
Voice Controlled Hearing Assistive Devices

Iván López-Espejo

Centre for Acoustic Signal Processing Research (CASPR)

ivl@es.aau.dk

Wednesday 19th May, 2021

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 1 / 24

Overview CASPR
Centre for Acoustic Signal Processing Research

1 Introduction

2 Deep Spoken Keyword Spotting

3 Paths Explored in CASPR

4 Personalization

5 Speech Representation Learning

6 Robustness Against Noise

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 2 / 24

Introduction CASPR
Centre for Acoustic Signal Processing Research

Motivation

Manual operation of hearing assistive devices
(HADs) is cumbersome in a number of situations.

To assist in addressing this issue, voice interfaces
are envisioned as a means for handling and
operating HADs in a practical manner.

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 3 / 24

Introduction CASPR
Centre for Acoustic Signal Processing Research

Keyword Spotting for Hearing Assistive Devices

Keyword spotting (KWS) is the technology
dealing with the identification of keywords in audio
streams comprising speech.

KWS can be applied to controlling HADs:
1 Personalization (utilization of user-specific

aspects, e.g., voice characteristics or head-related
acoustics of the specific user).

2 Robustness against noise.
3 Low memory and low computational complexity.

It is expected that this technology contributes to
enhance the life quality of hearing-impaired people.

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 4 / 24

Deep Spoken Keyword Spotting CASPR
Centre for Acoustic Signal Processing Research

A Little of Context...

1 Large-vocabulary continuous speech recognition (LVCSR)-based KWS

Generation of rich lattices (high computational resources and latency).

2 Keyword/filler hidden Markov model (HMM)-based KWS (∼89-90)

Lighter alternative to LVCSR.
Viterbi decoding is still required.

3 Deep spoken KWS (20141)

Simple posterior handling instead of Viterbi decoding.
DNN complexity adjustable to fit the computational constraints.
Better KWS performance.

Deep spoken KWS is very appealing to deploy popular KWS technology on a
variety of consumer electronics with limited resources!

1G. Chen et al., “Small-footprint keyword spotting using deep neural networks”, in Proc. of
ICASSP 2014

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 5 / 24

Deep Spoken Keyword Spotting CASPR
Centre for Acoustic Signal Processing Research

General Pipeline

Deep Learning-based Keyword
Spotting Acoustic Model

Posterior HandlingSpeech Feature
Extraction

Speech signal

Decision

"Left"

"Right"

"Left"

Other speech

Silence/noise

:

:

:

:

0.1

0.1

0.8

0.0

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 6 / 24

Paths Explored in CASPR CASPR
Centre for Acoustic Signal Processing Research

1 Personalization for HADs:
I. López-Espejo, Z.-H. Tan and J. Jensen, “Keyword Spotting for Hearing Assistive
Devices Robust to External Speakers”, in Proc. of INTERSPEECH 2019, Graz
(Austria), 2019.
I. López-Espejo, Z.-H. Tan and J. Jensen, “Improved External Speaker-Robust
Keyword Spotting for Hearing Assistive Devices”, IEEE Transactions on Audio,
Speech and Language Processing, 2020.

2 Speech representation learning:
I. López-Espejo, Z.-H. Tan and J. Jensen, “Exploring Filterbank Learning for
Keyword Spotting”, in Proc. of EUSIPCO 2020, Amsterdam (The Netherlands),
2021.

3 Robustness against acoustic noise:
I. López-Espejo, Z.-H. Tan and J. Jensen, “A Novel Loss Function and Training
Strategy for Noise-Robust Keyword Spotting”, submitted to IEEE Transactions on
Audio, Speech and Language Processing.

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 7 / 24

Personalization CASPR
Centre for Acoustic Signal Processing Research

Introduction and Motivation

KWS systems for HADs must be robust against external
speakers, that is, the user must be the only one allowed to trigger
actions on her/his HAD.

VOLUME UP!

KEYWORD
DETECTED

VOLUME UP!

EXTERNAL SPEAKER
DETECTED

We proposed HAD user (speaker)-dependent KWS drawing from
a state-of-the-art small-footprint KWS system based on deep residual
learning and dilated convolutions (res152).

2R. Tang and J. Lin, “Deep residual learning for small-footprint keyword spotting”, in Proc.
of ICASSP 2018, Calgary (Canada), 2018

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 8 / 24

Personalization CASPR
Centre for Acoustic Signal Processing Research

Multi-task Learning

Ba
tc

h
N

or
m

al
iz

at
io

n

45
@

3x
3

C
on

vo
lu

tio
n

45
@

3x
3

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

al
iz

at
io

n

45
@

3x
3

C
on

vo
lu

tio
n

ReLU ReLU

Ba
tc

h
N

or
m

al
iz

at
io

n

45
@

3x
3

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

al
iz

at
io

n

45
@

3x
3

C
on

vo
lu

tio
n

ReLU ReLU. . .

