

Deep Spoken Keyword Spotting

Iván López-Espejo¹, Zheng-Hua Tan¹ and Jesper Jensen^{1,2}

¹Department of Electronic Systems, Aalborg University, Denmark

²Oticon A/S, Denmark

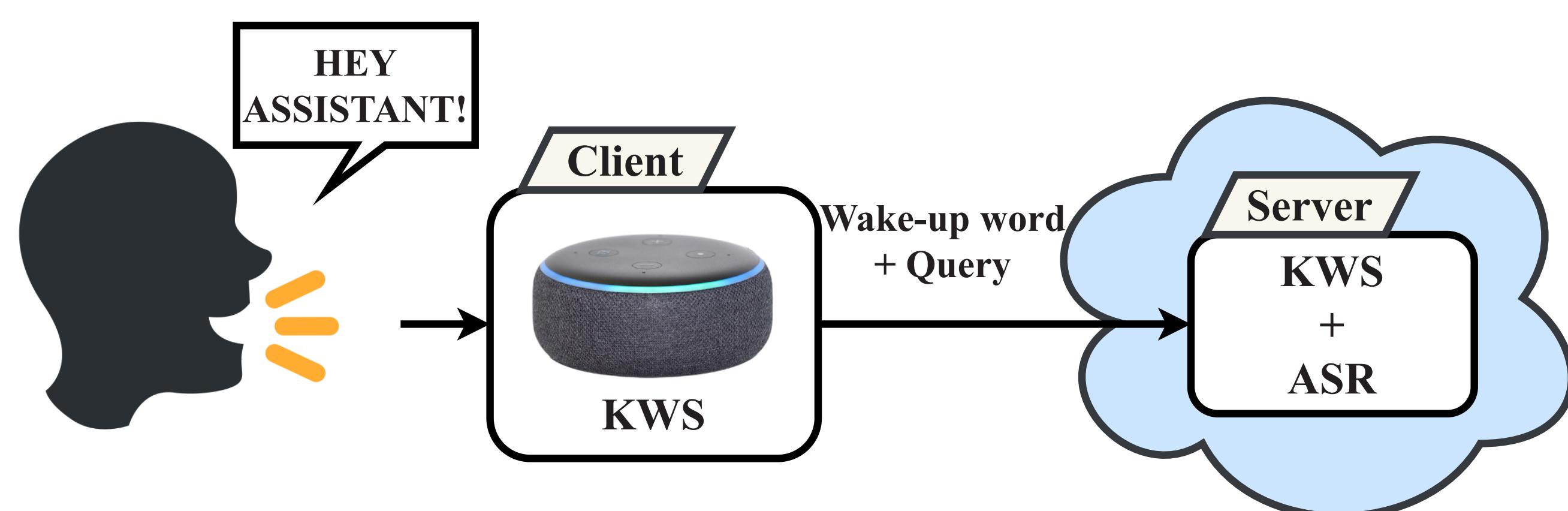
{ivl,zt,jje}@es.aau.dk, jesj@oticon.com

Introduction

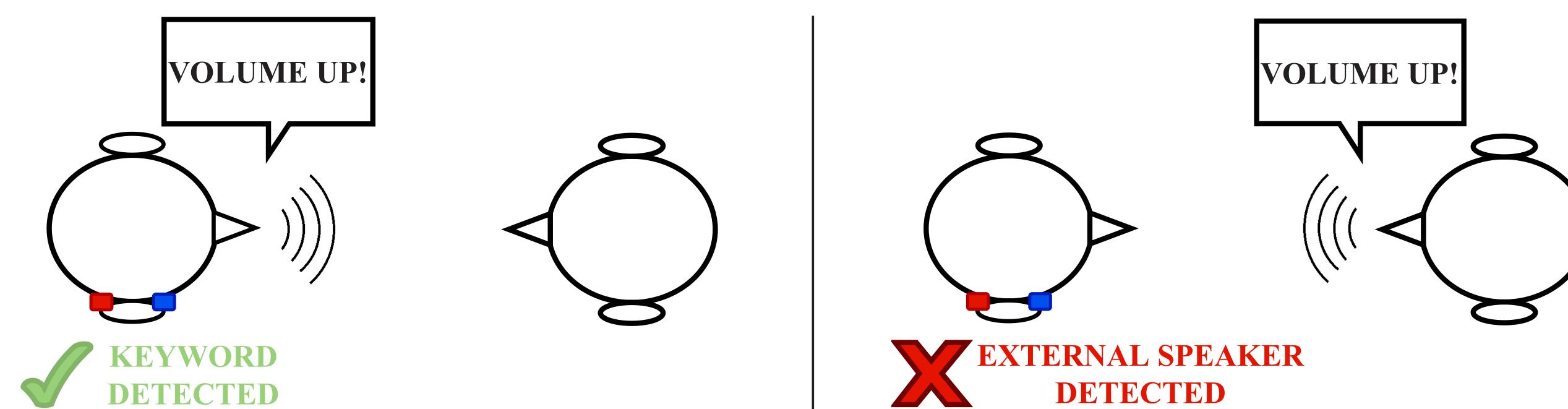
- ▶ **Keyword spotting (KWS):** Task of identifying keywords in audio streams comprising speech
- ▶ **Different KWS paradigms:** 1) Large-vocabulary continuous speech recognition, 2) keyword/filler hidden Markov model, and 3) deep spoken KWS
- ▶ **Deep spoken KWS:**
 1. Simpler posterior handling instead of Viterbi decoding
