DEEP SPOKEN KEYWORD SPOTTING

1. Introduction

Ivan Lépez-Espejo

Department of Electronic Systems, Aalborg University, Denmark

ivl@es.aau.dk

Sunday 18" September, 2022

/ INTERSPEECH 2022 R
C:IAIIlSII!:I:R “ September 18 - 22 + Incheon Korea gf ((‘ R
h 00»6 uu\““?‘;

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 1. Introduction Sunday 18" September, 2022



Overview

-|||||||||
CASPR

© Introduction
9 General Approaches
© Motivation and Goal of the Tutorial

@ Organization of the Tutorial

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 1. Introduction

Sunday 18" September, 2022



-||||||||| ((‘

CASPR

@ Speech technologies have become ubiquitous in nowadays society

HEY
ASSISTANT!

@ Spoken keyword spotting (KWS) can be defined as the task of identifying
keywords in audio streams comprising speech

@ Applications of KWS: speech data mining, audio indexing, phone call
routing, etc.
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General Approaches CASPR

Over the years, different techniques have been explored for KWS:

@ 1) Large-vocabulary continuous speech recognition
[/[ Flexibility to deal with non-predefined keywords

E(-l High computational complexity

Dong Wang, “Out-of-Vocabulary Spoken Term Detection”. 2010
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General Approaches CASPR

Over the years, different techniques have been explored for KWS:

e 2) Keyword/filler hidden Markov model (HMM)
[/ Good performance

Ea Viterbi decoding is still needed

Filler HMM - Speech/Non-speech loop

Keyword HMM - "Keyword" phone state sequence

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 1. Introduction Sunday 18" September, 2022



General Approaches CASPR

Over the years, different techniques have been explored for KWS:

w 3) Deep spoken keyword spotting

[ No complicated sequence search algorithm
E\/_[ Adjustable complexity
[V] Significant improvements over keyword /filler HMM in small-footprint scenarios

Input Hidden Output

(i) Feature Extraction (ii) Deep Neural Network (iii) Posterior Handling

Guoguo Chen, Carolina Parada and Georg Heigold, “Small-footprint keyword spotting using deep neural networks”. In Proc. of
ICASSP 2014
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Motivation and Goal of the Tutori CASPR

w Deep KWS is very appealing to be deployed to a variety of consumer
electronics with limited resources like earphones and headphones,
smartphones, smart speakers and so on

@ Much research on deep KWS has been conducted since 2014 until today

@ We can expect that deep KWS will continue to be a hot topic in the future!

@ Forecasts suggest that, by 2024, the number of voice assistant units will
exceed that of world's population

For today

We will present a review into deep spoken KWS intended for practitioners and
researchers who are interested in this technology
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Organization of the Tutorial CASPR

1. Introduction (/vdn Lépez-Espejo)

2. The Deep Spoken Keyword Spotting Approach (/vin Lépez-Espejo)

3. Robustness in Keyword Spotting (John H. L. Hansen)

4. BREAK (~15 min)

5. Audio-Visual Keyword Spotting (Zheng-Hua Tan)

6. Technology Applications (Zheng-Hua Tan)

7. Experimental Considerations (/vdn Lépez-Espejo)

8. Conclusions and Future Directions (/van Lépez-Espejo)

9. Q&A (Ivin Lépez-Espejo, Zheng-Hua Tan and John H. L. Hansen)
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Overview

@ The General Pipeline
© Speech Feature Extraction
© Acoustic Modeling

@ Posterior Handling

© Recap
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The General Pipeline CASPR o

£(-10)

Deep Learning-based Keyword
Spotting Acoustic Model

Speech signal

“"JJMW\W‘ ——

Speech Feature

. Decision
Extraction

Posterior Handling

Three main blocks:
w Speech feature extractor
@ Deep learning-based acoustic model

w Posterior handler
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The General Pipeline CASPR

£(:10)

Deep Learning-based Keyword
Spotting Acoustic Model

Speech signal

“‘”me““” T

Speech Feature

. Decision
Extraction

Posterior Handling

Speech feature extraction

w x(m) — Speech feature extractor — X = (Xg, ..., X¢, ..., x7_1) € RKXT

) € REX(PHF+1) i — (BL“_’ LMJ

] X{i} = (Xis—P -3 Xisy o, Xist F 5 S

w Typically, F < P
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CASPR

Deep Learning-based Keyword
Spotting Acoustic Model

Speech signal
z(m)

wﬁWﬂw‘-‘—*

Speech Feature

Decision
Extraction

~
[
—

Posterior Handling

Deep learning-based acoustic modeling
f('|6) - REX(P+F+1) [07 l]N

@ The N output nodes represent either words or subword units (e.g.,
context-independent phonemes)

v = P (CalX(iy, 0) = o (X |0), n =1, N
N

e Zy,{,i} =1, Vi (fully-connected layer 4 softmax activation)
n=1
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Speech signal
z(m)

-

Deep Learning-based Keyword
Spotting Acoustic Model

Decision

Posterior Handling

i
y{ }

"Right"  :0.1

"Left" :0.8

Other speech : 0.1

Silence/noise : 0.0
"Left"
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The General Pipeline CASPR oo

Deep Learning-based Keyword

Speech signal
Spotting Acoustic Model

x(m) Xy

4 me Speech Feature
Extraction

Posterior handling

Decision

Posterior Handling

@ Xy ®

X X
s O

X(it1y

w KWS is not a static task but a

dynamic one
"9 é{'} = argmaxcn yil} =
argmaxc, P (Ca|X{jy,6) (not the
D best way)

Y,

"Right"  V:0.9 "Right"

"Left" 0.0 "Left" "Left" :0.0 "Left" :0.0

Other speech :0.1 Other speech :0.1 Other speech :0.5 Other speech :0.1
il ise :0.0 il ise :0.0 il ise :0.05 il ise :0.5
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Speech Feature Extraction

Mel-Scale Related Features

Pre-
W.- -
emphasis

Discrete Mel-
cosine frequency
transform warping

Framing
and
Windowing

Mel-frequency cepstrum

Log-Mel spectrogram

w Log-Mel spectral coefficients and Mel-frequency cepstral coefficients
(MFCCs) based on the perceptually-motivated Mel-scale filterbank

w A solid, competitive and safe choice — Mel-scale-related features are, by
far, the most widely used speech features in deep KWS

@ Deep KWS performance is not significantly sensitive to the number of

filterbank channels as long as the Mel-frequency resolution is not very poor
(<10)
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Speech Feature Extraction

Low-Precision Features

@ A way to diminish the energy consumption and memory footprint of deep

KWS systems consists of quantization of the acoustic model parameters
- ~ performance of full-precision and 4-bit acoustic modelst!)

w The same philosophy can be applied to speech features

@ Same performance by 8-bit (linearly-quantized) log-Mel spectra and
full-precision MFCCs(?)

e Degradation is insignificant when exploiting 2-bit precision speech features(?)

w Much of the spectral information is superfluous when attempting to spot a
set of keywords — Large room for future work on the design of new extremely-light
and compact speech features for small-footprint KWS

(1) Y. Mishchenko et al., “Low-bit quantization and quantization-aware training for small-footprint keyword spotting”. In Proc.
of ICMLA 2019
(2) A. Riviello and J. P. David, “Binary speech features for keyword spotting tasks”. In Proc. of Interspeech 2019
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Learnable Filterbank Features

w The development of E2E deep learning systems in which feature extraction
is optimal in line with the task and training criterion is a recent trend

w Optimal filterbank learning
- SincConv: The acoustic model parameters are optimized jointly with the cut-off
frequencies of a filterbank based on sinc-convolutions(!)
- Filterbank matrix learning in the power spectral domain(
- Parameter learning of a psychoacoustically-motivated gammachirp filterbank®

2)

@ In (2), we found no statistically significant KWS accuracy differences
between employing a learned filterbank and log-Mel features —
Information redundancy?

Handcrafted speech features currently provide state-of-the-art KWS performance at the same
time that optimal feature learning requires further research to become the preferred alternative

(1) M. Ravanelli and Y. Bengio, “Speaker recognition from raw waveform with SincNet”. In Proc. of SLT 2018
(2) 1. Lépez-Espejo et al., “Exploring filterbank learning for keyword spotting”. In Proc. of EUSIPCO 2021
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Speech Feature Extraction

Other Speech Features

Multi-frame shifted time similarity (MFSTS): Time-domain two-dimensional
speech representation comprised of constrained-lag autocorrelation values
- Simple but low performing

w Fusion of dynamic time warping and deep KWS:

R. Shankar et al., “Spoken keyword detection using joint DTW-CNN". In Proc. of Interspeech 2018

[ Open-vocabulary and language-independent scenarios

[X] 1t is prone to overfitting

Sunday 18'™" September, 2022 11 /45
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Acoustic Modeling cAsPR

Speech signal Deep Learning-based Keyword
x(m) X{ 3 Spotting Acoustic Model y{l}
i
WA Speech Feature \\. . . .
""/JWW > . A/ Posterior Handling Decision
Extraction %5.“)'(
por

The natural trend is the design of increasingly accurate models while decreasing
computational complexity

w Fully-connected feedforward neural networks
@ Convolutional neural networks

@ Recurrent and time-delay neural networks
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Fully-Connected Feedforward Neural Networks

Hidden Output

oo il |
; I . O‘p"{)b oy aalllac0cc0a

1 il

Do _Lome | @050 come cacaal 1111

(i) Feature Extraction (i) Deep Neural Network (i) Posterior Handling
G. Chen et al., “"Small-footprint keyword spotting using deep neural networks”. In Proc. of ICASSP 2014
w Three fully-connected layers with 128 neurons each
@ Rectified linear unit (ReLU) activations

w Softmax output layer

[/] It outperforms, with fewer parameters, keyword/filler HMM in both clean
and noisy conditions
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Acoustic Modeling

Fully-Connected Feedforward Neural Networks

Input Hidden Output

(i) Feature Extraction (i) Deep Neural Network (iii) Posterior Handling

G. Chen et al., “Small-footprint keyword spotting using deep neural networks”. In Proc. of ICASSP 2014

w The use of fully-connected feedforward neural networks was quickly
relegated to a secondary level

Nowadays

State-of-the-art acoustic models use convolutional and recurrent neural networks,
since they can provide better performance with fewer parameters
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Fully-Connected Feedforward Neural Networks

There are closely related and computationally cheaper alternatives to
fully-connected feedforward neural networks

1) Single value decomposition filter (SVDF) neural networks
- They approximate fully-connected layers by low-rank approximations
- An SVDF neural network is a special case of a stacked one-dimensional CNN

w SVDF achieved to reduce by 75% the acoustic model size of the first deep
KWS system with no drop in performance(®)

@ The performance of the first deep KWS system was improved by increasing
the number of neurons while keeping the original number of
multiplications(?)

(1) P. Nakkiran et al., “Compressing deep neural networks using a rank-constrained topology”. In Proc. of Interspeech 2015
(2) G. Tucker et al., “Model compression applied to small-footprint keyword spotting”. In Proc. of Interspeech 2016
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Fully-Connected Feedforward Neural Networks

There are closely related and computationally cheaper alternatives to
fully-connected feedforward neural networks
2) Spiking neural networks (SNNs)

- They are human brain-inspired and process the information in an event-driven manner
- The way information is processed alleviates the computational load when information is sparse

Si0) =2 A - Synapse

H KON
é 0] e >( | A A ) 50
g We \\‘;\ J Axon

Axon Wi

(1) E. Yilmaz et al., “Deep convolutional spiking neural networks for keyword spotting”. In Proc. of Interspeech 2020

@ Similar performance, >80% computational cost reduction(®), dozens of times
energy saving()

(2) B. U. Pedroni et al., “Small-footprint spiking neural networks for power-efficient keyword spotting”. In Proc. of BioCAS 2018
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Convolutional Neural Networks

w From fully-connected feedforward to convolutional neural networks — A

natural step taken back in 2015()
- Exploitation of local speech time-frequency correlations, fewer parameters

w
nXxXmxr
—

(-
mxr L pxq
convolutions ling
tx f n feature maps n feature maps
input layer l—mflefr+l rfm—rlxjfr—q—l

s v s-p v-q

(1) T. N. Sainath and C. Parada, “Convolutional neural networks for small-footprint keyword spotting”. In Proc. of Interspeech
2015

@ The number of multiplications of the model can be easily limited to meet

the computational constraints:
- Filter striding, kernel size, pooling size...
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Convolutional Neural Networks

@ Residual learning is widely considered to implement state-of-the-art
acoustic models for deep KWS

MFCCs

¢

3x3 conv, 45

R

3x3 Convolution
3x3 conv, 45

RelU

Batch Normalization

3x3 conv, 45

3x3 conv, 45

R

3x3 Convolution

[ convolution iter

[ Receptvefeld

RelU Layer 1 Layer 1 +k Layer 1 + 2k

3x3 conv, 45

Batch Normalization | I I

3x3 conv, 45

Avg pool

softmax I I

(1) R. Tang and J. Lin, “Deep residual learning for small-footprint keyword spotting”. In Proc. of ICASSP 2018

w Tang and Lin established a new state-of-the-art back in 2018(")
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Convolutional Neural Networks

@ TC-ResNetV): One-dimensional convolutions along the time axis
(temporal convolutions) while treating the (MFCC) features as input
channels — Simultaneously capturing both high and low quefrency features

RSN RSN
s=Le=16k s=Le=16k
Block, s = 2,c = 24k Block,s = 2,c = 24k
Block,5 = 1,c = 24K

Block,s =2,c = 32k Block, s =2,c = 32k

Blodk s =2,c = 48k

Average pooling

Average pooling

-

S
(a) Block (s=1)  (b) Block (s = 2) (c)TC-ResNet8  (d) TC-ResNet14

(1) S. Choi et al., “Temporal convolution for real-time keyword spotting on mobile devices”. In Proc. of Interspeech 2019

@ TC-ResNet matches Tang and Lin's KWS performance while dramatically
decreasing both latency and the amount of FLOPs on a mobile device
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Convolutional Neural Networks