45
@

3x
3

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

al
iz

at
io

n

Av
er

ag
e

Po
ol

in
g

1st Residual Block 6th Residual Block

D
en

se
D

en
se Sigmoid

Softmax

KWS	task

Own-voice/external
speaker	detection	task

MFCCs

Ṽ
P
(
Wc

∣∣∣Ṽ, θ)

P
(
Su

∣∣∣Ṽ, θ)

Two tasks: KWS and own-voice/external speaker detection.

The sigmoid layer outputs a probability P
(
Su

∣∣∣Ṽ, θ) that the input Ṽ

corresponds to an utterance said by the HAD user Su.

KWS prediction P
(
Wc

∣∣∣Ṽ, θ) from Ṽ is considered if P
(
Su

∣∣∣Ṽ, θ) > PTHR

(PTHR = 0.5).

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 9 / 24

Personalization CASPR
Centre for Acoustic Signal Processing Research

Experimental Framework

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

1 m

1.5 m

Rear microphone
Front

microphone
1 cm

We created a two-microphone hearing aid speech database from the Google Speech
Commands Dataset (GSCD).

HAD user own-voice signals were generated by filtering 75% of the GSCD through a single
own-voice transfer function (OVTF).

External speaker signals were created by filtering the remaining 25% of the GSCD through
head-related transfer functions (HRTFs).

Apart from the unknown word class, 10 keywords were considered: “yes”, “no”, “up”,
“down”, “left”, “right”, “on”, “off”, “stop” and “go”.

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 10 / 24

Personalization CASPR
Centre for Acoustic Signal Processing Research

Results

Accuracy results (%) with 95% confidence intervals:

Own-voice/External speaker detection Keyword spotting

Architecture Training data Input type Own-voice subset External speaker subset Overall Own-voice subset Overall

Baseline res15 (KWS only) Own voice Front and rear mics — — — 94.21 ± 0.39 71.87 ± 0.30

Front Multi-task Own and external voice Front mic 97.49 ± 1.02 80.38 ± 5.23 93.02 ± 0.76 94.28 ± 0.37 89.48 ± 0.74

Rear Multi-task Own and external voice Rear mic 97.28 ± 1.08 79.03 ± 5.06 92.51 ± 0.68 94.48 ± 0.25 89.29 ± 0.55

Dual Multi-task Own and external voice Front and rear mics 99.60 ± 0.22 96.22 ± 1.61 98.72 ± 0.29 94.59 ± 0.32 94.86 ± 0.39

0 5 10 15

False alarm rate (%)

0

5

10

15

F
a
ls

e
 r

e
je

c
t
ra

te
 (

%
)

Front

Rear

Dual

DET curves for own-voice/external speaker detection.

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0.4

0.6

0.8

1

Front

Rear

Dual

External speaker detection accuracy as a function of the angle
of external speakers.

The OVTF and HRTFs are more similar (in terms of MFCC Euclidean
distance) at angles where we see a relative drop in performance.

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 11 / 24

Personalization CASPR
Centre for Acoustic Signal Processing Research

Improved Experimental Framework

While the created two-microphone hearing aid speech database comprises
speech signals uttered by many different speakers, impulse responses for its
generation were only measured on a single actual person.

Impulse responses are user-dependent, as these characterize physical
features, e.g., head size and shape.

We created a new speech corpus with impulse responses measured on
multiple persons wearing a hearing aid: multi-user database.

Problem! Performance loss in terms of KWS accuracy: from 94.86% ±
0.39 to 80.45% ± 0.55.

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 12 / 24

Personalization CASPR
Centre for Acoustic Signal Processing Research

Improved Keyword Spotting

Towards reducing the performance loss:

The relative position of the users’ mouth w.r.t. the hearing aid microphones
is virtually time-invariant and different from that of an external speaker:

Spectral magnitude features for KWS.
Phase difference information (GCC-PHAT-based coefficients) for
own-voice/external speaker detection.

Use of the perceptually-motivated constant-Q transform: at lower (higher)
frequencies the frequency (time) resolution is higher.