 2. Easily adjustable DNN acoustic model complexity
 3. Superior performance in both clean and noisy conditions
- ▶ Deep spoken KWS is very appealing to be deployed on a variety of *consumer electronics with limited resources* like earphones, smartphones and smart speakers

Applications

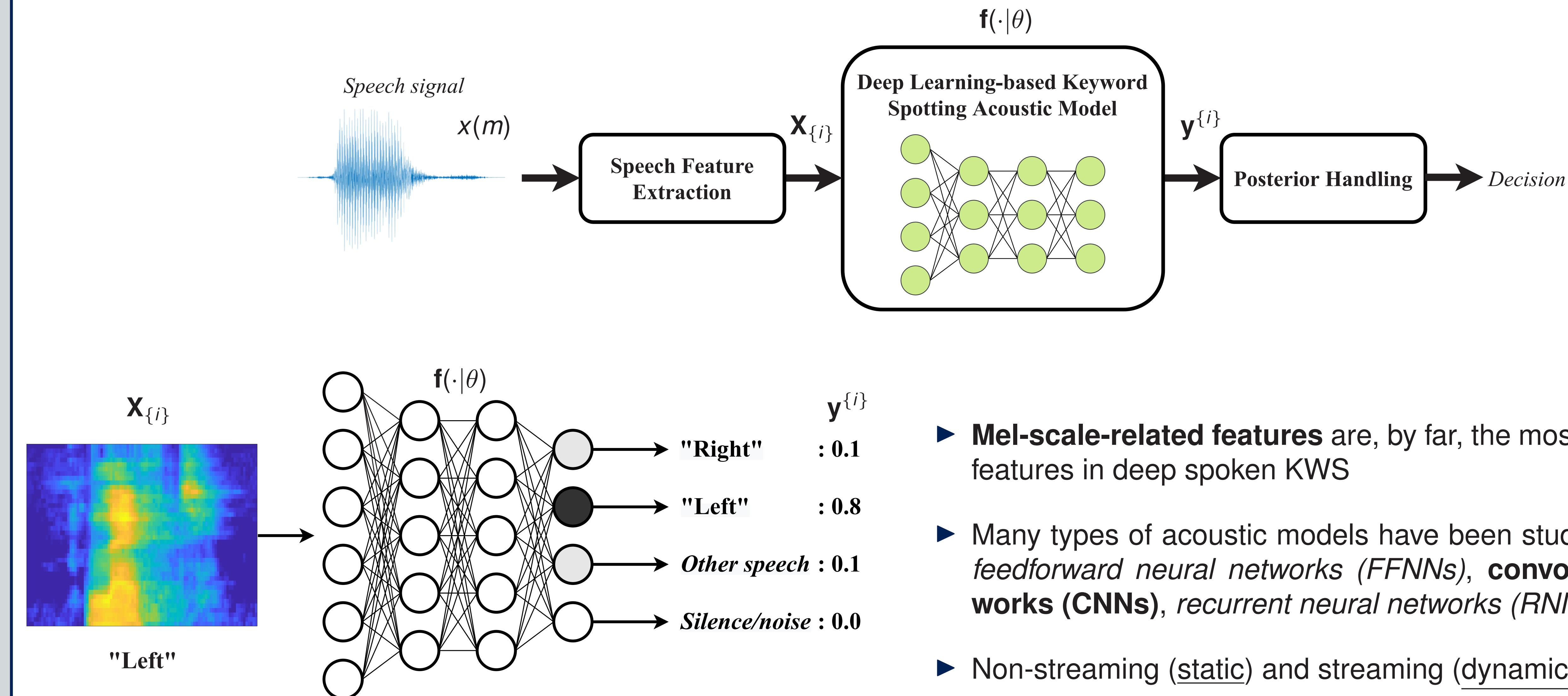
- ▶ Voice-dialing, interaction with a call center, speech retrieval, voice control of videogames and home automation, etc.
- ▶ **Personalized applications** by joint KWS and speaker verification
- ▶ **Activation of voice assistants (flagship application):**



