

Voice Controlled Hearing Assistive Devices

Iván López-Espejo

Centre for Acoustic Signal Processing Research (CASPR)

ivl@es.aau.dk

Wednesday 19th May, 2021

- 1 Introduction
- 2 Deep Spoken Keyword Spotting
- 3 Paths Explored in CASPR
- 4 Personalization
- 5 Speech Representation Learning
- 6 Robustness Against Noise

Introduction

Motivation

- Manual operation of **hearing assistive devices (HADs)** is cumbersome in a number of situations.
- To assist in addressing this issue, **voice interfaces** are envisioned as a means **for handling and operating HADs** in a practical manner.

- **Keyword spotting (KWS)** is the technology dealing with the identification of keywords in audio streams comprising speech.
- KWS can be applied to controlling HADs:
 - ① Personalization (utilization of **user-specific aspects**, e.g., voice characteristics or head-related acoustics of the specific user).
 - ② Robustness against noise.
 - ③ Low memory and low computational complexity.
- It is expected that this technology contributes to enhance the life quality of hearing-impaired people.

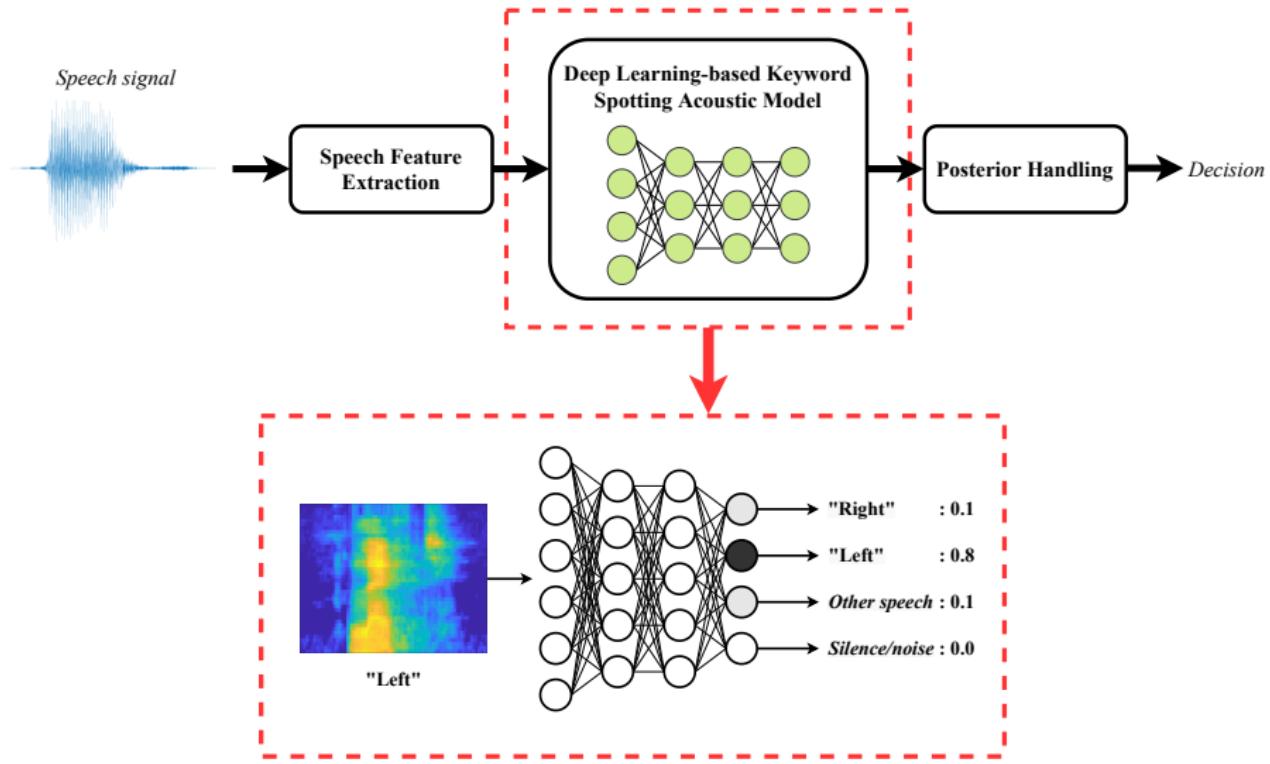
- ① Large-vocabulary continuous speech recognition (LVCSR)-based KWS
 - Generation of rich lattices (high computational resources and latency).
- ② Keyword/filler hidden Markov model (HMM)-based KWS (~89-90)
 - Lighter alternative to LVCSR.
 - Viterbi decoding is still required.
- ③ **Deep spoken KWS (2014¹)**
 - Simple posterior handling instead of Viterbi decoding.
 - DNN complexity adjustable to fit the computational constraints.
 - Better KWS performance.