STFT CQT

0.2 0.4 0.6 0.8 1

Time (s)

1000

2000

3000

4000

5000

6000

7000

8000

F
re

q
u
e
n
c
y
 (

H
z
)

-14

-12

-10

-8

-6

-4

-2

0.2 0.4 0.6 0.8 1

Time (s)

60

120

240

480

960

1920

3840

7680
F

re
q
u
e
n
c
y
 (

H
z
)

-14

-12

-10

-8

-6

-4

-2

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 13 / 24

Personalization CASPR
Centre for Acoustic Signal Processing Research

Results

Accuracy results (%) with 95% confidence intervals:

Own-voice/External speaker detection Keyword spotting
Own-voice subset External speaker subset Overall Own-voice subset Overall

Multi-user database

Baseline — — — 93.81 ± 0.27 73.88 ± 0.23
MFCC-80×1 92.64 ± 1.39 55.36 ± 4.43 84.26 ± 0.45 93.27 ± 0.30 80.45 ± 0.55
MFCC-40×2 97.03 ± 1.81 87.18 ± 2.06 94.81 ± 1.20 94.32 ± 0.21 90.78 ± 1.16

STFT-S 98.60 ± 0.95 95.03 ± 1.10 97.80 ± 0.53 94.30 ± 0.34 93.59 ± 0.64
CQT-S 98.44 ± 0.87 92.12 ± 2.39 97.02 ± 0.44 94.60 ± 0.31 93.19 ± 0.52

STFT-S+GCC 98.61 ± 1.30 96.40 ± 1.21 98.11 ± 0.93 94.23 ± 0.57 93.77 ± 0.99
CQT-S+GCC 99.49 ± 0.47 98.67 ± 0.36 99.31 ± 0.33 94.81 ± 0.26 95.34 ± 0.32

0 5 10 15 20 25

False alarm rate (%)

0

5

10

15

20

25

F
a
ls

e
 r

e
je

c
t
ra

te
 (

%
)

DET curves for own-voice/external speaker detection.

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0.4

0.6

0.8

1

External speaker detection accuracy as a function of the angle
of external speakers.

MFCC-80x1 MFCC-40x2 STFT-S CQT-S STFT-S+GCC CQT-S+GCC

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 14 / 24

Speech Representation Learning CASPR
Centre for Acoustic Signal Processing Research

Introduction and Motivation

Handcrafted speech features like MFCCs are not necessarily optimal
for any particular speech processing task.

Recent trend: development of end-to-end deep learning systems
where the feature extraction process is optimal according to the task
and training criterion.

We explored the possible advantages of employing learned filterbanks
over handcrafted speech features for KWS.

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 15 / 24

Speech Representation Learning CASPR
Centre for Acoustic Signal Processing Research

Methods

Deep Residual Neural Network-
based KWS Back-end

Posterior HandlingFront-end

Speech signal

Decision
SPEECH FEATURES

Keyword Spotting System

STFT |·|2

Filterbank layer

log

Batch norm
alization

Front-end

To the
back-end

x(t) X(τ, f) X X̂

Fig. 1. Diagram of learnable filterbank matrix scheme.

out the difficulty comparing their work with previous work
on learned filterbanks where single error rates are presented
instead of statistical analyses of the results over repeated trials.
The question is therefore whether those single error rates
are meaningful or can be explained by a lucky setting of
parameters.

The rest of this paper is organized as follows. In Section
II, two different approaches for filterbank learning in the
context of KWS are presented. The experimental framework
is described in Section III. Then, our experimental results
are shown and discussed in Section IV. Finally, Section V
concludes this work.

II. FILTERBANK LEARNING FOR KEYWORD SPOTTING

In this section, we present two different filterbank learning
approaches for KWS. Bear in mind that, for both approaches,
the trainable filterbank parameters are optimized by backprop-
agation jointly with the deep residual neural network-based
KWS back-end of [12] (architecture res15).

A. Filterbank Matrix Learning

Figure 1 depicts a diagram of our learnable filterbank matrix
scheme. Notice that the front-end diagram is very similar to
a log-Mel feature extraction front-end except that the Mel
filterbank is replaced by a trainable filterbank.

Let x(t) be a speech signal (possibly containing a keyword)
and X(τ, f) its corresponding short-time Fourier transform
(STFT), where τ = 1, ..., T and f = 1, ..., F denote the
time frame and linear frequency bin indices, respectively. In
addition, T and F refer to the total number of time frames
and linear frequency bins, respectively, of the signal. Let

X =

 |X(1, 1)|2 . . . |X(1, F)|2
...