- ▶ Voice control of hearing assistive devices:



Deep Spoken Keyword Spotting Approach

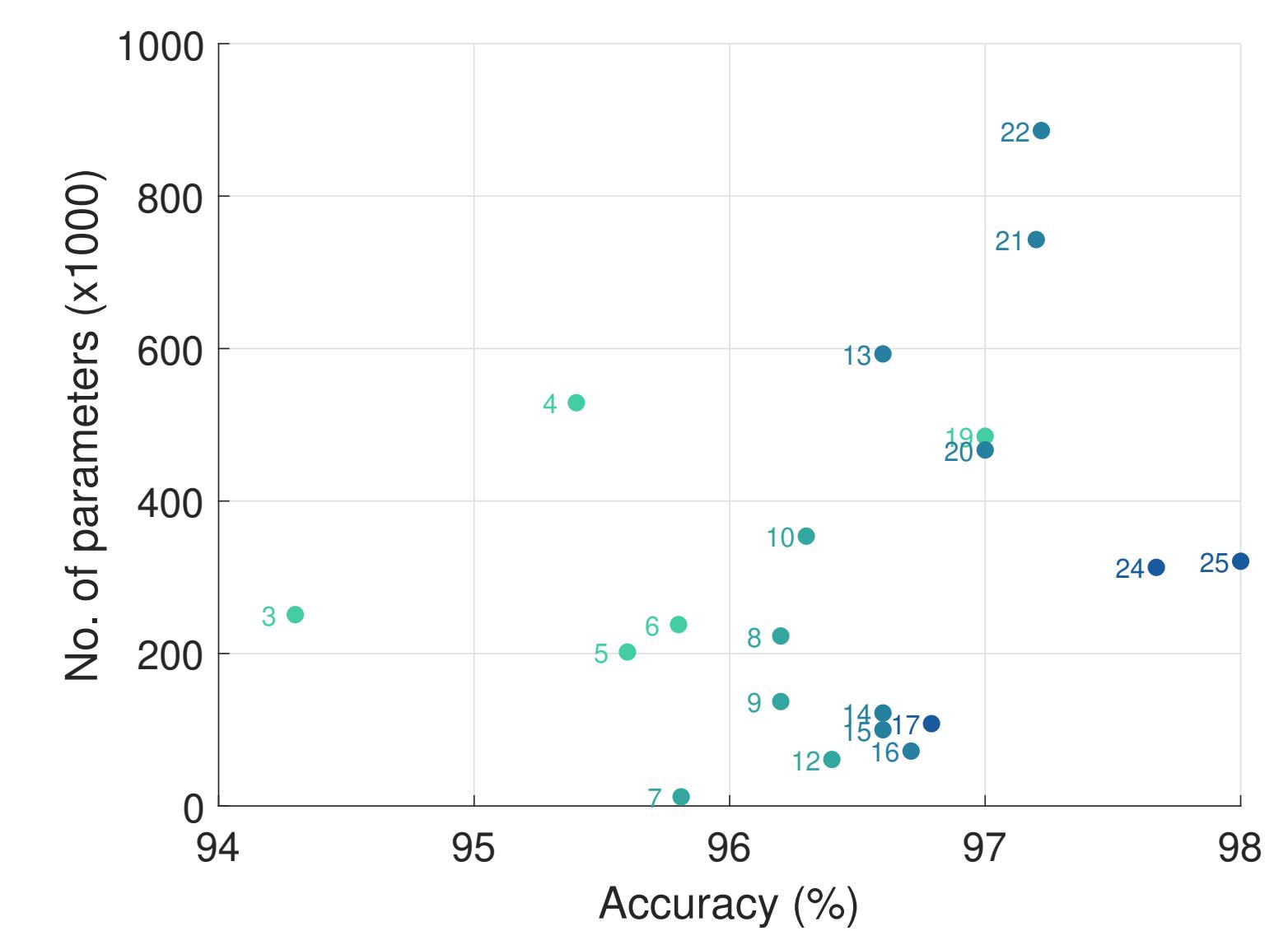


- ▶ **Mel-scale-related features** are, by far, the most widely used speech features in deep spoken KWS
- ▶ Many types of acoustic models have been studied: *Fully-connected feedforward neural networks (FFNNs)*, **convolutional neural networks (CNNs)**, *recurrent neural networks (RNNs)*...
- ▶ Non-streaming (static) and streaming (dynamic) posterior handling

Performance Comparison and Conclusions

Performance on the Google Speech Commands Dataset (GSCD) v1

Description	Year	Accuracy (%)	Complexity
		GSCD v1	No. of params.
1 Standard FFNN with a pooling layer	2020	91.2	447k
4 CNN with striding	2018	95.4	529k
5 Bidirectional long short-term memory (BiLSTM) with attention	2018	95.6	202k
6 Residual CNN res15	2018	95.8 ± 0.484	238k
7 Time-delay neural network with shared weight self-attention	2019	95.81 ± 0.191	12k
8 DenseNet+BiLSTM with attention	2019	96.2	223k
9 Residual CNN with temporal convolutions TC-ResNet14	2019	96.2	137k