@ Depthwise separable (DS) convolutions
to reduce the computation and size of
standard CNNs

@ Reproducing the performance of TC-ResNet
using less parameters()

@ Depthwise separable convolutions +
residual learning: It generally outperforms
all standard residual networks, plain
DS-CNNs and TC-ResNet with less
computational complexity

(1) S. Mittermaier et al., “Small-footprint keyword spotting on raw audio
data with sinc-convolutions”. In Proc. of ICASSP 2020
E. Bendersky, “Depthwise separable convolutions

for machine learning”. 2018
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Acoustic Modeling

Convolutional Neural Networks

@ We believe that a modern CNN-based acoustic model should ideally
encompass the following three aspects:

[ A mechanism to exploit long time-frequency dependencies like, e.g., dilated
convolutions

[/ Depthwise separable convolutions to substantially reduce both the memory
footprint and computation of the model without sacrificing performance

[/] Residual connections to fast and effectively train deeper models providing
enhanced KWS performance
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Recurrent and Time-Delay Neural Networks

@ Speech is a temporal sequence with strong time dependencies —

Recurrent neural networks (RNNs) and time-delay neural networks
(TDNNs)

@ Long short-term memory (LSTM) networks clearly outperform feedforward
fully-connected neural networks for KWS acoustic modeling()

Y1 3 Y41

Er @ e

A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural networks”. In Proc. of ICML 2014

(1) M. Sun et al., “Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting”. In
Proc. of SLT 2016
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Recurrent and Time-Delay Neural Networks

@ When latency is not a strong constraint — Bidirectional RNNSs to capture
causal and anticausal dependencies for improved KWS performance

@ Bidirectional LSTMs vs. bidirectional gated recurrent units (GRUs)
- In KWS, there is no need to model very long time dependencies

- GRUs demand less memory and are faster to train than LSTMs
- GRUs perform similarly to or even better than LSTMs(1)

Outputs Ce e Yt Yesr -

Backward Layer 4— e @
Forward Layer 0 e @

Inputs. Cee Xy &y Lpgr
A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural networks”. In Proc. of ICML 2014

(1) S. O. Arik et al., “CRNNSs for small-footprint keyword spotting”. In Proc. of Interspeech 2017
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Recurrent and Time-Delay Neural Networks

@ CNNs might have difficulties to model long time dependencies

@ Convolutional recurrent neural networks (CRNNSs) bring the best of two

worlds:
- 1) Convolutional layers model local spectro-temporal correlations of speech
- 2) Recurrent layers follow suit by modeling long-term time dependencies of speech
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[/ CRNNs generally outperform standalone CNNs and RNNs in KWS(1)

(1) M. Zeng and N. Xiao, “Effective combination of DenseNet and BiLSTM for keyword spotting”. IEEE Access, 2019
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Recurrent and Time-Delay Neural Networks

w At training time, frame-level annotated data are typically required by, e.g.,
cross-entropy loss

@ Frame-level annotated data may be cumbersome to get

For RNN acoustic modeling

Connectionist temporal classification (CTC) is an attractive alternative
letting the model unsupervisedly locate and align the phonetic unit labels at
training time!®)

(1) In other words, frame-level alignments of the target label sequences are not required for
training
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Recurrent and Time-Delay Neural Networks

l ‘ ‘ H L ‘ @ Let C=(c,...,cm—1) be the sequence of, e.g.,
characters corresponding to X = (xg, ..., X7_1)

w We ignore an accurate alignment between C and X,

FITTTTTTT
hhhhhhhhhh andm< T
e e e e e e e e e e
VAT . w CTC introduces the so-called blank token (¢)
0O 0O 0O 0O OO OO 0O o0
€ € € € € € € € € € . . . . ..
w CTC is an alignment-free algorithm maximizing
hleelll eilioo
T-1
hell celeco P(CIX) = ZAEAX,C [I.—o P (clxq,....x¢)
€ e € | | € € | oo
eg.,c={hel o0,¢}
il 18 BIN BN g2
e | | o i
15110 @ The acoustic model outputs can be understood as
A. Hannun, the probability distribution over all the possible
https://distill.pub/2017/ctc/ label sequences given X
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Recurrent and Time-Delay Neural Networks

J ‘ ‘ ‘ ‘ l ‘ w 2007: The very first attempt to apply CTC to
S KWS using a bidirectional LSTM(®)
- At training time, this system just needs the list of training

words in order of occurrence in the speech signals

FrrrrrTrTd
h h h h h h h h hh
bt T e w Different RNN architectures and phonetic units
0000000000 like phonemes and Mandarin syllables
€| € la € |6 Ialal € (€ €

@ CTC KWS systems are superior to LVCSR and

0 I O I A R keyword /filler HMM with less or no additional
A 00 A R S computational cost
€ e € | | € € | oo
AEBEE [ CTC requires searching for the keyword phonetic
el 1 o unit sequence on a lattice — Suitable for
helo open-vocabulary KWS
A. Hannun,
https://distill.pub/2017/ctc/ (1) S. Fernandez et al., “An application of recurrent neural networks to discriminative

keyword spotting”. In Proc of ICANN 2007
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Acoustic Modeling

Recurrent and Time-Delay Neural Networks

w CTC assumes conditional label independence, i.e., past model outputs do
not influence current predictions:

'D(C|X) = ZAGAX,C HZ_:BI P: (C|X0, ...,Xt)

w CTC may need an external language model to perform well

@ Seq2Seq: A more convenient approach for KWS acoustic modeling

y{O}— y{l}— y{T-l}
Softmax Softmax Softmax
A A A
[+
->| RNN |— ->| RNN (8
X e
[ | L
y{O} y{T2}

Encoder

L2z

IS
(=1
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Acoustic Modeling

Recurrent and Time-Delay Neural Networks

@ RNN-Transducer, integrating both acoustic and language models (and
predicting phonemes), is able to outperform a CTC KWS system even when

the latter exploits an external phoneme N-gram language model()

1 7-1
il — YT
Softmax Softmax
A 4 O
(a3
RNN [ --- = RNN ||S
) y
) T
0 T-2
3 y{0} v
O" RNN
S -
=1 A
X0 X1 X7.1
(1) Y. He et al., “Streaming small-footprint keyword spotting using sequence-to-sequence models”. In Proc. of ASRU 2017
20 / 45
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Acoustic Modeling

Recurrent and Time-Delay Neural Networks

@ [ he encoder has to condense all the needed information into a
fixed-dimensional vector regardless the (variable) length of the input
sequence

w The attention mechanism might assist by focusing on the speech sections
that are more likely to comprise a keyword

y{O}— yil}— y{gl}
Softmax Softmax Softmax
A A A

BETREL |

[

Encoder

IS
(=}

Sunday 18" September, 2022
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Acoustic Modeling

Recurrent and Time-Delay Neural Networks

@ h; = Encoder (x;,h;_1)
@ To assist the decoder, a context-relevant subset of {hg,...,h7r_1} can be
attended to yield A (to be used instead of ht_1):

T-1
A = Z Oztht
t=0
ap = Attend (ht) Ztat =1
y{O}_ yil}— y{T-l}
Softmax Softmax Softmax
A A A =
[
RNN RNN (— -+ = RNN ||S
[=%
hr 4 A A e
T <505> | =
-
2 yi0 yi7-2
8" RNN [ _"| RNN _ | RNN
= A A
m T

>
(=]
>
s
-
o
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Acoustic Modeling

Recurrent and Time-Delay Neural Networks

w Different works find that incorporating attention provides KWS performance
gains with respect to counterpart Seq2Seq models without attention(1—3)

(1) D. C. de Andrade et al., “A neural attention model for speech command recognition”. arXiv:1808.08929v1, 2018

(2) Z. Zhao and W.-Q. Zhang, “End-to-end keyword search based on attention and energy scorer for low resource languages”.
In Proc. of Interspeech 2020
(3) Z. Liu et al., “RNN-T based open-vocabulary keyword spotting in Mandarin with multi-level detection”. In Proc. of ICASSP

2021
y{O‘— y{l}— y(T-l}
Softmax Softmax Softmax
A A A
2
RNN |8
g
| =
.
) {7-2}
y
Haw
S -
sS4
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Acoustic Modeling

Acoustic Model Training

w Apart from CTC, cross-entropy loss is, by far, the most popular loss
function for training deep spoken KWS acoustic models:

- I,gi}: Binary true (training) label corresponding to the input feature segment X¢iy

N

Lee=—)_Y Iiilog (y,{/})

i n=1

@ Subword-level posteriors: Training labels are generated by force alignment
using an LVCSR system (which will condition the subsequent KWS system
performance)

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 2. Approach Sunday 18" September, 2022 33 /45
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Acoustic Modeling

Acoustic Model Training

w Max-pooling loss: Teaching the acoustic model to only trigger at the
highest confidence time near the end of the keyword:
- L: Set of all indices of the input feature segments in a minibatch belonging to any
non-keyword class

- yp: Largest target posterior corresponding to the p-th keyword sample in the minibatch
(p=1,...,P, and P is the total number of keyword samples in the minibatch)

N P
Lyp = — ZZ /,?} log (Yr{yi}) - ZIOg (y;)
p=1

iel n=1

@ Max-pooling is superior to cross-entropy loss (especially when the acoustic
model is initialized by cross-entropy loss training)(l)

(1) M. Sun et al., “Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting”. In
Proc. of SLT 2016
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Acoustic Modeling O e

Acoustic Model Training

frames

LA

keyword posteriors

Keyword segment Keyword segment

M. Sun et al., “Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting”. In Proc. of
SLT 2016

w Variants: Weakly-constrained max-pooling, smoothed max-pooling...

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 2. Approach Sunday 18'™" September, 2022 35/ 45
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Acoustic Modeling CASPR .

Acoustic Model Training

@ Stochastic gradient descent (normally with momentum) and Adam
@ Learning rate decay
@ Parameter regularization: Weight decay, dropout...

@ Initialization based on transfer learning from LVCSR acoustic models leads
to better KWS models by, e.g., alleviating overfitting(!)

(1) Y. Tian et al., “Improving RNN transducer modeling for small-footprint keyword spotting”. In Proc. of ICASSP 2021
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Posterior Handling SEFE e

£(:10)

Deep Learning-based Keyword
Spotting Acoustic Model

Speech signal
z(m)

Decision

Non-
streaming/static Streaming/dynamic

=
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Posterior Handling
Non-Streaming Mode

w Non-streaming mode: Isolated word classification

w Since non-streaming deep KWS systems tend to produce very peaked
posterior distributions (no inter-class transition data),

i = argmaxc, yit = argmaxc, P (Ca|X{3y,0)

w Lack of realism from a practical point of view

@ Non-streaming performance and streaming performance seem to be highly
correlated, which makes non-streaming KWS research more relevant than it
might look at first sight

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 2. Approach Sunday 18" September, 2022 38 / 45
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Posterior Handling
Streaming Mode

@ Streaming mode: Continuous processing (normally in real-time) of an
input audio stream in which keywords are not isolated /segmented

Y= { L,y yli ylith

w ) has strong local correlations

w YV, which is inherently noisy, is typically smoothed over time on a class basis
before further processing:

Y — Smoothing — Y = {...,yli=1 §ii} gttt 1
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Posterior Handling
Streaming Mode

Case 1: Each of the N classes of a deep KWS system represents a whole word
e 1) yi} can be compared with a sensitivity threshold
OR

@ 2) The class with the highest posterior within a time sliding window can be
picked from y{7}

w Consecutive input segments {...7X{,-_1},X{,-},X{,-+1}, } may cover
fragments of the same keyword realization — False alarms!

@ To prevent false alarms, a simple, yet effective mechanism consists of forcing
the KWS system not to trigger for a short period of time right after a
keyword has been spotted

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 2. Approach Sunday 18" September, 2022 40 / 45
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Posterior Handling
Streaming Mode

Case 2: Each of the N classes still represents a whole word but keywords are
composed of multiple words (e.g., “OK Google”) OR each of the N classes
represents a subword unit (e.g., a syllable) instead of a whole word

w Let us assume that the first class C; corresponds to the non-keyword class
and that the remaining N — 1 classes represent subunits of a single
keyword():

N

sl = w max  yik
L% hmax(i) k<

w A keyword is detected every time Sii} exceeds a sensitivity threshold to be
tuned

(1) G. Chen et al., “Small-footprint keyword spotting using deep neural networks”. In Proc. of ICASSP 2014
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Streaming Mode

Case 2: Each of the N classes still represents a whole word but keywords are
composed of multiple words (e.g., “OK Google”) OR each of the N classes
represents a subword unit (e.g., a syllable) instead of a whole word

w Let us assume that the first class C; corresponds to the non-keyword class
and that the remaining N — 1 classes represent subunits of a single keyword:

_ N
Sit = w max  yikt

% (i) Sk<i

Decreasing false alarms

The above equation can be subject to the constraint that the keyword subunits
trigger in the correct order of occurrence within the keyword(®)

(1) R. Prabhavalkar et al., “Automatic gain control and multi-style training for robust small-footprint keyword spotting with
deep neural networks”. In Proc. of ICASSP 2015
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Streaming Mode

Typically done in the context of CTC:

@ From a posterior lattice, the goal is to find the most similar subword unit sequence to that
of the target keyword

@ A keyword is spotted if the score upon the search on the lattice is greater than a threshold

B AHO N AE1 N AHO
lr==~=ra=="" ==~~~ ITTTTo - (alialilt Sl
0 .
time
(o ¥le) o --0 o
o o \ O O 0 /0
(o] o o -0
o -0 o

Y. Zhuang et al., “Unrestricted vocabulary keyword spotting using LSTM-CTC". In Proc. of Interspeech 2016

[/] Keyword personalization
E{' Higher computational complexity
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RS —

Deep Learning-based Keyword
Spotting Acoustic Model

Speech signal

z(m) Xy

A

{i}

Posterior Handling

Speech Feature

. Decision
Extraction
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1. Outline
@ Introduction: Robustness, Machine Learning & Data — Challenges
@ Speech Data: Mismatch (Intrinsic, Extrinsic, and Context based issues)
® Speech Task ML Challenges: (know your problem, know your data)
©® KWS — Naturalistic Spaces; Spontaneous Speech, Distance Capture
©® Example Studies
@ Building ML Models: Dialect ID “Is the secret in the silence?”
@ Conversational Analysis: Prof-Life-Log: Word Count Estimation, KWS
@® KWS: Various Speech Corpora (Clean — Noisy — Naturalistic)
® KWS: DARPA RATS example
@® KWS: Naturalistic Learning Spaces
® Summary

[1] J.H.L. Hansen, H. Boril, "On the issues of intra-speaker variability and realism in speech, speaker, and language
recognition tasks," Speech Communication, vol. 101, pp. 94-108, July 2018.