. . .
...

|X(T, 1)|2 . . . |X(T, F)|2

 (1)

be a T × F matrix comprised of the squared magnitude
of X(τ, f), then, the filterbank layer applies the following
transform to X:

X̂ = X · h(W), (2)

where W is the learnable F ×K filterbank matrix, K is the
total number of filterbank channels and h(·) is an element-wise
applied non-linearity to ensure the positivity of the filterbank
weights (as similarly considered in, e.g., [4], [5]). In this
work, h(·) = max(·, 0) is chosen to be the rectified linear
unit (ReLU) function. Then, the result of the logarithmic
compression log

(
max

(
X̂, η

))
, where log(·) and max(·)

Front-end

G
am

m
achirp

filterbank layer

Cochleagram
computation log

Batch norm
alization

To the
back-end

x(t) xk(t)
∣∣∣X̂(τ, k)

∣∣∣2

Fig. 2. Diagram of learnable gammachirp filterbank scheme.

are element-wise applied and η = e−50 is a threshold to
avoid numerical issues, is fed to a batch normalization layer
the goal of which is to perform feature mean and variance
normalization for robustness purposes. Finally, the output from
the batch normalization layer is used by the back-end for
keyword prediction.

B. Gammachirp Filterbank Learning

In this subsection, we consider a psychoacoustically-
motivated gammachirp filterbank [11] with learnable parame-
ters. This dynamic auditory filterbank consists of a gammatone
filterbank with an additional frequency-modulation term, the
so-called chirp term, that yields an asymmetric amplitude
spectrum. The chirp term is coherent with physiological ob-
servations on frequency-modulations in mechanical responses
of the basilar membrane [11].

The impulse responses of the gammachirp filterbank can be
defined as [11]

gc(t, k) = akt
n−1e−2πbERB(fk)t

× cos (2πfkt+ c log(t) + φ) , (3)

where {ak; k = 1, ...,K} are filter gains, n and b define the
envelope of the gamma function, c is the chirp term1, φ is the
initial phase (which is neglected in this work) and ERB(fk)
is the equivalent rectangular bandwidth of the k-th filter with
center frequency fk. At moderate stimulus levels [14],

ERB(fk) = 24.7 + 0.108fk [Hz]. (4)

A diagram of our learnable gammachirp filterbank scheme
is outlined in Figure 2. The gammachirp filterbank layer imple-
ments the linear convolution operation xk(t) = x(t) ∗ gc(t, k)
(k = 1, ...,K), where ak, n, b, c, fk and the ERBs are
trainable parameters. To preserve the physical meaning of
these parameters, the ReLU function is applied to ak, b, fk and
the ERBs, whereas n is constrained to be max(n, 1). Then,
the cochleagram computation module segments every signal
xk(t) into T overlapping frames of M samples each, xτ,k(m)

(m = 1, ...,M), and estimates the cochleagram
∣∣∣X̂(τ, k)

∣∣∣2 by
means of Parseval’s theorem as∣∣∣X̂(τ, k)

∣∣∣2 =M

M∑
m=1

x2τ,k(m). (5)

Finally, logarithmic compression and batch normalization are
applied to the cochleagram as discussed in Subsection II-A.

1Note that if c = 0, (3) becomes the gammatone filterbank.

Filterbank matrix weight learning in
the power spectral domain

STFT |·|2

Filterbank layer

log

Batch norm
alization

Front-end

To the
back-end

x(t) X(τ, f) X X̂

Fig. 1. Diagram of learnable filterbank matrix scheme.

out the difficulty comparing their work with previous work
on learned filterbanks where single error rates are presented
instead of statistical analyses of the results over repeated trials.
The question is therefore whether those single error rates
are meaningful or can be explained by a lucky setting of
parameters.

The rest of this paper is organized as follows. In Section
II, two different approaches for filterbank learning in the
context of KWS are presented. The experimental framework
is described in Section III. Then, our experimental results
are shown and discussed in Section IV. Finally, Section V
concludes this work.

II. FILTERBANK LEARNING FOR KEYWORD SPOTTING

In this section, we present two different filterbank learning
approaches for KWS. Bear in mind that, for both approaches,
the trainable filterbank parameters are optimized by backprop-
agation jointly with the deep residual neural network-based
KWS back-end of [12] (architecture res15).

A. Filterbank Matrix Learning

Figure 1 depicts a diagram of our learnable filterbank matrix
scheme. Notice that the front-end diagram is very similar to
a log-Mel feature extraction front-end except that the Mel
filterbank is replaced by a trainable filterbank.

Let x(t) be a speech signal (possibly containing a keyword)
and X(τ, f) its corresponding short-time Fourier transform
(STFT), where τ = 1, ..., T and f = 1, ..., F denote the
time frame and linear frequency bin indices, respectively. In
addition, T and F refer to the total number of time frames
and linear frequency bins, respectively, of the signal. Let

X =

 |X(1, 1)|2 . . . |X(1, F)|2
...