Deep spoken KWS is very appealing to deploy popular KWS technology on a variety of consumer electronics with limited resources!

¹G. Chen *et al.*, "Small-footprint keyword spotting using deep neural networks", in *Proc. of ICASSP 2014*

Deep Spoken Keyword Spotting

General Pipeline



① Personalization for HADs:

- I. López-Espejo, Z.-H. Tan and J. Jensen, "Keyword Spotting for Hearing Assistive Devices Robust to External Speakers", in *Proc. of INTERSPEECH 2019*, Graz (Austria), 2019.
- I. López-Espejo, Z.-H. Tan and J. Jensen, "Improved External Speaker-Robust Keyword Spotting for Hearing Assistive Devices", *IEEE Transactions on Audio, Speech and Language Processing*, 2020.

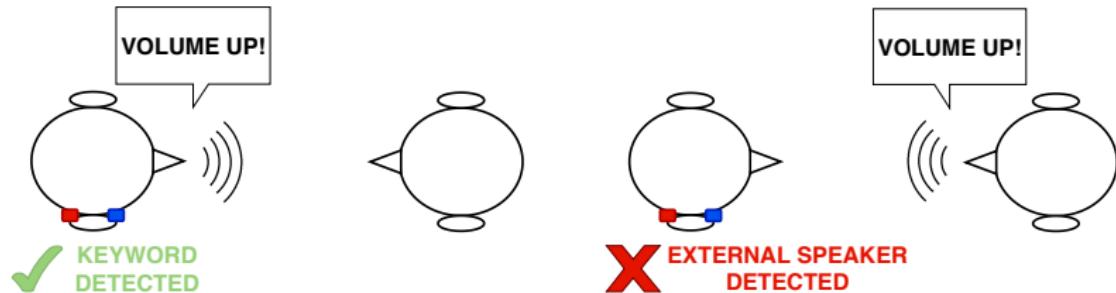
② Speech representation learning:

- I. López-Espejo, Z.-H. Tan and J. Jensen, "Exploring Filterbank Learning for Keyword Spotting", in *Proc. of EUSIPCO 2020*, Amsterdam (The Netherlands), 2021.

③ Robustness against acoustic noise:

- I. López-Espejo, Z.-H. Tan and J. Jensen, "A Novel Loss Function and Training Strategy for Noise-Robust Keyword Spotting", *submitted to IEEE Transactions on Audio, Speech and Language Processing*.

- **KWS systems for HADs must be robust against external speakers**, that is, the user must be the only one allowed to trigger actions on her/his HAD.

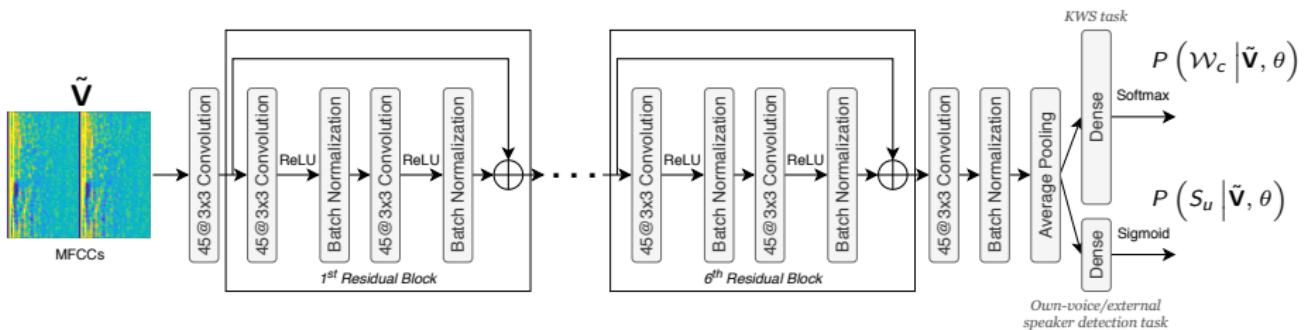


- **We proposed HAD user (speaker)-dependent KWS** drawing from a state-of-the-art small-footprint KWS system based on deep residual learning and dilated convolutions (res15²).