[2] M. Mirsamadi, J.H.L. Hansen, "Multi-domain adversarial training of neural network acoustic models for distant speech
recognition," Speech Communication, vol. 106, pp. 21-30, Jan. 2020

[3] I. Lépez-Espejo, Z.-H. Tan, J.H.L. Hansen, J. Jensen, "Deep Spoken Keyword Spotting: An Overview," IEEE Access, vol,
10, pp.4169 - 4199, 2022.

[4] J.H.L. Hansen, T. Hasan, "Speaker Recognition by Machines and Humans: A Tutorial Review," IEEE Signal Processing
Magazine, pp. 74-99, Nov. 2015.
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DIGRISIS

1. Machine Learning & Data

® Machine Learning vs. Deep Learning
® Data drives models and solutions for

ML/Deep Learning
@ Architectures include:

® CNN: convolutional neural network v OO0 ’

©® DNN: deep neural network
© RNN: recurrent neural netwg
® AE : auto-encoder

® LSTM: long-short term mem
® GANSs: generative adversari:

@ Speech Technology & ML/Deep Learnin
® ASR/KWS, SID, Diarization, LID/DID/, ©—

(Language, dialect, accent),

Emotion / Stress Recognition,

Conversational Analysis, etc.

- Recurrent Neural Network (RNN

Machine Learning
B o 0 0

G &y -l
gt Fealur H'.tm ., ...‘.l.:tl .

Deep Learning
O—"0—0

o —@ @

Inget Foalume antraction + Classifcation Cutput

) Long / Short Term Memory (LSTM)
A O

WA

XX

N

WYX

»
LA
\n".\al"

Q

Generative Adversarial Network (GAN)

i

Input Cell

/N Noisy Input Cell

Hidden Cell
O Probablistic Hidden Cell
£\ Spiking Hidden Cell

. Output Cell

. Match Input Output Cell

cjul

5

| Speech Data NEEDED for effective Network Training L‘I

@ Recurren t Cell

Memory Cell
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21 1. Speech Communications

@ Historically, speech communication and engineering design for

._"'t"
J

’ ﬁt\‘ Communication l
1

@ Most human-to-human speech studies, have also focused on
1-on-1 context.

P
b e
% I

Future Speech Communication Research Directions:
(1) Naturalistic Data; (2) Multi-Speaker Context; (3) Massive “Big” Data;
(4) STEM / Team-Based communications; (5) Voice Enabled & Distant

o =—————,,...
September 18 - 22 * Incheon Korea
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Mlsmatch is Everywhere, and Growmg

1. Speech Data: 5*5:5

INTRINSIC
Speaker Based

EXTRINSIC CONTEXT

Technology Based Conversation Based

Human-to-Human
Human-to-Machine

e /
y a
Prompted/Read Speech
Spontaneous Speech
e J
4 N\
Monologue

Two-Way Conversation
Group Discussion

\. /

\ Lombard Effect

f Microphone/  Noise, Signal-to-Noise R a@ / Speech Utterance Space (Two Dimensional}\

Sensors
Vocabulary, Language/ soy $——— Variability
- Culture
Turn Taking Across Speakers
-
et £
Task Stress Emotion Variability
Within Speaker

Vocal Effort / L\ - /

- -— STPLEHIUEL 1U - 224 © HILHSUI Ul ca

Email: John.Hansen@utdallas.edu
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DIGRISIS

1) 1. Audio Dirization: Naturalitic Data

® Diarization can be MUCH Richer for Knowledge Extraction

Audio Stream [#/ & speech (1ormore speakers)
B N 0 HT NN N B Il BN
(a) Text . ) | ) I — L 1 -
Sequence: joe ate hissoup. Thisfield of beets is ripe andready. orangejuicetastes funny
(b) Keyword
locations: soup beets orange juice
(c) Speaker ID
& Tracking: S1 S22 o1 S1  S2 S3 1 S3 S2
(d) Topic Jie gl | BT R
locations: sports politics sports  politics sports  news health
(e) Environment gr===~ T [T T7 T
Identity: —
Env1 Env2 Envd Env1 Env3 Env8 Env2

@ Speech Recognition — challenges in spontaneous conversational speech
(not “prompted” like Apple SIRI,etc), coarticulation issues, group/overlap, etq
@ ML/Deep Learning Models: SAD, ASR, KWS, SID, LID/DID/AID,
Emotion/Stress/Sentiment recognition, Conversational Analysis, etc.

Y LRNJIIN LWl VLo s m - -
NG oo 522 mcneon rores —
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121)| 2. Naturalistic Data Streams

DIGRISIS

® Challenges in ML Speech Tasks (know your problem, know your data)

@ Speech Data — know context, speakers, scenarios for data collection

® Obtain as much “Meta-Data” as possible for corresponding audio

® ML training methods explore: (a) Data Augmentation (e.g., expanding data by

adding noise/reverb/distortion to “clean” data); (b) use Meta-Data for tiered
training (e.g., curriculum training, “Student-Teacher” modeling, etc.)

@ RISKY to use “found data” in a blind manner!!!

® Building ML Models on Found Data:
Dialect ID “Is the secret in the silence?”

Speec!

h Communication

On the issues of intra-speaker variability and realism in speech, speaker, and
%

d m

July 2018.

il John.Hansen@utdallas.edu A'TN - H-20 utorial, Incheon, Korea ept.

Ide D)

@ J.H.L. Hansen, H. Boril, "On the issues of intra-speaker variability and realism in speech,
speaker, and language recognition tasks," Speech Communication, vol. 101, pp. 94-108,

@®H. Boril, A. Sangwan, J.H.L. Hansen, "Arabic Dialect Identification - 'Is the Secret in the
Silence?' and Other Observatlons " ISCA Interspeech- 2012 Portland, OR, Sept. 9-13, 2012

© by John H

Hansen, 2022




2 1 Data Examp e . lalect D . - TL:I

Building ML Models: Dialect ID “Is the secret in the silence?”

Linguistic Data Consortium (LDC) Corpora
@ Conversational telephone speech (CTS)
@ 4 dialects — Gulf, Iraqi, Egyptian, Levantine

@ LDC sets: (1) Gulf Arabic CTS; (2) Iraqi Arabic CTS;
(3) CALLHOME & CALLFRIEND Egyptian Arabic Speech
(4) Arabic CTS Levantine Fisher Training Data Set 3

@ Past studies [1-3] used Levantine Arabic CTS instead of Fisher corpus

[1] F. Biadsy, J. Hirschberg, and N. Habash, “Spoken Arabic dialect identification using phonotactic modeling,” in Proceedings
of the EACL 2009 Workshop on Computational Approaches to Semitic Languages, Athens, Greece, 2009.

[2] F. Biadsy, J. Hirschberg, and D. P. W. Ellis, “Dialect and accent recognition using phonetic-segmentation supervectors,” in
INTERSPEECH’11, Florence, ltaly, 2011.

[3] M. Akbacak, D. Vergyri, A. Stolcke, N. Scheffer, and A. Mandal, “Effective Arabic dialect classification using diverse
phonotactic models,” INTERSPEECH’11, Florence, ltaly, 2011.

\ (" "NTERSPEECH 2022 ﬁ @DALLAS
September 18 - 22 * Incheon Korea
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=) 2.2 Arablc Corpora for DID

DIGRISIS

In- House Pan-Arablc Corpus [4] (UTD CRSS)

® Conversational speech; lapel microphone (hands-free)
@ 5 dialects — United Arab Emirates, Egyptian, Iraqi, Palestinian, Syrian
@ 100 speakers per dialect (gender balanced)

® Each session — 2 speakers, 4 combined conversational recordings
@ 4 dialects (blue) used in current experiments

LDC Corpora In-House Pan-Arabic
GLF | IRQ | LEV |[EGY | PS | IRQ | SY |EGY
Train Set (Hrs) 32.7 {16.1 [ 119 339|106 | 9.3 | 10.8 | 9.9
Test Set (Hrs) 20 | 23 |16 |101]| 28 | 27 | 25 | 2.6
Avg. Chunk Length 11.3 sec 11.9 sec

[4] Y. Lei and J. H. L. Hansen, “Dialect classification via text-independent training and testing for Arabic,
Spanish, and Chinese,” IEEE Trans. on Audio, Speech, Lang. Proc. 19:1, pp. 85 -96, Jan. 2011. S

| I —
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22 Sgeech Based DID
DID on LDC Corpora Speech Chunks

@ Initial ‘Toy’ Experiment

® Naive GMM ML classifier; 32 mixtures, modified MFCC front-end (20

rectangular non-overlapping filters), 25/10 ms windowing, statictA+AA
® Closed in-set DID task (pick 1-of-4 dialects)

Assigned Dialect (Speech Chunks) Acc (%)

Ground Truth Gulf Iraqi |Levantine| Egyptian Lt 20
Gulf 510 120 4 1 80.3
Iraqi 184 527 1 2 73.8
Levantine 120 10 370 0 74.0
Egyptian 8 0 0 3174 99.7

® Suspiciously high accuracy

— do we detect dialects or something else...

@ H. Boril, A. Sangwan, J.H.L. Hansen, "Arabic Dialect Identification - 'ls the Secret in the
Silence?' and Other Observations," ISCA Interspeech-2012, Portland, OR, Sept. 9-13, 2012
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2 2 Sllence - Based DID

DID on Pan-Arablc Corpus Sllence Chunks

® Repeated GMM-based DID experiment on silence chunks as in LDC
case > Acc = 24.7% (chance) — speech needed for DID here!

@ Long-term channel characteristics — similar trend across dialects
— meaningful corpus for Arabic DID

Dialect-Specific Transfer Functions in In-House Corpus
Silence Segments

Log Amplitude (dB)

-10

0 1000 2000 3000 4000

Frequency (Hz)
NnC INTERSPEECH 2022 @DALLAS
September 18 - 22 * Incheon Korea
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DID on LDC Corpora — Silence Chunks

® Suspiciously high accuracy in previous case — do we detect dialects or

DIGRISIS

5| 2.2

|Ience = Based DID

something else... &£~ ...7

@ Task 2 — similar to bfevious task, but now on silence chunks
@ The overall DID accuracy is higher on silence segments (82.0—83.3%)
@ For our naive classifier, the presence of speech actually hurts DID

DID on “Silence” segments “SD‘I)Be%%»
Assigned Dialect (Silence Chunks) Acc (%) Acc (%)
Ground Truth Gulf Iraqi |Levantine| Egyptian P ] | Avg82.0]
Gulf 260 78 0 0 76.9 80.3
Iraqi 96 228 0 0 70.4 73.8
Levantine 24 1 158 1 85.9 74.0
Egyptian 0 0 0 1973 100 99.7

\ (" "NTERSPEECH 2022 ﬁ @DALLAS
September 18 - 22 * Incheon Korea
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Search for Non-Linguistic Cues

@ Analysis of long-term channel characteristics in silence segments
Hamming

Datab Speechx
atabase >
Recordings VAD | Silence )[ /\ H |FFT|HLog(.)l—)longBase_q,m

Dialect-Specific Transfer Functions in LDC Corpora
///// . Silence Segments

Log Amplitude (dB)

For KWS network model training,
O Know your problem, Know your data
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PL Corpus

Time (Hour)=0

|Office | Walking|

Walking| Outdoors|  [Phone|

Walking

Conference
Call

% Unscripted speech collection in natural environments 2010-2019

% Excellent Naturalistic Audio for DIARIZATION advancements
% Unrestricted topics, vocabulary, language; 8-16hrs/day; +100days

@ Good for: Diarization; SID; KWS; Co-Speaker research
Q@ 'NTERSPEECH 2022 ﬁ
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Daily
Cumulative

Senior Design ~ -

Alone Time i - | | { |

Lab Meeting .
Research

- | | |
Meeting ' . 1 — - . -
Teaching f | -

Staff Meeting
Student Meeting -
Thesis Defense
Faculty Meeting - -

Conference Call -

-
s | @

Days A B C D E F G H

@ Similarity measurements between days.... Cumulative
® Most similar: A& | (p=0.87); Most diverse : B & F (p=0.27)

O INTERSPEECH 2022 @DALLAS
September 18 - 22 + Incheon Korea
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U<i]}| 2.3 Prof-Life-Log: Keyword Recognition

RS | Phone Confusion Network (PCN) based Search Strategy

Abhijeet Sangwan and John H.L. Hansen

% Phone Confusion Network (PCN) based Keyword Recognition
® Advantages of phone based approach
@ Faster than LVCSR (large vocab. continuous speech recognition)
@ No issues with OOV (out of vocabulary) queries (unlike LVCSR)
@ Flexibility in dealing with pronunciation variations (unlike LVCSR)
@ Useful where LMs (language models) are hard to build
(LM required in LVCSR)

® Disadvantages
% High false-alarm rates
% Cannot take advantage of higher level lexical knowledge

(due to lack of both pronunciation & language models)
% Phone Confusion Network based Keyword Recognition

% Search for keywords inside PCNs using maximum likelihood criterion

% Keyword represented as a phone graph; Algorithm framework capable
of incorporating pronunciation variations

N !\IERSPEECH 2022 ﬁ @DALLAS
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L Keyword Recognltlon (KWS):