10 Single value decomposition filter	2019	96.3	354k
13 Gated recurrent unit (GRU) RNN	2020	96.6	593k
14 SincConv+(DS-CNN)	2020	96.6	122k
15 Temporal CNN with depthwise convolutions TENet12	2020	96.6	100k
16 Residual DS-CNN with squeeze-and-excitation DS-ResNet18	2020	96.71 ± 0.195	72k
17 TC-ResNet14 with neural architecture search NoisyDARTS-TC14	2021	96.79 ± 0.30	108k
18 LSTM	2020	96.9	—
19 DS-CNN with striding	2018	97.0	485k
20 Convolutional recurrent neural network	2020	97.0	467k
21 BiGRU with multi-head attention	2020	97.2	743k
22 CNN with neural architecture search NAS2_6_36	2020	97.22	886k
23 Keyword Transformer KWT-3	2021	97.49 ± 0.15	5.3M
24 Variant of TC-ResNet with self-attention LG-Net6	2021	97.67	313k
25 Broadcasted residual CNN BC-ResNet-8	2021	98.0	321k



- ▶ State-of-the-art acoustic modeling is based on **CNNs**
- ▶ To reach a *high performance* with a *small computational footprint*, a CNN acoustic model should cover...
 1. A mechanism to exploit long time-frequency dependencies (e.g., dilated or temporal convolutions)
 2. Depthwise separable (**DS**) convolutions
 3. Residual connections