²R. Tang and J. Lin, "Deep residual learning for small-footprint keyword spotting", in *Proc. of ICASSP 2018*, Calgary (Canada), 2018

Personalization

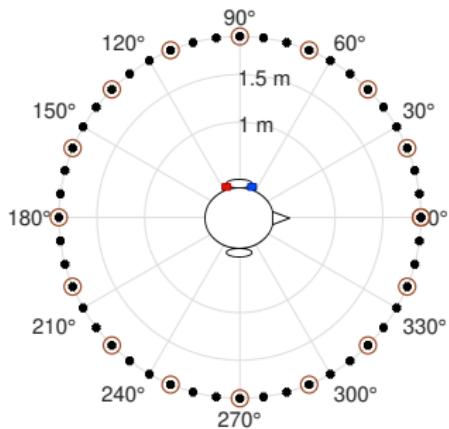
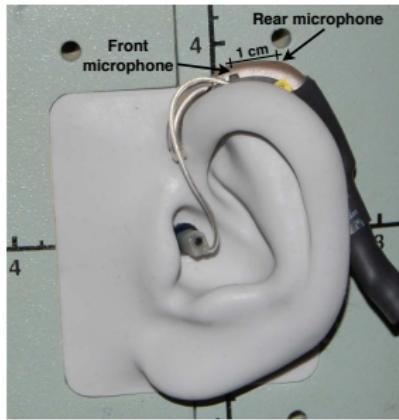
Multi-task Learning



- **Two tasks:** KWS and own-voice/external speaker detection.
- The sigmoid layer outputs a probability $P(S_u | \tilde{V}, \theta)$ that the input \tilde{V} corresponds to an utterance said by the HAD user S_u .
- KWS prediction $P(W_c | \tilde{V}, \theta)$ from \tilde{V} is considered if $P(S_u | \tilde{V}, \theta) > P_{THR}$ ($P_{THR} = 0.5$).

Personalization

Experimental Framework



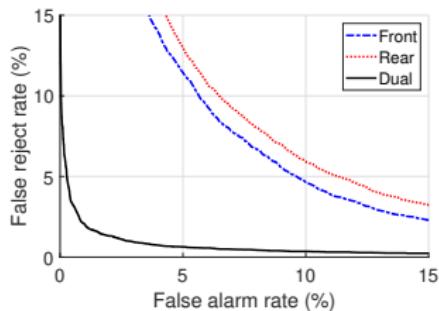
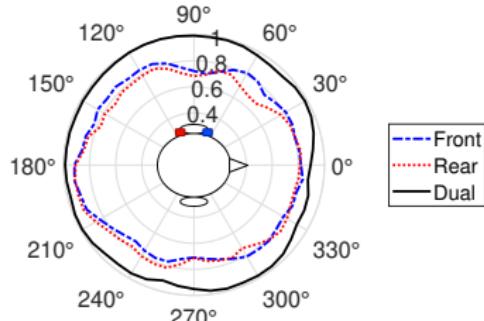
- We created a **two-microphone hearing aid speech database** from the Google Speech Commands Dataset (**GSCD**).
- HAD user own-voice signals were generated by filtering 75% of the GSCD through a single own-voice transfer function (**OVTF**).
- External speaker signals were created by filtering the remaining 25% of the GSCD through head-related transfer functions (**HRTFs**).
- Apart from the *unknown word* class, **10 keywords** were considered: "yes", "no", "up", "down", "left", "right", "on", "off", "stop" and "go".

Personalization

Results

- Accuracy results (%) with 95% confidence intervals:

	Architecture	Training data	Input type	Own-voice/External speaker detection			Keyword spotting	
				Own-voice subset	External speaker subset	Overall	Own-voice subset	Overall
Baseline	res15 (KWS only)	Own voice	Front and rear mics	—	—	—	94.21 \pm 0.39	71.87 \pm 0.30
Front	Multi-task	Own and external voice	Front mic	97.49 \pm 1.02	80.38 \pm 5.23	93.02 \pm 0.76	94.28 \pm 0.37	89.48 \pm 0.74
Rear	Multi-task	Own and external voice	Rear mic	97.28 \pm 1.08	79.03 \pm 5.06	92.51 \pm 0.68	94.48 \pm 0.25	89.29 \pm 0.55
Dual	Multi-task	Own and external voice	Front and rear mics	99.60 \pm 0.22	96.22 \pm 1.61	98.72 \pm 0.29	94.59 \pm 0.32	94.86 \pm 0.39