KWS System Descrlptlon PCN- KWS vs. DM PLS

Abhijeet Sangwan and John H.L. Hansen

-

"PCN-KWS

-

o

PCN = Phone Confusion Network

N

-

e

DM-PLS

o

4 h " " D
Speech Confusion Network
S ! g na I <I XHM’E X[T X‘v’EAL FINE
% : MOVE : vam%mw}
FAST
N / L
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2 3 Keyword SpottlnglRecogmtlon. :""RSTL"'
~ High Level View (PCN-KWS)

Keyword Spotting (KWS) System Performance

High-Level Picture of Yearly Progress
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Ts)h| 2.4 KWS/IASR: DARPA RATS Task ";;"igT""L‘
g Communlcatmns Noise Field
(FarS| Arablc Darl Urdu Pashtu)

DIfRPA John H.L. Hansen, Abhijeet Sangwan, Wooil Kim, (2012)
Omid Sadjadi, Keith Godin
DARPA RATS U Cepter for Robust Speech Systems
SCENIC TEAM T University of Texas at Dallas
YUeRSS/ http://crss.utdallas.edu/

® KWS

@®1. PCN: Phone Confusion Networks — explore Query Expansion

@ 2. Things that work: Cepstral Based Normalization methods,
Query Length, SNR based KW rejection

@ 3. Ideas: Hybrid Sub-Word solution: between “word” and “phone”
level sub-word system; On Demand Discriminative Keyword
Modeling; Front-End Processing

N !\IERSPEECH 2022 ﬁ @DALLAS
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- 2.4 Keyword Spotting: DARPA RATS Y.
Basellne Performance (PCN KWS) on RATS FarS|

ﬂh 10 1 I I I I (201 2)
DRHRPA 90 . —Clean ]
.‘qﬁ N “— Average Noisy
80 - \‘\i\ —=—Channel A .
e —o—Channel B
. —A—Channel C
70 \&\ -®-Channel D T
‘e -®-Channel E
60} N -4 -Channel G -
-* Channel H

Miss—Rate (%age)
&
o

30

20

10

%

8
nC~ INTERSPEECH 2022 @DALLAS
September 18 - 22 * Incheon Korea

Email: John.Hansen@utdallas.edu ISCA INTERSPEECH-2022 Tutorial, Incheon, Korea [Sept. 18, 2022] Slide 21  SLIDES © by John H.L. Hansen, 2022

False-Alarm—Rate (%age)




2.4 Keyword Spotting: DARPA RATS RSTL

Impact of Query Length (PCN KWS) on RATS FarS|

(2012)

{a) Glean Data Performance (=} Average Moisy Data Performance
Oy
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@ As expected, better KWS results with longer queries
% Automatic Query Expansion also considered to reduce False-Alarms
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2 5 Chlld Speech Dlarlzatlon Technology
Motlvatlon System & Results WH-words

Child — Adult Vocal Engagement: “Hot Spot” Detection

® Engagement: Quality interactions of children
during formative years crucial for development

Entryway

® Corpus: day-long speech recordings of 33
children (2.5-5 yrs) using LENA devices

® Tagging: communication metric calculation
(word count, talk time for child w/ adult, etc.)

® RESULTS: Diarization w/ CRSS-diar v1 toolkit
provides diarization error rate of 40.44% in
tagging adult vs. children’s speech

) Table work

Ubisense device
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Sle) 2 5 Child Learning Spaces: WH-words & Verbs RSTL}
DcRiS'S Al WH-words (who, what, when, where, why, how)

® WH-WORDS & VERBS: language learning milestones established by ASLHA,
adopted by CDC'’s; (WH = child curiosity; Verbs = Grammar knowledge)

@® GOAL: capture young children’s interactions with teachers in
naturalistic preschool classroom environments
® ASR/KWS in preschool child classrooms -> Challenging task

==0 Cubbies ‘I‘
@ — O Playground
Child
O ' Dramatic- o
S Play L=y
Connection b/w & =
—
Sensor & Tag e o = Jil.
e ! =]
, Book 8 —
(a) Custom made sample t-shirt and 2
location of LENA device and e
Ubisense transponder tag ':i ‘Il
_ Block Art :, Bathroom
-0 [A-e||e 0
S NAG Do Ubiserse Ubicence (_b_) A sample cthc_:are center map W|th
Tag Sensor activity areas and Ubisense sensor location. S
dl, I1Ivlievull, Nuied |OCpL. 10, £ULL] olue £« OLIVLEO Y VY JULIT T.L. T1dlISCell, £

Enldll. JullL.rdriseriiwuiudiias.cuu IODUA INITCNOFCCUINI=£ZUZZ 1 ULlVI



2. 5 KWS Chlld Learnlng Spaces. WH-words Verbs
lmpact of Chlld ASR on Language Learnlng Mllestones

©® ASR Acoustic Model: TDNN-F + CNN + Attention
® ASR Language Model: RNN

Child ID % correctly identified by ASR
and type Verbs | WH-words | Sentences*
#1 +P 75 95 52 .
4 4 p 77 3] 35 @ Test Split: 14 preschool
#3+P 69 82 45 children (3-5 yrs) with & w/o
#4 + P 66 41 33 speech/language delays
#5+ P 58 54 27
#6 + P (delayed) 51 37 28 i i
47 4 S 64 77 38 ® Primary child wears LENA,
#3+ S 69 80 49 Secondary children are
#9 + 8 69 66 40 background speakers
#10+ S 69 82 43
#11+ S 61 86 36
#12+ S 61 50 39
#13+ S 66 100 41
#14 + S (delayed) 50 50 26
P = Primary, S = Secondary ”
*Recognized without any insertion/deletion/substition o ’

[1] S. Dutta, S.A. Tao, J.C. Reyna, R.E. Hacker, D.W. Irvin, J.F. Buzhardt, J.H.L. Hansen. “Challenges remain in Building ASR for
' l' I Spontaneous Preschool Children Speech in Naturalistic Educational Environments.” ISCA Interspeech-2022, Sept. 2022.
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&) 2.6 Child Speech Recognition: WH-words
CRSS KWS Recognition Results (Child vs Adult
€]

Adult WH-word metrics
WH- WHAT | WHEN | WHERE | HOW | WHY WHO
Word
/Location
Science | 65.2% | 100.0% | 50.0% 83.3% | 100.0% | 66.7%
Reading | 85.3% | 92.3% | 81.8% 94.1% | 92.3% | 75.0%
All 72.2% 69.0% 71.0% 72.8% 52.4% 73.2%

Child WH-word metrics
WH- WHAT | WHEN | WHERE | HOW WHY WHO
Word
/Location
Science | 41.5% | 0% 53.3% 28.6% | 50.0% | 0%
Reading | 56.0% | 60% 40.0% 58.9% | 66.6% | 0%
All 473% | 39.1% | 30.2% 445% | 56.0% | 39.8%

"N

Most F1-scores better in reading vs. science; suggested

due to better audio environmental conditions

22




El

KWS Recognition Results (Child vs Adult)

i 26 Child -Speech-_ReCOQniti_o_n-: -WH'WOFQS' L

Word Occurrence Frequency based on Learning Location
All zones — 755 163 152 173 97 141 Total=1481

Science zone  Reading zone

INCAUITTyY UV /70 VUV 70 =5U.U /70 U J /0 VUV 70 U /70

All 47.3% | 39.1% | 30.2% 44.5% | 56.0% | 39.8%

Most F1-scores better in reading vs. science; suggested
due to better audio environmental conditions

22
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Annotated (speaker label) 100-hours of audio
from 5 critical loops

©® 3 Apollo-11 Mission Events:
@ Lift-off: 25 hours
@ Lunar Landing: 50 hours
@ Lunar Walking: 25 hours

® Dataset used for various tasks including Nty dpostheComus:
speech activity detection, speaker ;%Zﬁ%é%%ﬁ%
el . H H . k€ AL WILLGY (1) ollo _
recognition, a’[\d diarization; “human team [ CODUS | covececomns: ss0ns
assessment nt nn““n-“‘l anll Challenge Tasks: 5 (6 sub-tasks)
c Anollo-13 Mission g A R et
hal Ie nqe To BE HH.EASEH Fon % ."." Open Source, Freely Distributed
. . . I "TEBSPEEGH 20 21 . N The Challenge Tasks :
@ +160 Academic & Industry Organizations  FERLTETILEETTE TR N iy
] e MULTI-CHANNEL CORPUS - - " RN - Detection (SAD)
from 35 Countrles have parthIpated!! NASAisAEoI\Oprogr_am_stanclsas_c_meof“_ v . . ‘_SPeakeDian'zatit?n

ot e e GRS S Sl T
@ 110 System Submissions from 15 teams di;'ifr"“k'ddptg B fm',','a;.cspiﬁ’ :
. and are now making the data public " R
received and evaluated (FS-3)!

Results announced at the exact time of the First Step taken on the Moon!
i i i W A | J u
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I5]) |2.7 Fearless Steps Challenges (2019/22) 5

DIGRISIS

® Five Challenges: ® Data from Five NASA
& SAD: Speech Activity Detection Audio Channels:
& SD: Speaker Diarization ® MOCR: Mission

Operations Control Room
@ FD: Flight Director

® EECOM: Electrical,
Environmental, and

@ SID: Speaker Identification
@ ASR: Automatic Speech Recognition
@ SENT: Sentiment Detection

® Three Apollo-11 Mission Stages: Consumables Manager
@ Lift-Off o oo ® GNC: Guidance,
@ Lunar - . Navigation, and Control
Landing 3. ¢ @ NTWK: Network Controller
@ Lunar A eL:.nar\anding
Walking e < vomwsn  FS Phase-1 Challenge Dates:

Return To Earth  Lunar launching <3 . - Februa’y 11 tO June 28 2019

“ INTERSPEECH 2022
September 18 - 22 * Incheon Korea
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1 bl 27FearlessStepsChaIIenges(2019/22) RETL

DIGRISIS

COMMUNITY OF FEARLESS STEPS (FS-1)
PARTNERS: +160 Academic & Industry
Organizations, and Independent Researchers

Academic/Universities
@ Organization
® Other

“ INTERSPEECH 2022
September 18 - 22 * Incheon Korea
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il 3= Robustness n Keyword Spotiing
SuUmmary

@ Introduction: Robustness, Machine Learning & Data — Challenges
® Speech Data: Mismatch (Intrinsic, Extrinsic, and Context based issues)
® Speech Task ML Challenges: (know your problem, know your data)
©® KWS — Robustness (Distance based Speech Capture, Data, Systems)
® Case Studies

@ Conversational Analysis: Prof-Life-Log: Word Count Estimation, KWS

® Building ML Models: Dialect ID “Is the secret in the silence?”

@® KWS: Various Speech Corpora (Clean — Noisy — Naturalistic)
@® KWS: DARPA RATS; Naturalistic Learning Spaces(Child-Teacher; Apollo, etc.)

[1] J.H.L. Hansen, H. Boril, "On the issues of intra-speaker variability and realism in speech, speaker, and language

recognition tasks," Speech Communication, vol. 101, pp. 94-108, July 2018.
[2] M. Mirsamadi, J.H.L. Hansen, "Multi-domain adversarial training of neural network acoustic models for distant speech

recognition," Speech Communication, vol. 106, pp. 21-30, Jan. 2020
[3] 1. Lopez-Espejo, Z.-H. Tan, J.H.L. Hansen, J. Jensen, "Deep Spoken Keyword Spotting: An Overview," IEEE Access, vol,

10, pp.4169 - 4199, 2022.
[4] J.H.L. Hansen, T. Hasan, "Speaker Recognition by Machines and Humans: A Tutorial Review," IEEE Signal Processing

Magazie, pp. 74-99, Nov. 2015.
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DEEP SPOKEN KEYWORD SPOTTING

5. Audio-Visual Keyword Spotting

Zheng-Hua Tan
Department of Electronic Systems, Aalborg University, Denmark
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Centre for Acoustic Signal Processing Research

e AV KWS Framework

e Visual feature extraction

e Audio-visual fusion
e Noise-robustness

e Benchmark datasets
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Introduction and framework CASPR

«

AALBORG
UNIVERSITY

* Human speech perception uses both auditory and visual
information (e.g., lips)
* KWS can benefit from visual info., esp. in noisy conditions

e Audio visual KWS framework [1]
* Speech & visual feature extraction, and audio-visual fusion

Speech signal

< ——— *

r~ ~
Speech Feature
Extraction
. S Audio-Visual
- ™~ Fusion
Visual Feature

-*

Visual signal

Extraction

on whether and where a
Decision yser specified keyword
occurs

[1] Lépez-Espejo, I., Tan, Z. H., Hansen, J., & Jensen, J. (2021). Deep spoken keyword spotting: An overview. |[EEE Access.

Zheng-Hua Tan (Interspeech 2022)

Deep Spoken KWS: 5. AV KWS
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Deep learning setup s
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AALBORG
UNIVERSITY

Multimodal (e.g., AV)

_ Multitask (e.g., SV)
: Feature
P Deep model
extraction

Deep modeIJ > Qutput
Feature
Deep model
extraction Objective
function

Training target
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Visual feature extraction ((‘

UNIVERSITY

* A two-step approach:
* Face detection and lip localization (via landmark estimation)

 (Classical) visual feature extraction itself from the lips crop,
e.g., in[1]

e Alternatively, a deep learning model can take as input raw
images containing the uncropped speaker’s face (as a
preferred approach)

* E.g.,in [2], a clip of talking face is fed into 18-layer spatio-
temporal ResNet for visual feature extraction
3D CNN is used in [3] as well

[1] P. Wu, H. Liu, X. Li, T. Fan, and X. Zhang, “A novel lip descriptor for audio-visual keyword spotting based on adaptive
decision fusion,” IEEE Trans. Multimedia, vol. 18, no. 3, pp. 326—-338, Mar. 2016

[2] L. Momeni, T. Afouras, T. Stafylakis, S. Albanie, and A. Zisserman, ““Seeing wake words: Audio-visual keyword
spotting,” in Proc. Brit. Mach. Vis. Virtual Conf., Sep. 2020.