. . .
...

|X(T, 1)|2 . . . |X(T, F)|2

 (1)

be a T × F matrix comprised of the squared magnitude
of X(τ, f), then, the filterbank layer applies the following
transform to X:

X̂ = X · h(W), (2)

where W is the learnable F ×K filterbank matrix, K is the
total number of filterbank channels and h(·) is an element-wise
applied non-linearity to ensure the positivity of the filterbank
weights (as similarly considered in, e.g., [4], [5]). In this
work, h(·) = max(·, 0) is chosen to be the rectified linear
unit (ReLU) function. Then, the result of the logarithmic
compression log

(
max

(
X̂, η

))
, where log(·) and max(·)

Front-end
G

am
m

achirp
filterbank layer

Cochleagram
computation log

Batch norm
alization

To the
back-end

x(t) xk(t)
∣∣∣X̂(τ, k)

∣∣∣2

Fig. 2. Diagram of learnable gammachirp filterbank scheme.

are element-wise applied and η = e−50 is a threshold to
avoid numerical issues, is fed to a batch normalization layer
the goal of which is to perform feature mean and variance
normalization for robustness purposes. Finally, the output from
the batch normalization layer is used by the back-end for
keyword prediction.

B. Gammachirp Filterbank Learning

In this subsection, we consider a psychoacoustically-
motivated gammachirp filterbank [11] with learnable parame-
ters. This dynamic auditory filterbank consists of a gammatone
filterbank with an additional frequency-modulation term, the
so-called chirp term, that yields an asymmetric amplitude
spectrum. The chirp term is coherent with physiological ob-
servations on frequency-modulations in mechanical responses
of the basilar membrane [11].

The impulse responses of the gammachirp filterbank can be
defined as [11]

gc(t, k) = akt
n−1e−2πbERB(fk)t

× cos (2πfkt+ c log(t) + φ) , (3)

where {ak; k = 1, ...,K} are filter gains, n and b define the
envelope of the gamma function, c is the chirp term1, φ is the
initial phase (which is neglected in this work) and ERB(fk)
is the equivalent rectangular bandwidth of the k-th filter with
center frequency fk. At moderate stimulus levels [14],

ERB(fk) = 24.7 + 0.108fk [Hz]. (4)

A diagram of our learnable gammachirp filterbank scheme
is outlined in Figure 2. The gammachirp filterbank layer imple-
ments the linear convolution operation xk(t) = x(t) ∗ gc(t, k)
(k = 1, ...,K), where ak, n, b, c, fk and the ERBs are
trainable parameters. To preserve the physical meaning of
these parameters, the ReLU function is applied to ak, b, fk and
the ERBs, whereas n is constrained to be max(n, 1). Then,
the cochleagram computation module segments every signal
xk(t) into T overlapping frames of M samples each, xτ,k(m)

(m = 1, ...,M), and estimates the cochleagram
∣∣∣X̂(τ, k)

∣∣∣2 by
means of Parseval’s theorem as∣∣∣X̂(τ, k)

∣∣∣2 =M

M∑
m=1

x2τ,k(m). (5)

Finally, logarithmic compression and batch normalization are
applied to the cochleagram as discussed in Subsection II-A.

1Note that if c = 0, (3) becomes the gammatone filterbank.

Psychoacoustically-motivated gammachirp
filterbank parameter learning

For both front-ends, the learnable filterbank parameters are optimized by
backpropagation jointly with the KWS back-end!

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 16 / 24

Speech Representation Learning CASPR
Centre for Acoustic Signal Processing Research

Results

We used the Google Speech Commands Dataset to experiment (10 keywords)

Accuracy results (%) with 95% confidence intervals.

Filterbank matrix learning:

III. EXPERIMENTAL FRAMEWORK

We use the Google Speech Commands Dataset (GSCD) [15]
for KWS experiments. This database consists of 105,829 one-
second long speech files with a sampling rate of fs = 16
kHz. Each speech file comprises one word among 35 possible
candidate words. The GSCD is split into training (∼80%
of the data), validation (∼10%) and test (∼10%) sets in
such a manner that speakers do not overlap across sets. The
deep residual neural network-based KWS back-end of [12]
(architecture res15) is trained to spot the 10 keywords “yes”,
“no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop” and
“go”. Utterances with the remaining 25 words of the GSCD
(i.e., non-keywords) are used to define the filler class, so
the KWS back-end has to solve an 11-class classification
problem. All the word classes are approximately balanced in
the different sets.

The length of the analysis window and the hop size are,
respectively, M = 480 and 160 samples (corresponding to
30 ms and 10 ms at fs = 16 kHz). Therefore, every one-
second long utterance is comprised of T = 98 time frames.
Furthermore, F = (M/2) + 1 = 241 and, as is common [6]–
[8], K = 40 is the number of filterbank channels.