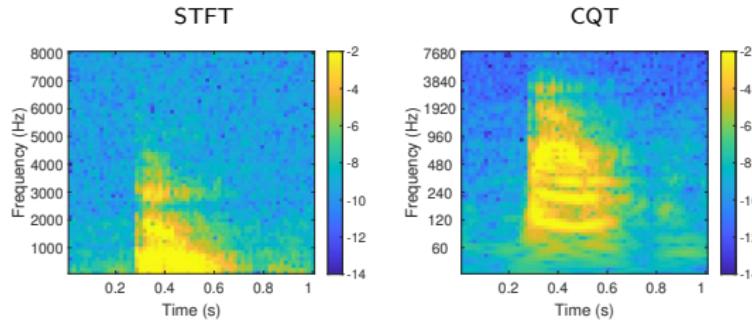


- The OVTF and HRTFs are more similar (in terms of MFCC Euclidean distance) at angles where we see a relative drop in performance.

- While the created two-microphone hearing aid speech database comprises speech signals uttered by many different speakers, impulse responses for its generation were only measured on a single actual person.
- Impulse responses are user-dependent, as these characterize physical features, e.g., head size and shape.
- We created a new speech corpus with impulse responses measured on multiple persons wearing a hearing aid: **multi-user database**.
- **Problem!** Performance loss in terms of KWS accuracy: from $94.86\% \pm 0.39$ to $80.45\% \pm 0.55$.

Towards reducing the performance loss:

- The relative position of the users' mouth w.r.t. the hearing aid microphones is virtually time-invariant and different from that of an external speaker:
 - Spectral magnitude features for KWS.
 - Phase difference information (**GCC-PHAT**-based coefficients) for own-voice/external speaker detection.
- Use of the perceptually-motivated **constant-Q transform**: at lower (higher) frequencies the frequency (time) resolution is higher.

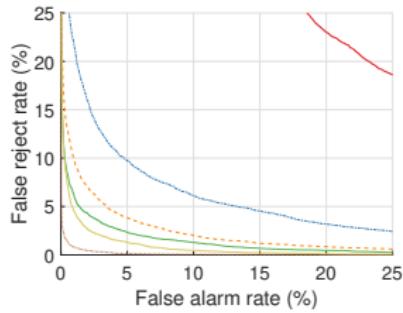


Personalization

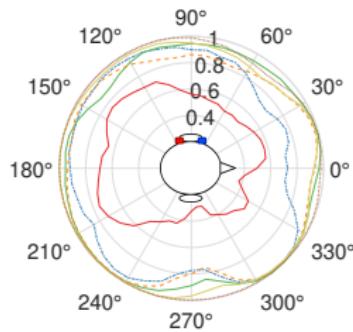
Results

Accuracy results (%) with 95% confidence intervals:

		Own-voice/External speaker detection			Keyword spotting	
		Own-voice subset	External speaker subset	Overall	Own-voice subset	Overall
Multi-user database	Baseline	—	—	—	93.81 ± 0.27	73.88 ± 0.23
	MFCC-80×1	92.64 ± 1.39	55.36 ± 4.43	84.26 ± 0.45	93.27 ± 0.30	80.45 ± 0.55
	MFCC-40×2	97.03 ± 1.81	87.18 ± 2.06	94.81 ± 1.20	94.32 ± 0.21	90.78 ± 1.16
	STFT-S	98.60 ± 0.95	95.03 ± 1.10	97.80 ± 0.53	94.30 ± 0.34	93.59 ± 0.64
	CQT-S	98.44 ± 0.87	92.12 ± 2.39	97.02 ± 0.44	94.60 ± 0.31	93.19 ± 0.52
	STFT-S+GCC	98.61 ± 1.30	96.40 ± 1.21	98.11 ± 0.93	94.23 ± 0.57	93.77 ± 0.99
	CQT-S+GCC	99.49 ± 0.47	98.67 ± 0.36	99.31 ± 0.33	94.81 ± 0.26	95.34 ± 0.32



DET curves for own-voice/external speaker detection.