[3] R. Ding, C. Pang, and H. Liu, “Audio-visual keyword spotting based on multidimensional convolutional neural
network,” in Proc. IEEE Int. Conf. Image Process., Athens, Greece, Aug. 2018
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* Feature-level fusion: Speech and visual features are
concatenated before their joint classification

e Decision-level fusion: The final decision is made by
combining decisions from separate speech and visual
classifiers (preferred)

* In [1], the softmax outputs of the audio and visual networks
are combined through a summation, with fixed weights, to
estimate the posterior probability of each keyword

P(x;|A,V, W) = aP(x;|ALW,) + (1 —a)P(x;|V,W,)

* Similarly in [2]. Adaptive weights based on the reliabilities of
two modalities are used in [3]

[1] R. Ding, C. Pang, and H. Liu, “Audio-visual keyword spotting based on multidimensional convolutional neural
network,” in Proc. IEEE Int. Conf. Image Process., Athens, Greece, Aug. 2018

[2] L. Momeni, T. Afouras, T. Stafylakis, S. Albanie, and A. Zisserman, “Seeing wake words: Audio-visual keyword
spotting,”’ in Proc. Brit. Mach. Vis. Virtual Conf., Sep. 2020.

[3] P. Wu, H. Liu, X. Li, T. Fan, and X. Zhang, “A novel lip descriptor for audio-visual keyword spotting based on adaptive
decision fusion,” IEEE Trans. Multimedia, vol. 18, no. 3, pp. 326—-338, Mar. 2016
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Visual keyword spotting with attention

 Video frames -> a visual front-end (e.g., CNN) (to extract
low-level visual features) -> N, Transformer layers (to encode
temporal information)

* The phoneme sequence of the keyword -> N, Transformer
layers

* Text embedding + visual embedding -> a joint multi-modal
Transformer to predict:

* the probability the keyword occurs in the video
* frame-level probabilities indicating the location of the word

* |t outperforms the prior state-of-the-art methods on the
challenging LRW, LRS2, LRS3 datasets by a large margin

[1] Prajwal, K. R., Momeni, L., Afouras, T., & Zisserman, A. (2021). Visual keyword spotting with attention. BMVC 2021.
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e Keyword transformer (KWT) model

Layer norm

=

Layer norm

Multi-head
Attention

e e g e )
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e
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Results for the three KWT models on
Google Speech Commands V2 data set.
Baseline (Full) indicates models trained
on the full training set.

Test accuracy

Model

Baseline  Baseline (Full)  Data2Vec
KWT-1  0.7428 0.9638 0.9294
KWT-2  (.8584 0.9498 0.9507
KWT-3 0.8411 0.9079 0.9529

20% trn  100% trn 80% + 20%

[1] H. S. Bovbjerg, Z.-H. Tan (2022). Improving Label-Deficient Keyword Spotting Using Self-Supervised Pretraining.
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Noise robustness CASPR

e Audio-visual KWS achieves the greatest relative
improvements with respect to audio-only KWS at lower
SNRs, while it improves the performance at high SNRs as
well, as consistently found in the literature, e.g., those in the
previous slide

e AV KWS surpasses the performance of both video-only and
audio-only KWS within a wide range of SNRs

* Robustness against lighting conditions and head pose
variation has been less studied systematically

Zheng-Hua Tan (Interspeech 2022) Deep Spoken KWS: 5. AV KWS Sunday 18th September, 2022
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Benchmark data sets CASPR

Realistic and challenging audio-visual benchmarks

* Lip Reading in the Wild (LRW) [1]
* One of the first visual speech databases in-the-wild, ca 170h
* Single-word utterances from BBC TV broadcasts
* Over a million word instances, spoken by 1000+ people

* Lip Reading Sentences 2 (LRS2) [2]
e 100,000+ natural spoken sentences from BBC TV

* Lip Reading Sentences 3 (LRS3) [3]
e 400+ hours from TED(x) talks

[1] J. S. Chung and A. Zisserman, “Lip reading in the wild,” in Proc. Asian Conf. Comput. Vis., Taipei, Taiwan, 2016.

[2] J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman, “Lip reading sentences in the wild,” in Proc. Conf. Comput. Vis.
Pattern Recognit., Honolulu, HI, USA, 2017.

[3] T. Afouras, J. Son Chung, and A. Zisserman, ““LRS3-TED: A large-scale dataset for visual speech recognition,” 2018,

arXiv:1809.00496.
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acoustic noise

Speech signal

4 I

Speech Feature
A ——)
Extraction

on whether and where a
. Audio-Visual . .
Fusion Decision yser specified keyword
occurs

Visual Feature
Extraction

Visual signal

lighting condition
and pose
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Centre for Acoustic Signal Processing Research

* Applications in general

e \Voice activation of voice assistants
* Personalized keyword spotting systems

 Voice control of hearing assistive devices

Zheng-Hua Tan (Interspeech 2022) Deep Spoken KWS: 5. AV KWS Sunday 18th September, 2022
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Applications CASPR

e the activation of voice assistants

e speech retrieval

* voice-dialing, and interaction with a call center

assistive technology for vision-impaired people in special
scenarios, e.g., the activation of pedestrian call buttons in
crosswalks

hands-free voice control in in-vehicle systems, videogames,
home automation

e human robot interaction

* etc.

Lépez-Espejo, |, Tan, Z. H., Hansen, J., & Jensen, J. (2021). Deep spoken keyword spotting: An overview. |IEEE Access.
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* The flagship application of (deep) KWS

* By 2024, the number of voice assistant units is expected to
reach 8.4b, exceeding the world’s population [1].

 Typical voice assistant client-server framework [2]

* The client device has an always-on KWS system to detect
whether a user utters a wakes-up keyword/phrase

* When the keyword is spotted, the supposed wake-up word
audio and subsequent query audio are sent to a server to be

processed by LVCSR

HEY
ASSISTANT!

[1] https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
[2] Lopez-Espejo, I., Tan, Z. H., Hansen, J., & Jensen, J. (2021). Deep spoken keyword spotting: An

overview. I[EEE Access.
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* Personalization of the KWS system can be desirable

* Personalized queries
* Personalized control of devices like hearing aids

* Combining KWS and speaker verification

* Independently trained deep learning models to perform both
tasks.

* In [1], d-vector based TI-SV (separately trained) is applied to largely
reduce the false acceptence rate

* A multi-task learning scheme, joint KWS and speaker
verification

* In [2], d-vector based TD-SV is jointly trained with KWS by sharing one
convolutional layer operating on log filter bank energy

[1] Rikhye, R., Wang, Q., Liang, Q., He, Y., Zhao, D., Narayanan, A., & McGraw, |. Personalized keyphrase detection using
speaker and environment information. Interspeech 2021.
[2] Kumar, R., Yeruva, V., & Ganapathy, S. On Convolutional LSTM Modeling for Joint Wake-Word Detection and Text

Dependent Speaker Verification. In Interspeech 2018.
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* Manually operating small, body-worn devices like hearing
aids is not always feasible or can be cumbersome.

e An alternative way to speaker verification to provide
personalization in KWS for hearing aids [1]:

* Multitask learning

* Exploiting GCC-PHAT coefficients from dual-microphone
hearing aids, achieves almost flawless users’ own
voice/external speaker detection (reducing FAR)

VOLUME UP!

e

(a) Legitimate user detected.

VOLUME UP!

\
() )
X Sericren

(b) External speaker detected.

[1] Lopez-Espejo, I, Tan, Z. H., & Jensen, J. (2020). Improved external speaker-robust keyword spotting for
hearing assistive devices. IEEE/ACM Transactions on Audio, Speech, and Language Processing.

Zheng-Hua Tan (Interspeech 2022) Deep Spoken KWS: 5. AV KWS Sunday 18th September, 2022




«

AALBORG
UNIVERSITY

S i
ummary oA

* Applications in general

e \Voice activation of voice assistants
* Personalized keyword spotting systems

 Voice control of hearing assistive devices

Thank you for your attention!
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© Datasets

9 Evaluation Metrics

© Performance Comparison
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Datasets CASPR

w Data are an essential ingredient of any machine learning system for both
training the parameters of the algorithm and validating it

@ Corpora used over the years in ASR are now also being employed for deep
KWS:
- LibriSpeech
- TIDIGITS
- TIMIT
- Wall Street Journal (WSJ) corpus

[X] These corpora do not standardize a way of utilization facilitating KWS
technology reproducibility and comparison (e.g., the set of considered
keywords)

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18" September, 2022 3 /39
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Datasets CASPR susns s

Name Developer Language  Noisy?  No. of KW Training set Test set
Size  +sampl. - sampl  Size  +sampl. - sampl
- Alibaba N Mandarin Y 1 24kh - - - 12k 600h
- Baidu N English Y 1 12k - - % - -
Chinese
- Academy N Mandain Y 2 478k 88k 30k - L7k
of Sciences
- Fluentai N English Y 1 s0n 59k - 2h Lek -
- Google N English Y 10 >3kh 607k 133k 812k 112k 70k
- Google N English Y 14 368k 10k 3168k 613k 19k 594k
Harbin
B Institute N Mandarin - 1 1152k 192k 9k 288k 4k 24k
of Technology
- Logitech N English - 14 - - - - - -
- Mobvoi N Mandain Y 1 67h 20k sk Th % 5.9k
- Sonos Y  English Y 16 0 0 0 LIk LI 0
- Tencent N Mandain Y 1 3B9h 24k 100k - - -
- Tencent N Mandaiin Y 1 659h  69h  59h  87h  09h  78h
- Tencent N Mandaiin Y 2 22k 154k 68k 108k T4k 34k
- Xiaomi N Mandarin - 1 L7kh 1889k IM  522h 288k 328k
AISHELL-2 (13) AISHELL Y  Mandain N 3 2480 >4k - 167h  >84k -
AISHELL-2 20) AISHELL Y  Madain N 20 3[h >k - 29n Ik -
“Alexa” Amazon N English Y 1 495h - - 1000 - -
Google Speech etn Google Y  English Y 10 S17k 189k 328k 65k 24k 41k
g’::‘ﬂ%:;fgfg:‘mm > Google Y English Y 10 846k 308k 538k 106k 39k 67k
“Hey Siri” Apple N English Y 1 S00k 250k 250k - 65k 27kh
ng:;"%’:éfﬂl Qualcomm Y English N 4 - - - 43k 43k -
Hey Snips Snips Y English Y 1 505h 59 453k 231h 26k 208k
“Nare Ya” Netmarble N Korean Y 1 130k S0k S0k 800 400 400
“OK/Hey Google” Google N English Y 2 - M - >3kh 43k 213k
“OK/Hey Google” Google N English Y 2 - - - 47h 48k 7.5k
Ticmini2 Mobvoi N Mandain Y 2 IS5k 436k 1139 729k 213k Slek

@ Datasets are normally comprised of hundreds or thousands of speakers who do not overlap
across sets

(Interspeech 2022
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Datasets CASPR susns s

Name Developer Language  Noisy?  No. of KW Training set Test set
Size  +sampl. - sampl  Size  +sampl. - sampl
- Alibaba N Mandarin Y 1 24kh - - - 12k 600h
- Baidu N English Y 1 12k - - % - -
Chinese
- Academy N Mandain Y 2 478k 88k 30k - L7k
of Sciences
- Fluentai N English Y 1 s0n 59k - 2h Lek -
- Google N English Y 10 >3kh 607k 133k 812k 112k 70k
- Google N English Y 14 368k 10k 3168k 613k 19k 594k
Harbin
B Institute N Mandarin - 1 1152k 192k 9k 288k 4k 24k
of Technology
- Logitech N English - 14 - - - - - -
- Mobvoi N Mandain Y 1 67h 20k sk Th % 5.9k
- Sonos Y  English Y 16 0 0 0 LIk LI 0
- Tencent N Mandain Y 1 3B9h 24k 100k - - -
- Tencent N Mandaiin Y 1 659h  69h  59h  87h  09h  78h
- Tencent N Mandaiin Y 2 22k 154k 68k 108k T4k 34k
- Xiaomi N Mandarin - 1 L7kh 1889k IM  522h 288k 328k
AISHELL-2 (13) AISHELL Y  Mandain N 13 2480 >4k - 167h  >84k -
AISHELL-2 20) AISHELL Y  Madain N 20 3[h >k - 29n Ik -
“Alexa” Amazon N English Y 1 495h - - 1000 - -
Google Speech etay | Google Y  English Y 10 S17k 189k 328k 65k 24k 41k
g’::‘ﬂ%:;fgfg:‘mm 1> | Google Y English Y 10 846k 308k 538k 106k 39k 67k
“Hey Siri” Apple N English Y 1 S00k 250k 250k - 65k 27kh
ng:;"%’:éfﬂl Qualcomm Y English N 4 - - - 43k 43k -
Hey Snips Snips Y English Y 1 505h 59 453k 231h 26k 208k
“Nare Ya” Netmarble N Korean Y 1 130k S0k S0k 800 400 400
“OK/Hey Google” Google N English Y 2 - M - >3kh 43k 213k
“OK/Hey Google” Google N English Y 2 - - - 47h 48k 7.5k
Ticmini2 Mobvoi N Mandain Y 2 IS5k 436k 1139 729k 213k Slek

@ The advancement of the KWS technology is led by the private sector of the United States
of America and China

