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Overview

@ Introduction

© Deep Spoken Keyword Spotting
© Paths Explored in CASPR

@ Personalization

© Speech Representation Learning

@ Robustness Against Noise
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Introduction

Motivation

@ Manual operation of hearing assistive devices
(HADs) is cumbersome in a number of situations.

@ To assist in addressing this issue, voice interfaces
are envisioned as a means for handling and
operating HADs in a practical manner.
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Introduction
Keyword Spotting for Hearing Assistive Devices

o Keyword spotting (KWS) is the technology
dealing with the identification of keywords in audio
streams comprising speech.

@ KWS can be applied to controlling HADs:

@ Personalization (utilization of user-specific
aspects, e.g., voice characteristics or head-related
acoustics of the specific user).

@ Robustness against noise.

© Low memory and low computational complexity.

o It is expected that this technology contributes to
enhance the life quality of hearing-impaired people.

24
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A Little of Context...

© Large-vocabulary continuous speech recognition (LVCSR)-based KWS
o Generation of rich lattices (high computational resources and latency).

@ Keyword/filler hidden Markov model (HMM)-based KWS (~89-90)

o Lighter alternative to LVCSR.
o Viterbi decoding is still required.

© Deep spoken KWS (20141)
e Simple posterior handling instead of Viterbi decoding.
o DNN complexity adjustable to fit the computational constraints.
e Better KWS performance.

Deep spoken KWS is very appealing to deploy popular KWS technology on a
variety of consumer electronics with limited resources! J

1G. Chen et al., “Small-footprint keyword spotting using deep neural networks”, in Proc. of
ICASSP 2014
Ivdn Lépez-Espejo (CASPR) Voice Controlled HADs Wednesday 19" May, 2021 5/24



) i |||| (‘
Deep Spoken Keyword Spotting oan

General Pipeline

Deep Learning-based Keyword
Spotting Acoustic Model

Speech signal

4 * “ " Speech Feature Posterior Handling
Extraction

"Right" :0.1
"Left" 108

Other speech : 0.1

Silence/noise : 0.0
"Left"
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Paths Explored in CASPR CASPR

© Personalization for HADs:

@ |. Lépez-Espejo, Z.-H. Tan and J. Jensen, “Keyword Spotting for Hearing Assistive
Devices Robust to External Speakers”, in Proc. of INTERSPEECH 2019, Graz
(Austria), 2019.

@ |. Lépez-Espejo, Z.-H. Tan and J. Jensen, “Improved External Speaker-Robust
Keyword Spotting for Hearing Assistive Devices”, IEEE Transactions on Audio,
Speech and Language Processing, 2020.

@ Speech representation learning:
@ |. Lépez-Espejo, Z.-H. Tan and J. Jensen, “Exploring Filterbank Learning for
Keyword Spotting”, in Proc. of EUSIPCO 2020, Amsterdam (The Netherlands),
2021.

© Robustness against acoustic noise:
@ |. Lépez-Espejo, Z.-H. Tan and J. Jensen, “A Novel Loss Function and Training
Strategy for Noise-Robust Keyword Spotting”, submitted to IEEE Transactions on
Audio, Speech and Language Processing.
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Introduction and Motivation

o KWS systems for HADs must be robust against external
speakers, that is, the user must be the only one allowed to trigger
actions on her/his HAD.

VOLUME UP! VOLUME UP!

) «

EXTERNAL SPEAKER
DETECTED

e We proposed HAD user (speaker)-dependent KWS drawing from
a state-of-the-art small-footprint KWS system based on deep residual
learning and dilated convolutions (res152).

2R, Tang and J. Lin, “Deep residual learning for small-footprint keyword spotting”, in Proc.
of ICASSP 2018, Calgary (Canada), 2018
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CASPR

Personalization

Multi-task Learning

KWS task
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Softmax
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Own-voice/external
speaker detection task

@ Two tasks: KWS and own-voice/external speaker detection.

@ The sigmoid layer outputs a probability P (5,, ‘\7,9) that the input \
corresponds to an utterance said by the HAD user S,,.

@ KWS prediction P (Wc \7,9) from V is considered if P (Su \7,0) > Prur

(PTHR = 0.5).
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Experimental Framework
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@ We created a two-microphone hearing aid speech database from the Google Speech
Commands Dataset (GSCD).

@ HAD user own-voice signals were generated by filtering 75% of the GSCD through a single
own-voice transfer function (OVTF).

@ External speaker signals were created by filtering the remaining 25% of the GSCD through
head-related transfer functions (HRTFs).