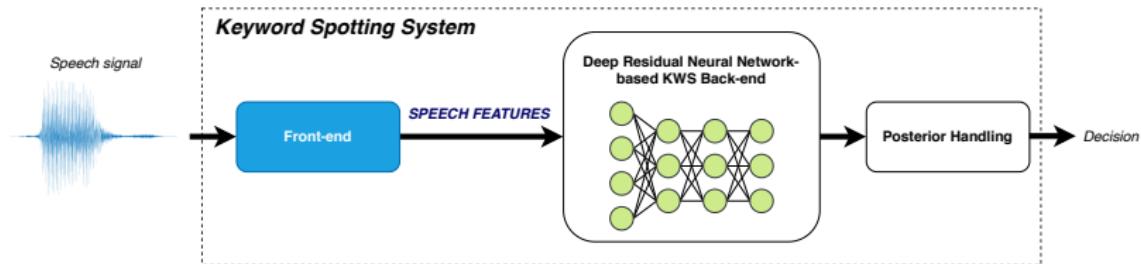
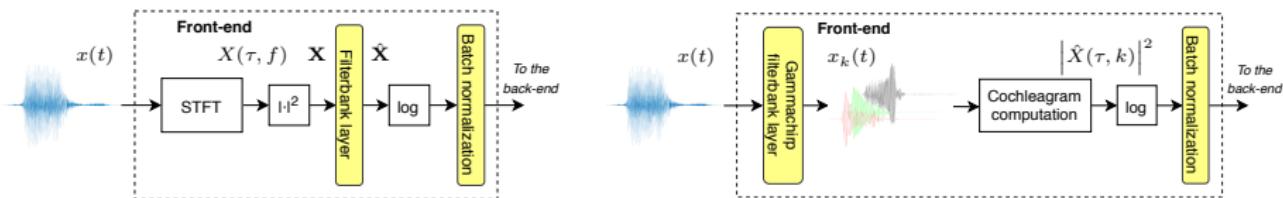


External speaker detection accuracy as a function of the angle of external speakers.

- Handcrafted speech features like MFCCs are not necessarily optimal for any particular speech processing task.
- **Recent trend:** development of end-to-end deep learning systems where the feature extraction process is optimal according to the task and training criterion.
- We explored the possible advantages of employing *learned filterbanks* over *handcrafted speech features* for KWS.

Speech Representation Learning

Methods



- Filterbank matrix weight learning in the power spectral domain
- Psychoacoustically-motivated gammachirp filterbank parameter learning

For both front-ends, the learnable filterbank parameters are optimized by backpropagation jointly with the KWS back-end!

Speech Representation Learning

Results

We used the Google Speech Commands Dataset to experiment (**10 keywords**)

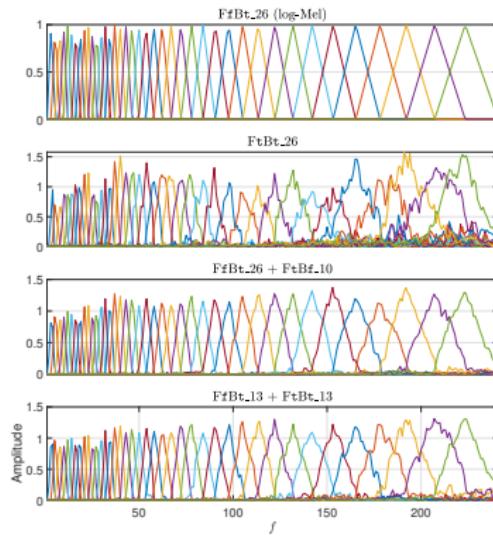
Accuracy results (%) with 95% confidence intervals.

- Filterbank matrix learning:

Test	Accuracy (%)
FfBt_26 (log-Mel)	95.64 \pm 0.33
FtBt_26	95.73 \pm 0.24
FfBt_26 + FtBf_10	95.73 \pm 0.38
FfBt_13 + FtBt_13	95.30 \pm 0.82

- Gammachirp filterbank learning:

Test	Accuracy (%)	n	b	c
GT[f]_Ic-Mel	95.47 \pm 0.36	4	1.019	0
GC[f]_Ic-Mel	95.45 \pm 0.58	4	1.019	-1
GC[t]_Ic-Mel	95.12 \pm 0.42	4.69 \pm 0.07	0.976 \pm 0.015	-0.84 \pm 0.05
GC[t]_Ic-Linear	95.19 \pm 0.52	4.44 \pm 0.05	0.866 \pm 0.019	-0.88 \pm 0.02
GC[t]_Ir-Mel	94.68 \pm 0.52	4.90 \pm 0.51	0.976 \pm 0.115	-0.97 \pm 0.32
GC[t]_Ir-Linear	94.93 \pm 0.45	4.65 \pm 0.41	0.861 \pm 0.075	-0.98 \pm 0.38