(Interspeech 2022



Datasets

CASPR

[

Name Developer Language  Noisy?  No. of KW Training set Test set
Size  +sampl. - sampl  Size  +sampl. - sampl
- Alibaba N [ Mandarin | Y 1 24kh - - 12k 600h
- Baidu N | English Y 1 12k - - % - -
Chinese
- Academy Mandarin Y 2 478k 88k 30k - L7k
of Sciences
- Fluentai N | English Y 1 s0n 59k - 2h Lek -
- Google N | English Y 10 >3kh 607k 133k 812k 112k 70k
- Google N | English Y 14 368k 10k 3168k 613k 19k 594k
Harbin
B Institute N | Mandarin - 1 1152k 192k 9k 288k 4k 24k
of Technology
- Logitech N | English - 14 - - - - - -
- Mobvoi N | Mandarin | Y 1 67h 20k sk Th % 5.9k
- Sonos Y | English Y 16 0 0 0 LIk LI 0
- Tencent N | Mandaiin | Y 1 3B9h 24k 100k - - -
- Tencent N | Mandaiin | Y 1 659h  69h  59h  87h  09h  78h
- Tencent N | Mandain | Y 2 22k 154k 68k 108k T4k 34k
- Xiaomi N | Mandarin - 1 L7kh 1889k IM  522h 288k 328k
AISHELL-2 (13) AISHELL Y | Mandain | N 3 2480 >4k - 167h  >84k -
AISHELL-2 20) AISHELL Y | Mandain | N 20 3[h >k - 29n Ik -
“Alexa” Amazon N | English Y 1 495h - - 1000 - -
Google Speech etn Google Y | English Y 10 S17k 189k 328k 65k 24k 41k
g’::‘ﬂ%:;fgfg:‘mm > Google Y | English Y 10 846k 308k 538k 106k 39k 67k
“Hey Siri” Apple N | English Y 1 S00k 250k 250k - 65k 27kh
ng:;"%’:éfﬂl Qualcomm Y | English N 4 - - - 43k 43k -
Hey Snips Snips Y | English Y 1 505h 59 453k 231h 26k 208k
“Nare Ya© Netmarble N Koean Y 1 130k S0k S0k 800 400 400
“OK/Hey Google” Google N | English Y 2 - M - >3kh 43k 213k
“OK/Hey Google” Google N | English Y 2 - 47h 48k 7.5k
Ticmini2 Mobvoi N | Mandaiin | Y 2 IS5k 436k 1139 729k 213k Slek

@ Except for the “Narc Ya” corpus (in Korean), all the

or Mandarin Chinese

(Interspeech 2022
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Datasets CASPR susns s

Name Developer PA?  Language Noisy? No.of KW ‘Training set Test set
Size  +sampl. - sampl. Sie  +sampl. - sampl

- Alibaba N Mandarin Y 1 24kh - - - 12k 600h

- Baidu N English Y 1 12k - - % - -
Chinese

- Academy N Mandarin Y 2 478k 88k 39k - 1.7k -
of Sciences

- Fluentai N English Y 1 50h 5.9k - Lek -

- Google N English Y 10 >3kh 607k 133k 1.2k 70k

- Google N English Y 14 3268 10k 3168k 1ok 594k
Harbin

- Institute N | Mandarin - 1 152k 192k 96k 288k 48k 24k
of Technology

- Logitech N English - 14 - - - - - -

- Mobvoi N Mandarin___Y 1 67h 20k 54k 7h % 5.9k

- Sonos Y English Y 16 0 0 0 LIk Lik 0

- Tencent N | Mandarin Y 1 224k 100k - - -

- Tencent N | Mandarin Y 1 69h S9h  87h  09h  78h

- Tencent N | Mandarin Y 2 15.4k 68k 108k 7.4k 34k

. Xiaomi N___Mandarin - 1 188.9k M 522h 288k

AISHELL-2 (13) AISHELL Y Mandarin N 13 >24k - 167h  >84k -

AISHELL-2 20) AISHELL Y Mandain N 20 >34k - 29h >k -

“Alexa” Amazon N English Y 1 - 100h -

gg::ﬁ:fﬁgﬁ;'ﬁ'mm Ly Google Y  English Y 10 18.9k 28 65k 2.4k 4.1k

ggxﬁ:faﬁﬁ;;m‘ > Google Y  English Y 10 846k 308k 538 106k 39K 67k

“Hey Siri” Apple N | English Y 1 500k 250k 250k - 65k 27kh

Egvfg;,pg:é:\ Qualcomm Y English N 4 - - - 43k 43k -

Hey Snips Snips Y English Y 1 505h 59k 453k 231h 26k 208k

“Nare Ya" Netmarble N | Korean Y 1 130k S0k S0k 800 400 400

“Ok/Hey Google” Google N | English Y 2 - M - >3kh 43k 213k

“Ol/Hey Google” Google N | English Y 2 - - - 4Th 48k 7.5k

“Ticmini2 Mobvoi N Mandarin Y 2 1575k 43ek 1139k 729k 213k Slek

@ The majority of the speech corpora of interest are for company internal use only
(Mobvoi's TicKasa Fox, Google’s Google Home and Xiaomi's Al Speaker smart speakers)

(Interspeech 2022 Deep Spoken KWS: 7. Experim



Datasets

CASPR

[

Name Developer PA?  Language Noisy? No.of KW ‘Training set Test set
Size  +sampl. - sampl. Sie  +sampl. - sampl

- Alibaba N Mandarin Y 1 24kh - - - 12k 600h

- Baidu N English Y 1 12k - - % - -
Chinese

- Academy Mandarin | Y 2 478k 88k 39k - 1.7k -
of Sciences

- Fluentai N English Y 1 50h 5.9k - Lek -

- Google N English Y 10 >3kh 607k 133k 1.2k 70k

- Google N English Y 14 3268 10k 3168k 1ok 594k
Harbin

- Institute N Mandarin - 1 152k 192k 96k 288k 48k 24k
of Technology

- Logitech N English - 14 - - - - - -

- Mobvoi N Mandarin | Y 1 67h 20k 54k 7h % 5.9k

- Sonos Y English Y 16 0 0 0 LIk Lik 0

- Tencent N Mandarin | Y 1 224k 100k - - -

- Tencent N Mandarin | Y 1 69h S9h  87h  09h  78h

- Tencent N Mandarin | Y 2 15.4k 68k 108k 7.4k 34k

- Xiaomi N Mandarin E 1 188.9k M 522h 288k

AISHELL-2 (13) AISHELL Y Mandarin N 13 >24k - 167h  >84k -

AISHELL-2 20) AISHELL Y Mandain N 20 >34k - 29h >k -

“Alexa” Amazon N English Y 1 - 100h -

gg::ﬁ:fﬁgﬁ;'ﬁ'mm Ly Google Y  English Y 10 18.9k 28 65k 2.4k 4.1k

ggxﬁ:faﬁﬁ;;m‘ > Google Y English Y 10 846k 308k 538 106k 39K 67k

“Hey Siri” Apple N English Y 1 500k 250k 250k - 65k 27kh

Egvfg;,pg:é:\ Qualcomm Y English N 4 - - - 43k 43k -

Hey Snips Snips Y English Y 1 505h 59k 453k 231h 26k 208k

“Nare Ya" Netmarble N Korean Y 1 130k S0k S0k 800 400 400

“Ok/Hey Google” Google N English Y 2 - M - >3kh 43k 213k

“Ok/Hey Google” Google N English Y 2 - - - 4Th 48k 7.5k

Ticmini2 Mobvoi N Mandarin Y 2 1575k 43ek 1139k 729k 213k Slek

@ The great majority of datasets are noisy (signals are distorted by, e.g., natural and
realistic background acoustic noise or room acoustics)

(Interspeech 2022
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Datasets CASPR

We will want to minimize the mismatch between the KWS performance at the lab
phase and that one observable in the inherently-noisy real-life conditions

w 1) Natural noisy speech: Some datasets were created from natural noisy
speech recorded, many times in far-field conditions, by smart speakers,
smartphones and tablets

- Home environments with background music or TV sound

@ 2) Simulated noisy speech: Some datasets were generated by artificially

distorting clean speech signals through data augmentation

- Noise types: Babble, café, car, music, street...

- SNR levels commonly within the range [-5, 20] dB (Filtering and Noise-adding Tool))
- Noise datasets: TUT, DEMAND, MUSAN, NOISEX-92, CHIME...

- Alteration of room acoustics, e.g., to simulate far-field conditions from close-talk speech

(1) H. G. Hirsch, “FaNT - Filtering and noise adding tool”. https://github.com/i3thuan5/FaNT

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18" September, 2022 9 /39
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Datasets CASPR e

w Collecting a good amount of natural noisy speech data in the desired
acoustic conditions is not always feasible!

Alternative

Simulation of noisy speech is a smart and cheaper alternative allowing us for
obtaining similar technology performance(!)

(1) T. Ko et al., “A study on data augmentation of reverberant speech for robust speech recognition”. In Proc. of ICASSP 2017

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18" September, 2022 10 / 39



Datasets
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[

Name Developer Language  Noisy?  No. of KW Training set Test set
Size  +sampl. -sampl Size -+ sampl. - sampl
E Alibaba N Mandain Y | 24kh E E 2k 600h
E Baidu N English Y I 12k E E % - E
Chinese
E Academy Mandarin Y 2 a8 88k 30K . 17k
of Sciences
. Fluentai N English Y i s0n 59Kk E 2h 16k E
E Google N English Y 10 >3kh 607k 13k 81k 1Lk 70k
. Google N English Y 14 368k 10k 3168k 613k 19k 594k
Harbin
. Instiute N Mandain - 1 Hs2k 192k 96k 288k 4sk 2k
of Technology
E Logitech N English E 14 E E E E E E
E Mobvoi N Mandain Y i 6h 20k sk 7h % 59K
E Sonos Y English Y i6 0 0 0 LIk LIk 0
E Tencent N Mandain Y 1 Bon 24k 100k - E E
E Tencent N Mandain Y | 659h  69h  S9h  87h  09h  78h
E Tencent N Mandain Y ) 2ok 154k 68k 108k T4k 34k
E Xiaomi N Mandain - | L7kh 1889k M 522h 288k 328K
AISHELL-2 (13) AISHELL Y Mandain N i3 u8h 2k S 167h >84k E
AISHELL-2 20) AISHELL Y Mandarin N 20 Iho >3k - mo9h six E
“Alexa” Amazon N Engiish Y i 4951 E - on - E
Google Speech etns Google Y  English Y 10 517k 189k 328k 65k 24k 41k
S:;:‘ﬂ%:fﬂ;?g:i;:mm > Google Y English Y 10 846k 308k 538k 106k 39k 67k
“Hey Siri" Apple N Engiish Y i S0k 250k 250k - 65k 27kh
:23»»5:21%:5?1 Qualcomm Y  English N 4 . - - 43k 43k -
Hey Snips Snips Y English Y i 505h SOk 453k 231k 26k 208k
“Nare Ya" Netmarble N Koman Y i 130k S0k sk 800 400 400
“Ok/Hey Google” Google N English Y 2 - ™M S s3kh 4k 21k
“Ok/Hey Google” Google N English Y 2 . uTh Ask 15k
Ticmini2 Mobvoi N Mandain Y 2 1575 436k 1139 729k 213k Slek

@ Datasets mainly fit the application of KWS that, lately, is boosting research on this
technology: wake-up word detection for voice assistants

(Interspeech 2022
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Datasets CASPR susns s

Name Developer Language  Noisy?  No. of KW Training set Test set
Size  +sampl. - sampl Sice  +sampl. - sampl

- Alibaba N Mandarin Y 1 24kh - - - 12k 600h

- Baidu N English Y 1 12k - - % - -
Chinese

- Academy N Mandarin Y 2 478k 88k 39k - 17k -
of Sciences

- Fluent.ai N English Y 1 50h 5.9k - 2h Lek -

- Google N English Y 10 >3kh 607k 133 812k 112 70k

- Google N English Y 14 3268 10k 3168k 613k Lok 5.4k
Harbin

- Institute N Mandarin - 1 152k 192k 96k 288k 48k 24k
of Technology

- Logitech N English - 14 - - - - - -

- Mobvoi N Mandarin Y 1 67h 20k 54k 7h 2% 5.9k

- Sonos Y English Y 16 0 0 0 L1k L1k 0

- Tencent N Mandarin Y 1 39h 224k 100k - -

- Tencent N Mandarin Y 1 659h  69h 59h  87h  09h

- Tencent N Mandarin Y 2 22k 154k 68k 108k 7.4k

- Xiaomi N Mandarin - 1 L7kh 1889k M 522h 288k

AISHELL-2 (13) AISHELL Y Mandarin N 13 248h >4k - 167h  >84k -

AISHELL-2 (20) AISHELL Y Mandarin N 20 35h >3k - 29h >k -

“Alexa” Amazon N English Y 1 495h - - 100h - -

gg{"ﬂ%fﬂ;?gff;:mm Ly Google Y English Y 10 517k 18.9k 28k 65k 2.4k 41Kk

gg;ﬂ‘“afj‘fg;a_\m > Google Y English Y 10 846k 308k 538 106k 39k 67k

“Hey Siri” Apple N English Y 1 500k 250k 250k - 65k 27kh

Eg:grg“g:é‘:g‘ Qualcomm Y  English N 4 - - - 43k 43k -

Hey Snips Snips Y English Y 1 505h 59k 453k 231h 26k 208k

“Nare Ya” Netmarble N Korean Y 1 130k 50k 80k 800 400 400

“Ok/Hey Google” Google N English Y 2 - M - >3kh 434k 213k

“Ok/Hey Google” Google N English Y 2 - - - 4Th 48k 7.5k

Ticmini2 Mobvoi N Mandarin Y 2 1575k 436k 1139k 729k 213k Slek

@ As a trend, publicly available datasets tend to be smaller than in-house ones

(Interspeech 2022 tal Sunday 18"
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Datasets CASPR susns s

Name Developer ~ PA? Language Noisy? No.of KW Training set Test set
Sie  +sampl -sampl Sie  +sampl. - sampl
- Alibaba N Mandarin Y 1 24kh - - - 12k 600 h
- Baidu N English Y 1 12k - - 2k - -
Chinese
E Academy N Mandain Y 2 a8 ssk Kk E 17k -
of Sciences
- Fluentai N English Y 1 son soK S 2h e -
- Google N English Y 10 >%kh 607k 13k 812k 11k 70k
- Google N English Y 14368 10k 368k 613k Lok 594k
Harbin
. Institute N Mandain - 1 152k 192k o6k 288k 48k 24k
of Technology
E Logitech N English - 14 - E E E E E
E Mobvoi N Madain Y 1 an 20k sk 7h % 59K
E Sonos Y English Y 16 0 0 0 1k LI 0
E Tencent N Mandain Y 1 39h 24k 100k - - -
E Tencent N Mandain Y 1 69h  69h  59h  87h  09h 78k
E Tencent N Madain Y 2 N2k 154k 68k 108k T4k 34k
E Xiaomi N Mandain - 1 17kh 1889k 1M 522h 288k 328k
AISHELL-2 (13) AISHELL Y Mandain N 13 u8h 2k - 167h s34k E
AISHELL-2 (20) AISHELL Y Mandain N 20 Iho >k S B9n sk E
“Alexa” Amazon N English Y 1 95h E - on - E
Goomle Speech ety Google Y English Y 10 S17k 189k 328k 65k 24k 41k
ool Speech etys Google Y  English Y 10 sack 208k 538 106k 39 67k
“Hey Si Apple N English Y 1 S0k osok 250k - 65k 27kh
E:;ﬁ'}r:{"gji‘\’;“ Qualcomm Y  English N 4 - - - 43k 43k -
Hey Snips Snips Y English Y 1 sosh SOk 453k 230h 26k 208k
jarc Ya” Netmarble N Korean Y 1 130k 50k 80k 800 400 400
“Ok/Hey Google®  Google N English Y 2 - ™ S skn o 4k 21k
“O/Hey Google®  Google N English Y 2 - - ST 4s Tk
Tiemini2 Mobvoi N Mandawin Y 2 ISTsk 436k 1139k 729k 213k Slek
- sampl.