The filterbank learning schemes presented in Section II and
the KWS back-end are coded by means of Keras [16]. The
back- and front-end are trained by using categorical cross-
entropy as the loss function, and Adam [17] with default
parameters as the optimizer (i.e., the learning rate is 0.001,
β1 = 0.9 and β2 = 0.999). Similarly to [12], training runs
for 26 epochs by default, which is found to be sufficient to
guarantee convergence. The size of the minibatch is set to 64
training samples. During training, data augmentation is applied
by carefully following the procedure described in [18].

As a KWS performance metric, we employ accuracy, which
is defined as the ratio of the number of correct predictions over
the total number of them. To draw meaningful conclusions,
accuracy results are provided along with 95% confidence
intervals calculated from outputs of 10 different back-end real-
izations trained with different random parameter initialization.

IV. RESULTS AND DISCUSSION

A. Filterbank Matrix Learning

We first evaluate our learnable filterbank matrix scheme of
Figure 1 by jointly and/or alternately training the back- and
front-end for a number of epochs. The filterbank matrix of
the filterbank layer, W, is initialized by a Mel filterbank. It
is worth to note that preliminary experiments explored the
initialization of W by a linear-frequency spaced, triangular-
shaped filterbank and no statistically significant differences
were observed with respect to the Mel-based initialization.

Table I reports our KWS accuracy results from the learnable
filterbank matrix scheme by following the naming convention
FxBy z, where x ∈ {t, f} indicates whether the front-end is
trained, t, or not (i.e., fixed), f, y ∈ {t, f} indicates the same,
but for the back-end, and z is the number of training epochs.
Thus, we consider FfBt 26 a baseline, since it corresponds

TABLE I
KEYWORD SPOTTING ACCURACY RESULTS WITH 95% CONFIDENCE
INTERVALS, IN PERCENTAGES, FROM OUR LEARNABLE FILTERBANK

MATRIX SCHEME.

Test Accuracy (%)

FfBt 26 (log-Mel) 95.64 ± 0.33
FtBt 26 95.73 ± 0.24
FfBt 26 + FtBf 10 95.73 ± 0.38
FfBt 13 + FtBt 13 95.30 ± 0.82

0

0.5

1

0

0.5

1

1.5

0

0.5

1

1.5

50 100 150 200
0

0.5

1

1.5

A
m

p
lit

u
d

e

Fig. 3. Mel filterbank (top) and average (across the 10 experiment repetitions)
learned filterbanks from our learnable filterbank matrix scheme.

to the use of standard log-Mel features. As can be seen from
Table I, jointly training the back- and front-end (i.e., the
filterbank) from scratch, FtBt 26, does not yield a statisti-
cally significant improvement with respect to using standard
log-Mel features. Therefore, we assess whether fine-tuning
only the filterbank from our well-trained log-Mel baseline by
10 additional epochs, FfBt 26 + FtBf 10, provides some
performance benefits. According to the results, this choice
does not yield a statistically significant improvement, either
(95.73% ± 0.38 vs. 95.64% ± 0.33 accuracy). This may be
explained by the fact that the back-end is already optimized
to work with a Mel filterbank, so substantially altering such
a filterbank might even lead to worse performance. This
hypothesis is supported by Figure 3, which plots the Mel
filterbank and learned filterbanks from our learnable filterbank
matrix scheme. In this figure, we can see at a glance the
relatively higher similarity between the learned filterbank for
FfBt 26 + FtBf 10 and the Mel filterbank. To no avail, we
relax this constraint while still seizing the apparent virtues of
the Mel filterbank by training only the back-end from scratch
and, prior to convergence, jointly training the back- and front-
end, FfBt 13 + FtBt 13.

Gammachirp filterbank learning:

TABLE II
KEYWORD SPOTTING ACCURACY RESULTS, IN PERCENTAGES, AND

LEARNED n, b AND c VALUES FROM OUR LEARNABLE GAMMACHIRP
FILTERBANK SCHEME. RESULTS ARE PROVIDED ALONG WITH 95%

CONFIDENCE INTERVALS.