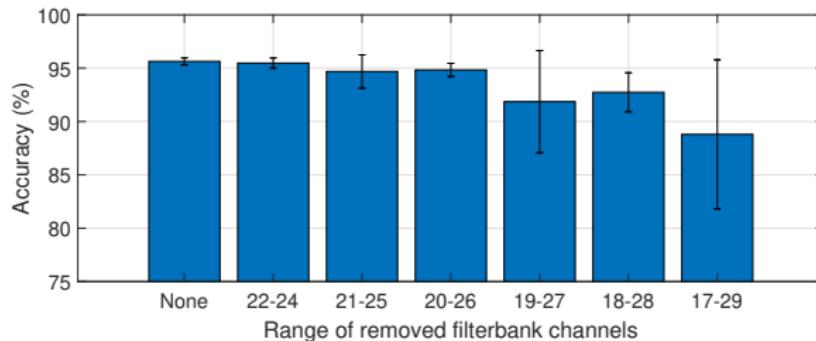
In general, there are **no** statistically significant differences between using a learned filterbank and handcrafted speech features \Rightarrow the latter are still a good choice when employing modern KWS back-ends!

Speech Representation Learning

Results

- Is the filterbank and, in general, the speech feature design actually a crucial part of modern KWS systems?

Using log-Mel features:



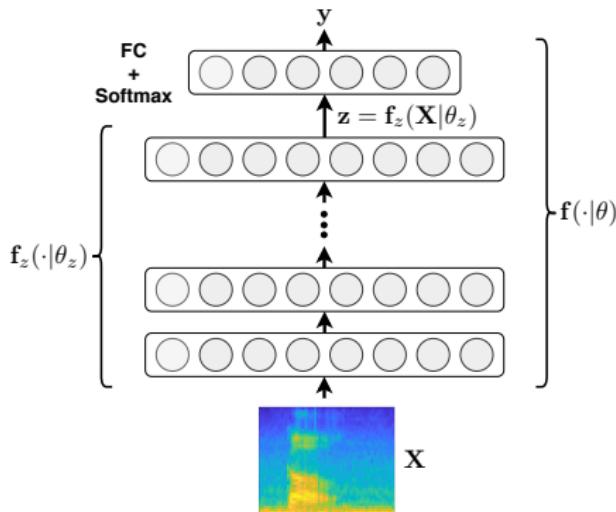
$$f_{k=23} \approx 2,000 \text{ Hz}, \quad [20, 26] \equiv [1, 626, 2, 564] \text{ Hz}$$

KWS systems are fed with a great amount of **redundant information** \Rightarrow new possibilities in the field of *small-footprint* KWS regarding the design of much more compact speech features!

Robustness Against Noise

A Training Strategy and Loss Function

- The development of KWS systems that are accurate in **noisy conditions** remains a challenge.



- We interpret z as linearly classifiable keyword embeddings.

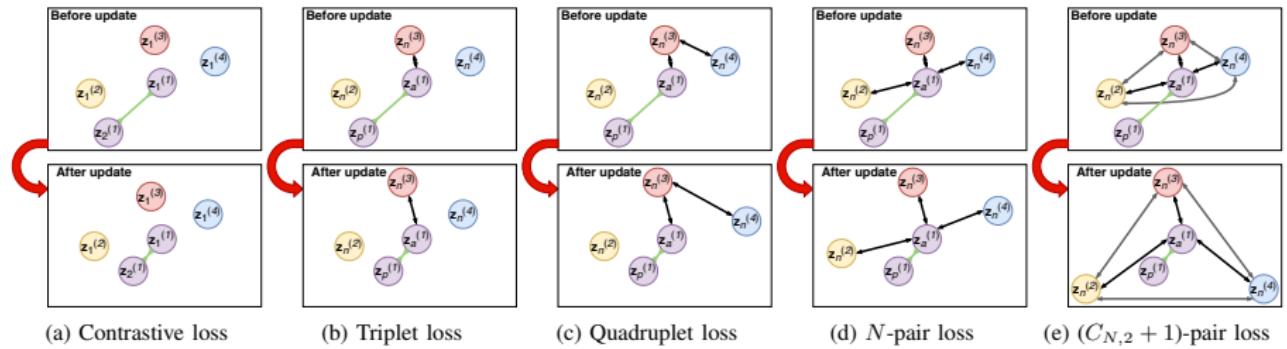
Two-stage training strategy:

- ① The keyword embedding extractor $f_z(\cdot|\theta_z)$ is multi-condition trained by considering a new $(C_{N,2} + 1)$ -pair loss function.
- ② **FC + Softmax** is trained using cross-entropy loss and multi-condition keyword embeddings extracted by $f_z(\cdot|\theta_z)$.