L] > 1 is to accurately reflect potential scenarios of use consisting of always-on

+ sampl.
KWS applications like wake-up word detection

(Interspeech 2022 tal Sunday 18"



-||||||||| ((‘

Datasets

Google Speech Commands Dataset

w The publicly available Google Speech Commands Dataset(!) has become the
de facto open benchmark for (deep) KWS development and evaluation
- Sampling rate of 16 kHz
- Recorded by phone and laptop microphones
- Noisy to some extent

One-second long speech segments
covering one word each

Version | # of Speakers | # of Words | # of Utt.
vl 1,881 30 64,727
v2 2,618 35 105,829

(1) P. Warden, “Speech Commands: A dataset for limited-vocabulary speech recognition”. arXiv:1804.03209v1, 2018

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18'" September, 2022 14 / 39
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Google Speech Commands Dataset

= yes no up down left =

S right on off stop 20 M
: 3 Zero one two three four

% .5 five Six seven eight nine E

2|5 bed bird cat dog happy | &

> house Marvin  Sheila tree WOW :2
backward  forward follow learn  visual

This benchmark also standardizes...

@ ...the training, development and test sets

@ ...a training data augmentation procedure involving background noises

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18" September, 2022 15 / 39



Datasets cﬂ'ls'"p':a G

Google Speech Commands Dataset

We can raise two relevant points of criticism:

@ 1) Class balancing: The different keyword and non-keyword classes are
rather balanced, which is generally not realistic

@ 2) Non-streaming mode: In multi-class classification of independent short
input segments, a full keyword or non-keyword is surely present within every
segment. However, real-life KWS involves the continuous processing of an
input audio stream!

A few works generate streaming versions of this database by concatenation of
one-second long utterances(!) in such a manner that the resulting word class
distribution is unbalanced <— This point should be standardized for the sake of
reproducibility and comparison!

(1) 1. Lépez-Espejo et al., “A novel loss function and training strategy for noise-robust keyword spotting”. IEEE/ACM TASLP,
2021

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18" September, 2022 16 / 39
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Google Speech Commands Dataset

We produced three outcomes revolving around the Google Speech Commands
Dataset v2:

w 1) A variant of it emulating hearing aids as a capturing device(!)

@ 2) Another noisier variant with a diversity of noisy conditions(® (i.e., types
of noise and SNR levels)

w 3) Manually-annotated speaker gender labels(®)

(1) 1. Lépez-Espejo et al., “Keyword spotting for hearing assistive devices robust to external speakers”. In Proc. of Interspeech
2019

(2) http://ilopez.es.mialias.net/misc/NoisyGSCD.zip

(3) https://ilopezes.files.wordpress.com/2019/10/gscd_spk_gender.zip

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18" September, 2022 17 / 39
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Evaluation Metri CASPR

w The gold plate test of any speech communication system is a test with
relevant end-users «— Costly and time-consuming!

w Objective evaluation metrics must allow us to determine the goodness of a
system and be highly correlated to the subjective user experience

w We review and provide some criticism of the most common binary
classification metrics for KWS

w In the event of having multiple keywords, a common approach consists of
applying the metric computation for every keyword and, then, the result is
averaged

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18" September, 2022 18 / 39
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Evaluation Metrics

Accuracy

@ Accuracy: The ratio between the number of correct
predictions/classifications and the total number of them

TP+ TN
TP+ TN + FP + FN

Accuracy = €10,1]

w Accuracy tends to be an unsuitable evaluation metric yielding potentially
misleading conclusions!

Ground truth  NK NK KW NK NK KW NK NK NK NK

SYS1 ‘NK‘NK‘KW‘NK‘NK‘NKIKW‘NK‘NK‘NK‘

SYS2 ‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18" September, 2022 19 /39
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Accuracy

w Accuracy is a widely used evaluation metric for deep KWS «+— Google
Speech Commands Dataset in non-streaming mode

@ Word classes are rather balanced in the Google Speech Commands Dataset
— Accuracy can still be considered a meaningful metric

@ We have experimentally observed®) for KWS a strong correlation between
accuracy on a quite balanced scenario and more suitable metrics like F-score
on a more realistic, unbalanced scenario

w Although not ideal, the employment of accuracy can still be useful under
certain experimental conditions

(1) 1. Lépez-Espejo et al., “Improved external speaker-robust keyword spotting for hearing assistive devices”. IEEE/ACM
TASLP, 2020

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 7. Experimental Sunday 18" September, 2022 20 / 39
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Evaluation Metrics
ROC & DET Curves

w T he probability that a positive sample is correctly detected as such:

TP

True Positive Rate (TPR) = Recall = —————
TP + FN

w The probability that a negative sample is wrongly classified as a positive one:

FP
False Positive Rate (FPR) = m

@ The receiver operating characteristic (ROC) curve is obtained by
sweeping the sensitivity (decision) threshold:

Receiver operating characteristic

Perfect classifier

10 7

&

.
x
&

SYSI
X,

0.4
0.2
4
o
0.0 | #5152

00 02 04 06 08 10
False positive rate

True positive rate
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ROC & DET Curves

@ Area under the ROC curve (AUCRoc € [0, 1]): The probability that a
classifier ranks a randomly-chosen positive sample higher than a
randomly-chosen negative one

[ Receiver operating characteristic ]
P

t classifier

Ground truth  NK NK KW NK NK KW NK NK NK NK

SYS1 ‘NK‘NK‘KW‘NK‘NK‘NK‘KW‘NK‘NK‘NK‘

True positive rate

SYS2 ‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘

00 02 04 06 08 1.0
False positive rate
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ROC & DET Curves

@ Because

FN

7 —1-TPR
FN+ TP

False Negative Rate (FNR) =

the detection error trade-off (DET) curve is nothing else but a
vertically-flipped version of the ROC curve:

[Receiver operating characteristic] [ Detection error trade-off

Perfect classifier |Perfect classifier

1.0 1.0 |-
o 0.8 2 08
K g
206 06
=04 S04
£
= =
0.2 =02
0.0 [ € 0.0 |6 i ;
00 02 04 06 08 1.0 00 02 04 06 08 1.0
False positive rate False positive rate
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ROC & DET Curves

@ Area under the DET curve (AUCpgT € [0, 1]): The smaller, the better

w Equal error rate (EER): The intersection point between the identity line
and the DET curve (i.e., the point at which FNR = FPR)

[Receiver operating characteristic | [ Detection error trade-off |
Perfect classifier

|Perfect classifier

1.0 1.0 |-
0.8 2 08
E E
206 206/
ﬁ 5
= ]
S04 =04
@ £
: %
02 =02
. ; H : ; '
0.0 (K25t 0.0
0.0 02 04 06 08 1.0
False positive rate False positive rate
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ROC & DET Curves

w In voice activation of voice assistants, privacy is a major concern — EER

is not a good metric, since the cost of a false alarm is significantly greater
than that of a miss detection!

+Query

w A popular variant of the ROC and DET curves is that one replacing FPR
along the x-axis by the number of false alarms per hour

[Receiver operating istic | [ Detection error trade-off |

Term-weighted value (TWV)

False negative rate

TWV =1 — (FNR + S8FPR), B> 1 (e.g., 8 = 999.9)

0.0

00 02 04 06 08 10 00 02 04 06 08 10
False positive rate False positive rate
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Precision-Recall and F-Score Curves

w The probability that a sample that is classified as positive is actually a
positive sample:

TP

Precision = ——
TP + FP

@ The precision-recall (PR) curve is again obtained by sweeping the
sensitivity threshold:

[ Precision-recall ]

Perfect classifier ~

0.8 | .
: Reminder:
0.6 |-

Precision

TP

Recall = ———
TP + FN

00 02 04 06 08 1.0
Recall
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Precision-Recall and F-Score Curves

@ Area under the PR curve (AUCpR € [0, 1]): The larger, the better

w The random guessing line depends on the proportion of the positive class

within both classes
- Balanced scenario: Horizontal line at a precision of 0.5
- In KWS: Horizontal line closer to 0

| Precision-recall |
Perfect cla

Precision
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Precision-Recall and F-Score Curves

@ One-to-one correspondence between the PR and ROC/DET curves®)

w However, the PR curve is considered to be a more informative visual analysis
tool «— We can better focus on the minority positive (i.e., keyword) class
of interest (Precision = TP/(TP + FP))

[ Precision-recall ]
Perfect classifier -

1.0 Ground truth  NK NK KW NK NK KW NK NK NK NK
oy 51 NK N KW K 8K Ko 8K K v
E 0.4 SYS2 ‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘

02 SYS1 — (Recall = 0.5, Precision = 0.5)

o0l SYS2 —» Precision = 0/0 is undefined

00 02 04 06 08 1.0
Recall
(1) J. Davis and M. Goadrich, “The relationship between precision-recall and ROC curves”. In Proc. of ICML 2006
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Precision-Recall and F-Score Curves

w F-score, Fq, is the harmonic mean of precision and recall:

. 2 B 2TP
'~ Recall !  Precision L 2TP + FP + FN

@ The larger F; € [0,1], the better

@ F-score can be calculated as a function of the sensitivity threshold:

[ F-score ]

Perfect classifier —

04 06 08 1.0
Sensitivity threshold
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Evaluation Metrics

Precision-Recall and F-Score Curves

@ Area under the F; curve (AUCE, < [0,1]): The larger, the better

w As for the PR curve, the random guessing line depends on the proportion of
the positive class within both classes

[ F-score ]
Perfect classifier —
1.0 : A2
Ground truth  NK NK KW NK NK KW NK NK NK NK
0.8
SYS1 ‘NK‘NK‘KW‘NK‘NK‘NK‘KW‘NK‘NK‘NK‘
£ 06|
S
= 04 SYSZ‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘NK‘
02 SYSI — F; =05
0.0 |4 SY52—>F1:O

00 02 04 06 08 1.0
Sensitivity threshold
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Performance Comparison

CASPR

[

D Year Accuracy (%) C pl
GSCD v/ GSCD¥2  No.of params.  No. of mults

1 Standard FENN with a pooling layer [32] 2020 912 90.6 447k -

2 DenseNet with trainable window function and mixup data augmentation [67) 2018 928 - - -

3 Two-stage TDNN [58] 2018 943 - 251k 25.1M
4 CNN with striding [32] 2018 95.4 95.6 529k -

5 BiLSTM with attention [133] 2018 95.6 96.9 202k -

6 Residual CNN res15 [30] 2018 958+ 0484 - 238k 894M
7 TDNN with shared weight self-atiention [16] 2019 9581 +0.191 - 12k 403k
8 DenseNet+BIiLSTM with attention [48] 2019 96.2 97.3 223k -

9 Residual CNN with temporal convolutions TC-ResNet: 14 [50] 2019 962 - 137k -

10 SVDF[32] 2019 963 96.9 354k -

11 SincConv+(Grouped DS-CNN) [70] 2020 96.4 973 62k -

12 Graph convolutional network CENet~40 [49] 2019 96.4 - 61k 16.18M
13 GRU[32] 2020 96.6 972 593k -

14 SincConv+(DS-CNN) [70] 2020 96.6 97.4 122k -

15 Temporal CNN with depthwise convolutions TENet 12 [52] 2020 96.6 - 100k 2.90M
16 Residual DS-CNN with squeeze-and-excitation DS-ResNet 18 [51] 2020 96.71+0.195 - 72k 285M
17 TC-ResNet 14 with neural architecture search NoisyDARTS-TC14 [146] 2021 9679 £030  97.18 £026 108k 63M
18 LSTM[32] 2020 969 975 - -

19 DS-CNN with striding [32] 2018 97.0 97.1 485k -
20 CRNN([32] 2020 97.0 975 467k -
21 BiGRU with multi-head attention [32] 2020 972 98.0 743k
22 CNN with neural architecture search NAS2_6_36 [125] 2020 9722 - 886k -
23 Keyword Transformer KWT~3 [90] 2021 9749015 98564 0.07 53M -
24 Variant of TC-ResNet with self-attention LG-Net 6 [91] 2021 97.67 96.79 313k -
25 Broadcasted residual CNN eset-8 [100] 2021 98.0 98.7 321k 89.1IM

@ Google Speech Commands Dataset vI and v2 in non-streaming mode

(Interspeech 2022

tal
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Performance Comparison

(G

CASPR  sasere wamaase

ID  Description Year Accuracy (%) C
GSCD v/ GSCDv2  No.of params.  No. of mults.