@ Apart from the unknown word class, 10 keywords were considered: “yes”, “no”, “up”
“down”, “left”, “right”, “on”, "off", “stop” and “go’.
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Results

@ Accuracy results (%) with 95% confidence intervals:
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(C

Own-voice/External speaker detection Keyword spotting
Architecture Training data Tnput type Own-voice subset _External speaker subset Overall Own-voice subset Overall
Baseline | res15 (KWS only) Own voice Front and rear mics — — — 94211039 | 7187 £ 0.30
Front Multi-task Own and external voice Front mic 97.49 + 1.02 80.38 + 5.23 93.02 £ 0.76 9428 £ 0.37 | 89.48 £ 0.74
Rear Multi-task Own and external voice Rear mic 97.28 & 1.08 79.03 £ 5.06 92.51 £ 0.68 9448 +0.25 | 89.29 &+ 0.55
Dual Multi-task Own and external voice _ Front and rear mics | 99.60 + 0.22 96.22 £ 1.61 98.72 £ 0.29 94.50 £ 0.32 | 94.86 + 039
===-Front
2 -+ Rear
© [—Dual
g —-—-Front
8 Rear
° —Dual
@
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False alarm rate (%)

DET curves for own-voice/external speaker detection.
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270°

External speaker detection accuracy as a function of the angle

of external speakers.
@ The OVTF and HRTFs are more similar (in terms of MFCC Euclidean
distance) at angles where we see a relative drop in performance.
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Personalization

Improved Experimental Framework

@ While the created two-microphone hearing aid speech database comprises
speech signals uttered by many different speakers, impulse responses for its
generation were only measured on a single actual person.

@ Impulse responses are user-dependent, as these characterize physical
features, e.g., head size and shape.

@ We created a new speech corpus with impulse responses measured on
multiple persons wearing a hearing aid: multi-user database.

@ Problem! Performance loss in terms of KWS accuracy: from 94.86% =+
0.39 to 80.45% =+ 0.55.
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Improved Keyword Spotting

Towards reducing the performance loss:

@ The relative position of the users’” mouth w.r.t. the hearing aid microphones
is virtually time-invariant and different from that of an external speaker:

e Spectral magnitude features for KWS.

o Phase difference information (GCC-PHAT-based coefficients) for
own-voice/external speaker detection.

@ Use of the perceptually-motivated constant-Q transform
frequencies the frequency (time) resolution is higher.
STFT CQT
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Personalization

Results

Accuracy results (%) with 95% confidence intervals:
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Own-voice/External speaker detection Keyword spotting
Own-voice subset  External speaker subset Overall Own-voice subset Overall
Baseline — — — 93.81 &+ 0.27 73.88 = 0.23
MFCC-80x1 92.64 + 1.39 55.36 + 4.43 84.26 + 0.45 93.27 + 0.30 80.45 + 0.55
MFCC-40x2 97.03 + 1.81 87.18 + 2.06 94.81 +1.20 94.32 £0.21 90.78 + 1.16
Multi-user database STFT-S 98.60 + 0.95 95.03 + 1.10 97.80 + 0.53 94.30 £+ 0.34 93.59 + 0.64
CQT-S 98.44 + 0.87 92.12 + 2.39 97.02 + 0.44 94.60 & 0.31 93.19 + 0.52
STFT-S+GCC 98.61 + 1.30 96.40 £ 1.21 98.11 £+ 0.93 94.23 £+ 0.57 93.77 £ 0.99
CQT-S+GCC 99.49 + 0.47 98.67 + 0.36 99.31 + 0.33 94.81 £ 0.26 95.34 + 0.32
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External speaker detection accuracy as a function of the angle
of external speakers.

DET curves for own-voice/external speaker detection.
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Speech Representation Learning

Introduction and Motivation

@ Handcrafted speech features like MFCCs are not necessarily optimal
for any particular speech processing task.

@ Recent trend: development of end-to-end deep learning systems
where the feature extraction process is optimal according to the task
and training criterion.

@ We explored the possible advantages of employing learned filterbanks
over handcrafted speech features for KWS.
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Methods

Keyword Spotting Sy

Deep Residual Neural Network-
based KWS Back-end

Speech signal

: SPEECH FEATURES
- = Posterior Handling

(C

Decision

Fronte;d = H Front-end =
B . ~ 2
2 | () Xz &l e o0) | fzol m® |xem|" B
' o 3 | ! back-end o3 3
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g g
@ Filterbank matrix weight learning in @ Psychoacoustically-motivated gammachirp
the power spectral domain filterbank parameter learning

For both front-ends, the learnable filterbank parameters are optimized by

backpropagation jointly with the KWS back-end!
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Results

We used the Google Speech Commands Dataset to experiment (10 keywords)

F£Bt.26 (log-Mel)

Accuracy results (%) with 95% confidence intervals.