Robustness Against Noise

A Training Strategy and Loss Function

- We suggested a $(C_{N,2} + 1)$ -pair loss function extending the concept behind other tuple-based loss functions like triplet and N -pair losses.
- The $(C_{N,2} + 1)$ -pair loss can achieve larger inter-class and smaller intra-class variation \Rightarrow the *generalization ability* of an embedding extractor can be improved.



Robustness Against Noise

Results

We used a **noisy version** of the Google Speech Commands Dataset to experiment (**10 keywords**) and the **same deep residual learning model** as before

- Accuracy results (%) with 95% confidence intervals:

		SNR (dB)								
		-10	-5	0	5	10	15	20	Clean	Average
Seen noises	Baseline	57.51 ± 0.96	75.94 ± 1.42	88.36 ± 1.30	92.90 ± 0.43	94.59 ± 0.75	95.17 ± 0.74	96.09 ± 0.72	96.45 ± 0.87	87.13 ± 0.60
	Contrastive loss	59.73 ± 1.46	75.07 ± 1.74	86.81 ± 0.83	92.56 ± 0.64	94.37 ± 0.29	95.14 ± 0.31	95.85 ± 0.80	96.72 ± 0.36	87.03 ± 0.65
	Triplet loss	60.12 ± 2.68	75.70 ± 2.07	86.96 ± 0.78	93.04 ± 0.72	93.86 ± 0.78	95.14 ± 0.87	96.01 ± 0.76	96.67 ± 0.42	87.19 ± 0.91
	Quadruplet loss	60.36 ± 1.47	78.00 ± 1.17	87.85 ± 1.17	92.80 ± 0.66	94.40 ± 0.90	95.58 ± 0.59	96.21 ± 0.48	96.88 ± 0.94	87.76 ± 0.68
	N -pair loss	60.07 ± 1.73	77.29 ± 0.95	88.72 ± 0.61	93.41 ± 0.50	95.00 ± 0.53	95.92 ± 0.22	96.62 ± 0.64	97.00 ± 0.44	88.00 ± 0.16
	$(C_{N,2} + 1)$ -pair loss	61.84 ± 1.73	78.00 ± 1.97	88.82 ± 0.41	93.48 ± 0.49	95.17 ± 0.82	95.94 ± 0.57	96.76 ± 0.56	96.91 ± 0.57	88.36 ± 0.72
Unseen noises	Baseline	35.11 ± 1.87	62.06 ± 1.40	82.20 ± 1.91	89.75 ± 1.18	92.87 ± 0.92	95.11 ± 1.14	96.11 ± 0.43	96.52 ± 0.64	81.22 ± 0.69
	Contrastive loss	38.98 ± 1.74	62.61 ± 2.71	81.19 ± 1.76	89.02 ± 0.87	92.50 ± 1.22	94.29 ± 0.43	95.38 ± 0.84	96.61 ± 0.32	81.32 ± 0.86
	Triplet loss	37.78 ± 2.44	62.44 ± 1.14	81.84 ± 1.57	90.13 ± 0.57	93.45 ± 0.47	95.28 ± 0.37	96.01 ± 0.58	96.74 ± 0.59	81.71 ± 0.52
	Quadruplet loss	38.26 ± 0.95	63.94 ± 1.37	83.02 ± 1.03	90.11 ± 0.70	93.88 ± 0.61	95.26 ± 0.44	95.94 ± 0.59	96.78 ± 0.48	82.15 ± 0.27
	N -pair loss	39.93 ± 2.54	64.86 ± 1.89	83.92 ± 0.68	90.50 ± 0.27	93.81 ± 0.64	95.28 ± 0.50	96.30 ± 0.64	96.98 ± 0.54	82.70 ± 0.52
	$(C_{N,2} + 1)$ -pair loss	41.21 ± 2.63	65.27 ± 1.10	84.67 ± 0.99	92.26 ± 0.15	94.70 ± 0.48	96.20 ± 0.87	96.71 ± 0.49	97.19 ± 0.59	83.53 ± 0.30