Test Accuracy (%) n b c

GT[f] Ic-Mel 95.47 ± 0.36 4 1.019 0
GC[f] Ic-Mel 95.45 ± 0.58 4 1.019 -1

GC[t] Ic-Mel 95.12 ± 0.42 4.69 ± 0.07 0.976 ± 0.015 -0.84 ± 0.05
GC[t] Ic-Linear 95.19 ± 0.52 4.44 ± 0.05 0.866 ± 0.019 -0.88 ± 0.02
GC[t] Ir-Mel 94.68 ± 0.52 4.90 ± 0.51 0.976 ± 0.115 -0.97 ± 0.32
GC[t] Ir-Linear 94.93 ± 0.45 4.65 ± 0.41 0.861 ± 0.075 -0.98 ± 0.38

B. Gammachirp Filterbank Learning

Table II shows our KWS accuracy results and learned n, b
and c values from our learnable gammachirp filterbank scheme
of Figure 2. In this case, we follow the naming convention
GC[x] Iy-z, where x ∈ {t, f} indicates whether the front-end
is trained, t, or not2, f, y ∈ {c, r} refers to the initialization
type of n, b and c which can be either constant, c, or random,
r, and z tells whether the center frequencies fk and the ERBs
from (4) are initialized by a Mel or a linear scale3. When
y ≡ c, the initialization of the gamma function and chirp
parameters is n = 4, b = 1.019 and c = −1 [11]. Otherwise,
these parameters are initialized by uniform random sampling
according to n ∼ U(3, 5), b ∼ U(0.8, 1.2) and c ∼ U(−2, 0).
The impulse responses of (3) are normalized to be in the
range [−1, 1] and ak is initialized to 1 ∀k. Apart from a
gammachirp baseline, GC[f] Ic-Mel, a gammatone baseline,
GT[f] Ic-Mel, is also tested by simply setting c = 0.

From Table II, we can see that there are no statistically sig-
nificant differences among the different tests in terms of KWS
accuracy. Furthermore, standard deviations of the learned n, b
and c parameters are larger for random initialization than for
the constant one. This seems to indicate a certain sensitivity
to initial values as well as there are no clear optimal n, b
and c for the KWS task in terms of accuracy performance. In
accordance with Figure 4, which shows the learned filter gains,
center frequencies and ERBs from our learnable gammachirp
filterbank scheme, this consideration is equally valid for these
parameters, since Mel scale-based initialization leads to rather
different learned parameters than the linear scale-based one.

In [6], max-pooling is employed for cochleagram derivation
instead of (5). In this equation, notice that xτ,k(m) results
from segmentation of xk(t) by using a rectangular window.
The authors of [8] claim that using a Hann window and the
Parseval’s theorem for cochleagram computation is superior
to using max-pooling in the context of ASR. We have also
tried these two approaches and no statistically significant dif-

2In these experiments, the back-end is always trained.
3In [7], the trained center frequencies of the pseudo-filterbank layer hardly

differ from their initialization. As the authors of [7] point out, this can be
due to the big difference between the ranges of the center frequencies (i.e.,
[0, 8,000] Hz) and other DNN weights. We tackle this issue by initializing
the center frequencies normalized by fs/2 and de-normalizing them prior to
evaluating (3). A similar normalization procedure is carried out for the ERBs.

TABLE III
KEYWORD SPOTTING ACCURACY RESULTS WITH 95% CONFIDENCE

INTERVALS, IN PERCENTAGES, FROM FUSING LOG-MEL AND LEARNABLE
GAMMACHIRP FEATURES AND REFERENCE TESTS.

Test Accuracy (%)

FfBt 26 (log-Mel) 95.64 ± 0.33
GC[t] Ic-Linear 95.19 ± 0.52

Fusion 95.65 ± 0.43

ferences were observed with respect to the approach reported
in this paper.

Moreover, in [6], the learned front-end is unable to beat log-
Mel features in terms of WER. The authors of [6] hypothesize
that this can be due to the use of a strong back-end (i.e.,
acoustic model), though they finally find that this is not
a reason when testing on lighter back-ends. Similarly, we
explored the utilization of different lighter back-end models
(e.g., res8-narrow [12]) and we observed the same KWS
accuracy trends as the ones from using the stronger res15.

Finally, it is important to highlight that, unsuccessfully, we
also tried to directly learn the impulse response samples as in
[6], [8].

C. Feature Fusion

Sainath et al. [6] achieve to beat log-Mel features only by
fusing the learnable front-end features with them. They argue
that this is because of the complementarity of the learned
and Mel filterbanks. As before, it is unclear if the reported
improvement is statistically significant.

Table III presents the KWS accuracy result from fusing
log-Mel features and GC[t] Ic-Linear, as the linear scale-
based initialization may help provide useful complementary
information. As we can see, the fusion result is virtually
identical to that from employing log-Mel features only, so
we might conclude that the learned gammachirp filterbank
conveys no additional information for KWS. Other fusion
combinations lead to the same conclusion.