1 Standard FENN with a pooling layer [32] 2020 912 90.6 447k -

2 DenseNet with trainable window function and mixup data augmentation [67] 2018 928 - - -

3 Two-stage TDNN [58] 2018 943 - 251k 25.1M
4 CNN with striding [32] 2018 95.4 95.6 529k -

5 BILSTM with attention [133] 2018 95.6 96.9 202k -

6 Residual CNN res15 [30] 2018 95840484 - 238k 894M
7 TDNN with shared weight self-attention [16] 2019 9581 £0.191 - 12k 403k
8 DenseNet+BiLSTM with attention [48] 2019 962 973 223k -

9 Residual CNN with temporal convolutions TC-ResNet: 14 [50] 2019 96.2 - 137k -
10 SVDF[32] 2019 963 96.9 354k -

11 SincConv+(Grouped DS-CNN) [70] 2020 96.4 973 62k -

12 Graph convolutional network CENet~40 [49] 2019 96.4 - 61k 16.18M
13 GRU[32] 2020 96.6 972 593k -

14 SincConv+(DS-CNN) [70] 2020 96.6 974 122k -

15 Temporal CNN with depthwise convolutions TENet 12 [52] 2020 96.6 - 100k 2.90M
16 Residual DS-CNN with squeeze-and-excitation DS-ResNet 18 [51] 2020 9671 +0.195 - 72k 285M
17 TC-ResNet14 with neural architecture search NoisyDARTS-TC14 [146] 2021 96794030  97.18 £0.26 108k 63M
18 LSTM[32] 2020 96.9 975 - -
19 DS-CNN with striding [32] 2018 97.0 97.1 -
20 CRNN[32] 2020 97.0 975 -
21 BiGRU with multi-head attention [32] 2020 972 98.0 -
22 CNN with neural architecture search NAS2_6_36 [125] 2020 97.22 - -
23 Keyword Transformer KWT-3 [90] 2021 9749015 98564007 -
24 Variant of TC-ResNet with self-attention LG-Net 6 [91] 2021 97.67 96.79 -
25 Broadcasted residual CNN BC-ResNet -8 [100] 2021 98.0 98.7 89.1M

@ The number of parameters and multiplications of the acoustic model are solid proxies

predicting the power consumption of these systems

1)

(1) R. Tang et al., “An experimental analysis of the power consumption of convolutional neural networks for keyword spotting”.
In Proc. of ICASSP 2018
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Performance Comparison CASPR oo

Year Accuracy (%) C

GSCD v/ GSCD¥2  No.of params.  No. of mults

1 Standard FENN with a pooling layer [32] 2020 912 90.6 447k -

2 DenseNet with trainable window function and mixup data augmentation [67) 2018 928 - - -

3 Two-stage TDNN [58] 2018 943 - 251k 25.1M
4 CNN with striding [32] 2018 95.4 95.6 529k

5 BiLSTM with attention [133] 2018 95.6 96.9 202k -

6 Residual CNN res15 [30] 2018 958+ 0484 - 238k 894M
7 TDNN with shared weight self-atiention [16] 2019 9581 +0.191 - 12k 403k
8 DenseNet+BILSTM with attention [48] 2019 96.2 97.3 223k -

9 Residual CNN with temporal convolutions TC-ResNet 14 [50] 2019 962 - 137k -
10 SVDF[32] 2019 963 96.9 354k -
11 SincConv+(Grouped DS-CNN) [70] 2020 96.4 973 62k -
12 Graph convolutional network CENet~40 [49] 2019 96.4 - 61k 16.18M
13 GRU[32] 2020 96.6 972 593k -
14 SincConv+(DS-CNN) [70] 2020 96.6 97.4 122k -
15 Temporal CNN with depthwise convolutions TENet 12 [52] 2020 96.6 - 100k 2.90M
16 Residual DS-CNN with squeeze-and-excitation DS-ResNet 18 [51] 2020 96.71%0.195 - 72k 285M
17 TC-ResNet 14 with neural architecture search NoisyDARTS-TC14 [146] 2021 9679030  97.18 £0.26 108k 63M
18 LSTM[32] 2020 969 975 - -
19 DS-CNN with striding [32] 2018 97.0 97.1 485k -
20 CRNN([32) 2020 97.0 975 467k -
21 BiGRU with multi-head attention [32] 2020 972 98.0 743k -
22 CNN with neural architecture search NAS2_6_36 [125] 2020 9722 - 886k -
23 Keyword Transformer KWT~3 [90] 2021 9749015 98564 0.07 53M -
24 Variant of TC-ResNet with self-attention LG-Net 6 [91] 2021 97.67 96.79 313k -
25 Broadcasted residual CNN BC-ResNet -8 [100] 2021 98.0 98.7 321k 89.1M

@ The second version of this dataset has more word samples — Better trained acoustic
models
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ID  Description Year Accuracy (%) C
GSCD v/ GSCDv2  No.of params.  No. of mults.

1 Standard FFNN with a pooling layer [32] 2020 912 90.6 447k -

2 DenseNet with trainable window function and mixup data augmentation [67) 2018 9238 - - -

3 Two-stage TDNN [58] 2018 943 - 251k 25.1M
4 CNN with striding [32] 2018 95.4 95.6 529k -

5 BiLSTM with attention [133] 2018 95.6 96.9 202k -

6 Residual CNN res15 [30] 2018 95840484 - 238k 894M
7 TDNN with shared weight self-attention [16] 2019 9581 +0.191 - 12k 403k
8 DenseNet+BIiLSTM with attention [48] 2019 96.2 973 223k -

9 Residual CNN with temporal convolutions TC-ResNet 14 [50] 2019 96.2 - 137k -

10 SVDF[32] 2019 963 96.9 354k -
11 SincConv+(Grouped DS-CNN) [70] 2020 96.4 973 62k -

12 Graph convolutional network CENet—40 [49] 2019 96.4 - 61k 16.18M
13 GRU[32] 2020 96.6 972 593k -
14 SincConv+(DS-CNN) [70] 2020 96.6 97.4 122k -

15 Temporal CNN with depthwise convolutions TENet 12 [52] 2020 96.6 100k 2.90M
16 Residual DS-CNN with squeeze-and-excitation DS-ResNet 18 [51] 2020 9671+ 0.195 - 72k 285M
17 TC-ResNet14 with neural architecture search NoisyDARTS-TC14 [146] 2021 9679030  97.18 026 108k 63M
18 LSTM[32] 2020 969 975 - -

19 DS-CNN with striding [32] 2018 97.0 97.1 485k -
20 CRNN[32] 2020 97.0 975 467k -
21 BiGRU with multi-head attention [32] 2020 972 98.0 743k -
22 CNN with neural architecture search NAS2_6_36 [125] 2020 9722 - 886k -
23 Keyword Transformer KWT-3 [90] 2021 97494015 98564 0.07 53M

24 Variant of TC-ResNet with self-attention LG-Net 6 [91] 2021 97.67 96.79 313k -
25 Broadeasted residual CNN BC-ResNet -8 [100] 2021 98.0 98.7 321k 89.1M

@ The most frequently used acoustic model type is based on CNN +—
performance and lesser computational complexity!
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ID  Description Year Aceuracy (%) C
GSCD vi GSCD v2 No. of params.  No. of mults.

1 Standard FENN with a pooling layer [32] 2020 91.2 90.6 447k -

2 DenseNet with trainable window function and mixup data augmentation [67] 2018 928 - - -

3 Two-stage TDNN [58] 2018 94.3 - 251k 25.1M
4 CNN with striding [32] 2018 95.4 95.6 529k -

5 BIiLSTM with attention [133] 2018 95.6 969 202k -

6 Residual CNN res15 [30] 2018 9580484 - 238k 894M
7 TDNN with shared weight self-attention [16] 2019 95.810.191 - 12k 403k
8 DenseNet+BiLSTM with attention [48] 2019 96.2 97.3 223k -

9 Residual CNN with temporal convolutions TC-ResNet 14 [50] 2019 96.2 - 137k -

10 SVDF [32] 2019 96.3 96.9 354k -

11 SincConv+(Grouped DS-CNN) [70] 2020 96.4 973 62k -

12 Graph convolutional network CENet —40 [49] 2019 96.4 - 61k 16.18M
13 GRU[32) 2020 96.6 972 593k -

14 SincConv+(DS-CNN) [70] 2020 96.6 974 122k -

15 Temporal CNN with depthwise convolutions TENet 12 [52] 2020 96.6 - 100k 2.90M
16 Residual DS-CNN with squeeze-and-excitation DS-ResNet 18 [51] 2020 96.71 +0.195 - 72k 285M
17 TC-ResNet14 with neural architecture search NoisyDARTS-TC14 [146] 2021 96.79 + 0.30 97.18 £0.26 108k 6.3M
18 LSTM [32] 2020 96.9 975 - -

19 DS-CNN with striding [32] 2018 97.0 97.1 485k -
20 CRNN[32] 2020 97.0 97.5 467k -

21 BIiGRU with multi-head atiention [32] 2020 972 98.0 743k -
22 NN with neural architecture search NAS2_6_36 [125] 2020 97.22 - 886k -

23 Keyword Transformer KiT-3 [90] 2021 9749015  98.56+0.07 53M -
24 Variant of TC-ResNet with self-attention LG-Net & [91] 2021 97.67 96.79 313k -

25 Broadcasted residual CNN BC-ResNet -8 [100] 2021 98.0 98.7 321k 89.1IM

@ Neural architecture search (17-NoisyDARTS-TC14 vs. 9-TC-ResNet14; 22-NAS2_6_36)

(Interspeech 2022

tal

Sunday 18"



i (8

Performance Comparison CASPR oo

Year Accuracy (%) C

GSCD v/ GSCD¥2  No.of params.  No. of mults

1 Standard FENN with a pooling layer [32] 2020 912 90.6 447k -

2 DenseNet with trainable window function and mixup data augmentation [67) 2018 928 - - -

3 Two-stage TDNN [58] 2018 943 - 251k 25.1M
4 CNN with striding [32] 2018 95.4 95.6 529k -

5 BiLSTM with attention [133] 2018 95.6 96.9 202k -

6 Residual CNN res15 [30] 2018 958+ 0484 - 238k 894M
7 TDNN with shared weight self-atiention [16] 2019 9581 +0.191 - 12k 403k
8 DenseNet+BIiLSTM with attention [48] 2019 96.2 97.3 223k -

9 Residual CNN with temporal convolutions TC-ResNet 14 [50] 2019 962 - 137k -
10 SVDF[32] 2019 963 96.9 354k -
11 SincConv+(Grouped DS-CNN) [70] 2020 96.4 973 62k -
12 Graph convolutional network CENet~40 [49] 2019 96.4 - 61k 16.18M
13 GRU[32] 2020 96.6 972 593k -
14 SincConv+(DS-CNN) [70] 2020 96.6 97.4 122k -
15 Temporal CNN with depthwise convolutions TENet 12 [52] 2020 96.6 - 100k 2.90M
16 Residual DS-CNN with squeeze-and-excitation DS-ResNet 18 [51] 2020 9671 +0.195 - 72k 285M
17 TC-ResNet 14 with neural architecture search NoisyDARTS-TC14 [146] 2021 ~ 9679 £030  97.18 £026 108k 63M
18 LSTM[32] 2020 969 975 - -
19 DS-CNN with striding [32] 2018 97.0 97.1 485k -
20 CRNN([32] 2020 97.0 975 467k -
21 BiGRU with multi-head attention [32] 2020 972 98.0 743k -
22 CNN with neural architecture search NAS2_6_36 [125] 2020 9722 - 886k -
23 Keyword Transformer KWT~3 [90] 2021 9749015 98564 0.07 53M -
24 Variant of TC-ResNet with self-attention LG-Net 6 [91] 2021 97.67 96.79 313k -
25 Broadcasted residual CNN esNet -8 [100] 2021 98.0 98.7 320k 89.1M

@ Effectiveness of CRNNs (8-DenseNet+BiLSTM with attention vs. 2-DenseNet and
5-BiLSTM with attention; 20-CRNN)

(Interspeech 2022 ep Spoken KWS: 7. Experimental Sunday 18"
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On the Google Speech Commands Dataset v1

1000
220
g 800t
o 21e
=
2 600 f 130
Q
T
£ 18
@
S 400t
o oe
~o5 24@ 250
S 200t oo
°° 1igie
120 16@
0 o
94 95 % 97 98

Accuracy (%)

@ Systems with IDs 14, 15, 16 and 17: Based on CNNs

- Most of them integrate residual connections and/or depthwise separable convolutions

- Systems 15, 16 and 17 integrate either dilated or temporal convolutions to exploit long time-frequency dependencies

@ Systems with IDs 24 and 25: Based on CNNs with residual connections
- System 24 has temporal convolutions and self-attention layers, and System 25 has dilated convolutions
- System 25 incorporates depthwise separable convolutions

Ivan Lépez-Espejo (Interspeech 2022 ep Spoken KWS: 7. Experimental Sunday 18" September, 2022
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On the Google Speech Commands Dataset v1
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A state-of-the-art KWS system comprising a CNN acoustic model should cover...
[ A mechanism to exploit long time-frequency dependencies
z Depthwise separable convolutions
[/] Residual connections
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Conclusions and Future Directions

Conclusions

@ Speech features — DNN-based acoustic model (core) — Posterior
probability processing

@ Deep spoken KWS has revitalized KWS research by enabling a massive
deployment of this technology for real-world applications (e.g., voice
assistant activation)

w Advances in ASR research will continue impacting the field of KWS (e.g.,
optimal feature learning for end-to-end ASR)

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 8. Conclusions Sunday 18" September, 2022
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Future Directions

w Advancing acoustic modeling towards two goals simultaneously:
1) Improving KWS performance in real-life acoustic conditions
2) Computational complexity reduction

w Development of novel and efficient convolutional blocks
w Neural architecture search

@ Acoustic model compression (parameter quantization, network pruning,
knowledge distillation...):
1) Reduced memory footprint
2) Decreased inference latency
3) Less energy consumption

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 8. Conclusions Sunday 18" September, 2022
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Conclusions and Future Directions

Future Directions

w Semi-supervised learning for KWS:
- Industrial environment
- Hybrid learning based on both small (labeled) and big (unlabeled) volumes of data

@ Personalization:
1) Efficient open-vocabulary (personalized) KWS
2) Joint KWS and speaker verification

@ Multi-channel KWS for robustness purposes

Ivdn Lépez-Espejo (Interspeech 2022) Deep Spoken KWS: 8. Conclusions Sunday 18" September, 2022 4/5
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