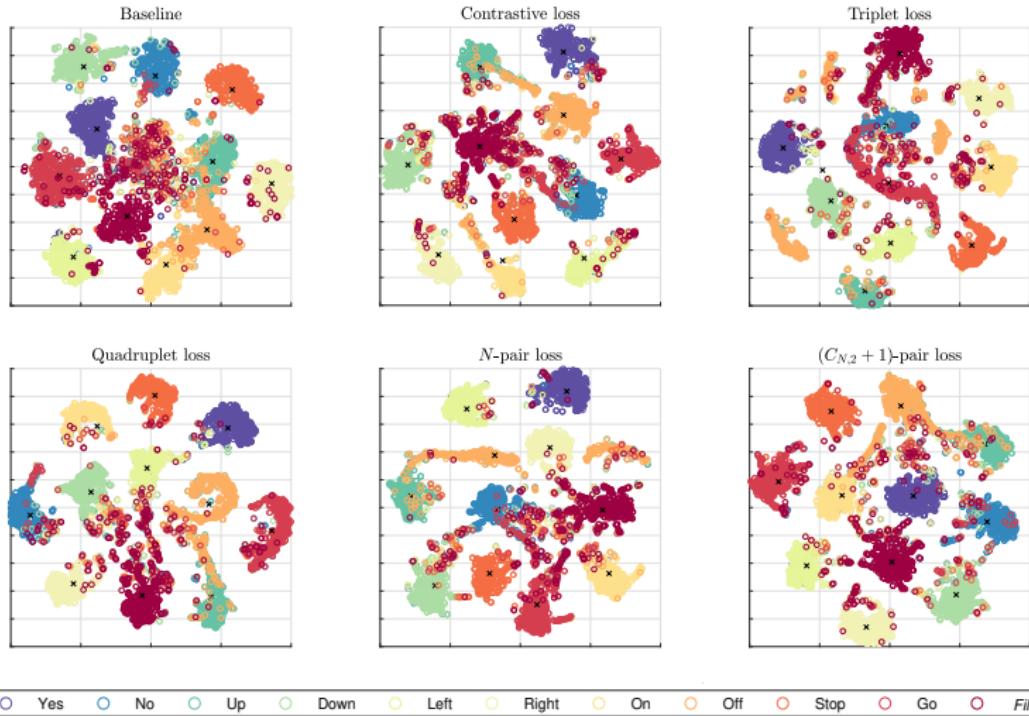
- Average intra- and inter-class Euclidean distances with 95% confidence intervals:

	Intra-class distance			Inter-class distance		
	Training	Test: Seen noises	Test: Unseen noises	Training	Test: Seen noises	Test: Unseen noises
Baseline	0.327 ± 0.001	0.423 ± 0.003	0.488 ± 0.003	1.272 ± 0.021	1.234 ± 0.021	1.197 ± 0.021
Contrastive loss	0.084 ± 0.001	0.235 ± 0.005	0.324 ± 0.006	1.482 ± 0.004	1.480 ± 0.004	1.477 ± 0.004
Triplet loss	0.031 ± 0.000	0.199 ± 0.005	0.280 ± 0.005	1.471 ± 0.022	1.470 ± 0.022	1.469 ± 0.022
Quadruplet loss	0.030 ± 0.000	0.196 ± 0.005	0.278 ± 0.005	1.473 ± 0.020	1.472 ± 0.020	1.471 ± 0.020
N -pair loss ($D_E^2(\bar{z}_1, \bar{z}_2)$)	0.052 ± 0.000	0.236 ± 0.005	0.325 ± 0.005	1.482 ± 0.002	1.478 ± 0.002	1.474 ± 0.002
N -pair loss	0.023 ± 0.000	0.196 ± 0.005	0.278 ± 0.006	1.481 ± 0.009	1.481 ± 0.009	1.480 ± 0.009
$(C_{N,2} + 1)$ -pair loss	0.018 ± 0.000	0.191 ± 0.005	0.268 ± 0.006	1.483 ± 0.002	1.483 ± 0.002	1.482 ± 0.002

Robustness Against Noise

Results

- Test set (*unseen noises only*) keyword embedding representation:



This training strategy and loss function...

- ① ...can be applied to most of the latest (single- and multi-channel) KWS models.
- ② ...do increase neither the number of parameters nor the number of multiplications of the model.
- ③ ...can potentially be useful to mitigate the effect of other types of distortions in addition to acoustic noise.
- ④ ...might be exported to other application areas such as image classification.

Thanks for your attention!