@ Filterbank matrix learning:

Test | Accuracy (%)
F£Bt_26 (log-Mel) 95.64 £ 0.33
FtBt_26 95.73 £ 0.24
F£Bt_26 + FtBf_10 95.73 £ 0.38
FfBt_13 + FtBt_I3 | 95.30 + 0.82

@ Gammachirp filterbank learning:

Test | Accuracy (%) || n b c
GT[£]_Ic-Mel 95.47 = 0.36 4 1.019 0 F£Bt 13 + FeBe 13
GC[£]_Ic-Mel 95.45 + 0.58 4 1.019 -1 15 . p

s 1 1 A \
GC[t]_Ie-Mel 95.12 £ 042 | 4.69 +£0.07 0976 + 0.015 -0.84 =+ 0.05 2 i T i AV \ N
GC[t] Ic-Linear | 95.19 =052 | 444 £0.05 0866 + 0.019 -0.88 + 0.02 2ol LA \ \ AVANANR
GC[t]_Ir-Mel 94.68 £ 052 || 490 £ 0.51 0976 £ 0.115  -0.97 £ 0.32 < IHRII YYYYYY \ Y N
GC[t]_Ir-Linear | 94.93 = 045 | 4.65 £ 041 0861 + 0075 -0.98 £ 0.38 0 o s = s

s

In general, there are no statistically significant differences between using a learned
filterbank and handcrafted speech features = the latter are still a good choice
when employing modern KWS back-ends!
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Speech Representation Learning

Results

@ Is the filterbank and, in general, the speech feature design actually a crucial
part of modern KWS systems?

Using log-Mel features:

® © © o
o S o S

Accuracy (%)

®
S

~
o

None 22-24 21-25 20-26 19-27 18-28 17-29
Range of removed filterbank channels

feeos &~ 2,000 Hz, [20,26] = [1, 626, 2,564] Hz

KWS systems are fed with a great amount of redundant information = new
possibilities in the field of small-footprint KWS regarding the design of much
more compact speech features!
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Robustness Against Noise
A Training Strategy and Loss Function

@ The development of KWS systems that are accurate in noisy
conditions remains a challenge.

@ We interpret z as linearly

Fc A 9 classifiable keyword embeddings.
+ | O00000
$o=r.oxe.) Two-stage training strategy:
{O 00 040 QO O} @ The keyword embedding extractor
o : rECIO) f,(:|6,) is multi-condition trained
£.(-10- A N
by considering a new
[OOOOAOOOO} (Cn.2 + 1)-pair loss function.
[OOOO*OOOOJ ] @ FC + Softmax is trained using
cross-entropy loss and
H X multi-condition keyword
embeddings extracted by f,(-|6,).
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Robustness Against Noise
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A Training Strategy and Loss Function

e We suggested a (Cy 2 + 1)-pair loss function extending the concept
behind other tuple-based loss functions like triplet and N-pair losses.

@ The (Cy + 1)-pair loss can achieve larger inter-class and smaller
intra-class variation = the generalization ability of an embedding
extractor can be improved.

Before update

Before update

Before update

Before update

Before update

(a) Contrastive loss

(b) Triplet loss

Ivdn Lépez-Espejo (CASPR)

(c) Quadruplet loss

Voice Controlled HADs

(d) N-pair loss
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(e) (Cn,2 + 1)-pair loss
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Results

We used a noisy version of the Google Speech Commands Dataset to experiment
(10 keywords) and the same deep residual learning model as before

@ Accuracy results (%) with 95% confidence intervals:

SNR (dB)
10 ] 0 5 10 15 20 Clean Average
Baseline 5751 £ 096 7594 £ 142 8836 130 9290 £ 043 9459 =075 95.17 £ 0.74 9609 £ 0.72 9645 £ 0.87 | 87.13 £ 0.60
Contrastive loss | 5973 & 1.46 7507+ 1.74 8681 £ 0.83 9256 £ 064 9437 £029 9514 £ 031 9585+ 080 9672+ 036 | 87.03 + 0.65
Seen noises Triplet loss 60.12+ 268 7570 £207 8696+ 078 9304+ 072 9386+ 078 9514+ 087 9601 £ 076 9667 + 042 | 87.19 £ 0.91
Quadruplet loss | 6036 = 147 7800 + 117 8785 & 117 9280 £ 0.66 9440 = 0.90 95.58 £ 0.59 9621 + 0.48 96.88 £ 0.94 | 87.76 + 0.68
N-pair loss 6007+ 173 7729 £095 8872+ 061 9341 £050 9500 £ 053 9592+ 022 9662+ 0.64 97.00 £ 0.44 | 88.00 % 0.16
(Cy.z+ D-pairloss | 6184 & 173 7800 + 197 8882 & 0.41 9348 £ 049  95.17 = 0.82 9594 £ 0.57 9676 & 0.56 9691  0.57 | 88.36 + 0.72
Baseline 3501+ 187 6206 £ 140 8220 £ 191 8975 £ 118 9287 £ 092 9511+ 114 9611 £ 043 9652 £ 0.64 | 81.22 £ 069
Contrastive loss | 38.98 & 1.74  62.61 £2.71 8119 % 1.76  89.02 + 0.87 9250 &+ 122 9429 £ 043 9538+ 0.84 96.61 + 032 | 81.32 + 0.86
Unseen noises Triplet loss 3778 £244 6244+ 114 8184 = 157 9013 £ 057 9345047 9528 +£037 9601 £ 058 9674 £ 059 | 81.71 £ 0.52
Quadruplet loss | 3826 + 0.95  63.94 + 1.37 8302+ 1.03  90.11 £ 070 9388 + 0.61 9526 + 044 9594 + 059 9678 + 048 | 8215 + 0.27
N-pair loss 3093 4254 64.86+ 189 8392 0.68 90.50 £ 027 9381 = 0.64 9528050 9630+ 0.64 9698 £ 0.54 | 8270 £ 0.52
(Cnoo+ Depairloss | 4121 £ 2,63 6527 + 110 84.67 £ 099 9226 % 015 94.70 = 048 9620 = 0.87 9671 £ 0.49 9719  0.59 | 83.53 & 030

@ Average intra- and inter-class Euclidean distances with 95% confidence intervals:

Intra-class distance Inter-class distance
Training Test: Seen noises  Test: Unseen noises Training Test: Seen noises_ Test: Unseen noises

Baseline 0327 £ 0001 0.423 =+ 0.003 0.488 =+ 0.003 1272+ 0021 1.234 =+ 0.021 1.197 + 0.021
Contrastive loss 0.084 +0.001  0.235 = 0.005 0.324 = 0.006 1482 + 0004 1.480 = 0.004 1.477 + 0.004
Triplet loss 0.031 +0.000 0199 = 0.005 0.280 =+ 0.005 1471 £0022 1470 £ 0.022 1.469 + 0.022
Quadruplet loss 0.030 £ 0.000  0.196 % 0.005 0.278 = 0.005 1473 0020 1.472 & 0.020 1471 + 0,020
N-pair loss (D2, (21,22)) | 0052+ 0000 0.236 = 0.005 0.325 + 0.005 1482 + 0002 1478 + 0.002 1474 £ 0.002
N-pair loss 0.023 +0.000  0.196 =+ 0.005 0.278 =+ 0.006 1481 £ 0009 1481 = 0.009 1.480 =+ 0.009
(C,2 + 1)-pair loss 0.018 = 0.000  0.191 = 0.005 0.268 = 0.006 1483 + 0002 1.483 = 0.002 1.482 % 0.002
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Results

@ Test set (unseen noises only) keyword embedding representation:

Baseline Contrastive loss Triplet loss
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Robustness Against Noise

Conclusions

This training strategy and loss function...

© ...can be applied to most of the latest (single- and multi-channel)
KWS models.

@ ...do increase neither the number of parameters nor the number of
multiplications of the model.

© ...can potentially be useful to mitigate the effect of other types of
distortions in addition to acoustic noise.

@ ...might be exported to other application areas such as image
classification.

Ivdn Lépez-Espejo (CASPR) Voice Controlled HADs May, 2021 23 /24



Thanks for your attention!

EW GR
oW o,

«.

o, 3
Re ynv©

49 BREq,
“,

AT

il
CASPR

9,

Wednesday 19™" May, 2021 24 /24

Ivdn Lépez-Espejo (CASPR) Voice Controlled HADs



	Introduction
	Deep Spoken Keyword Spotting
	Paths Explored in CASPR
	Personalization
	Speech Representation Learning
	Robustness Against Noise

