing

Deep spoken KWS has revitalized KWS research by enabling a massive
deployment of this technology for real-world applications (e.g., voice
assistant activation)

Advances in ASR research will continue impacting the field of KWS (e.g.,
optimal feature learning for end-to-end ASR)
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Future Directions

Advancing acoustic modeling towards two goals simultaneously:
1) Improving KWS performance in real-life acoustic conditions
2) Computational complexity reduction

Development of novel and efficient convolutional blocks

Neural architecture search

Acoustic model compression (parameter quantization, network pruning,
knowledge distillation...):
1) Reduced memory footprint
2) Decreased inference latency
3) Less energy consumption
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Future Directions

Semi-supervised learning for KWS:
- Industrial environment
- Hybrid learning based on both small (labeled) and big (unlabeled) volumes of data

Personalization:
1) Efficient open-vocabulary (personalized) KWS
2) Joint KWS and speaker verification

Multi-channel KWS for robustness purposes
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