D. Filter Removal

Bearing in mind all of these results, a question emerges:
is the filterbank and, in general, the speech feature design
actually a crucial part of modern KWS systems? To study
this question, we conduct KWS experiments using log-Mel
features where we systematically remove filters from the filter-
bank in order to limit the amount of information available for
keyword classification. Filterbank channel removal is carried
out around channel k = 23, the center frequency of which
is fk=23 ≈ 2,000 Hz, since the frequency band contributing
the most to human intelligibility is centered near 2,000 Hz
[19]. Figure 5 plots KWS accuracy as a function of the range
of removed filterbank channels. As can be seen from this
figure, performance is negligibly affected even when removing
the channels in the range [20, 26] that spans, approximately,
the frequency range from 1,626 Hz to 2,564 Hz. This result
supports the hypothesis that KWS systems are fed with a

III. EXPERIMENTAL FRAMEWORK

We use the Google Speech Commands Dataset (GSCD) [15]
for KWS experiments. This database consists of 105,829 one-
second long speech files with a sampling rate of fs = 16
kHz. Each speech file comprises one word among 35 possible
candidate words. The GSCD is split into training (∼80%
of the data), validation (∼10%) and test (∼10%) sets in
such a manner that speakers do not overlap across sets. The
deep residual neural network-based KWS back-end of [12]
(architecture res15) is trained to spot the 10 keywords “yes”,
“no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop” and
“go”. Utterances with the remaining 25 words of the GSCD
(i.e., non-keywords) are used to define the filler class, so
the KWS back-end has to solve an 11-class classification
problem. All the word classes are approximately balanced in
the different sets.

The length of the analysis window and the hop size are,
respectively, M = 480 and 160 samples (corresponding to
30 ms and 10 ms at fs = 16 kHz). Therefore, every one-
second long utterance is comprised of T = 98 time frames.
Furthermore, F = (M/2) + 1 = 241 and, as is common [6]–
[8], K = 40 is the number of filterbank channels.

The filterbank learning schemes presented in Section II and
the KWS back-end are coded by means of Keras [16]. The
back- and front-end are trained by using categorical cross-
entropy as the loss function, and Adam [17] with default
parameters as the optimizer (i.e., the learning rate is 0.001,
β1 = 0.9 and β2 = 0.999). Similarly to [12], training runs
for 26 epochs by default, which is found to be sufficient to
guarantee convergence. The size of the minibatch is set to 64
training samples. During training, data augmentation is applied
by carefully following the procedure described in [18].

As a KWS performance metric, we employ accuracy, which
is defined as the ratio of the number of correct predictions over
the total number of them. To draw meaningful conclusions,
accuracy results are provided along with 95% confidence
intervals calculated from outputs of 10 different back-end real-
izations trained with different random parameter initialization.

IV. RESULTS AND DISCUSSION

A. Filterbank Matrix Learning

We first evaluate our learnable filterbank matrix scheme of
Figure 1 by jointly and/or alternately training the back- and
front-end for a number of epochs. The filterbank matrix of
the filterbank layer, W, is initialized by a Mel filterbank. It
is worth to note that preliminary experiments explored the
initialization of W by a linear-frequency spaced, triangular-
shaped filterbank and no statistically significant differences
were observed with respect to the Mel-based initialization.

Table I reports our KWS accuracy results from the learnable
filterbank matrix scheme by following the naming convention
FxBy z, where x ∈ {t, f} indicates whether the front-end is
trained, t, or not (i.e., fixed), f, y ∈ {t, f} indicates the same,
but for the back-end, and z is the number of training epochs.
Thus, we consider FfBt 26 a baseline, since it corresponds

TABLE I
KEYWORD SPOTTING ACCURACY RESULTS WITH 95% CONFIDENCE
INTERVALS, IN PERCENTAGES, FROM OUR LEARNABLE FILTERBANK

MATRIX SCHEME.

Test Accuracy (%)

FfBt 26 (log-Mel) 95.64 ± 0.33
FtBt 26 95.73 ± 0.24
FfBt 26 + FtBf 10 95.73 ± 0.38
FfBt 13 + FtBt 13 95.30 ± 0.82

0

0.5

1

0

0.5

1

1.5

0

0.5

1

1.5

50 100 150 200
0

0.5

1

1.5

A
m

p
lit

u
d

e

Fig. 3. Mel filterbank (top) and average (across the 10 experiment repetitions)
learned filterbanks from our learnable filterbank matrix scheme.

to the use of standard log-Mel features. As can be seen from
Table I, jointly training the back- and front-end (i.e., the
filterbank) from scratch, FtBt 26, does not yield a statisti-
cally significant improvement with respect to using standard
log-Mel features. Therefore, we assess whether fine-tuning
only the filterbank from our well-trained log-Mel baseline by
10 additional epochs, FfBt 26 + FtBf 10, provides some
performance benefits. According to the results, this choice
does not yield a statistically significant improvement, either
(95.73% ± 0.38 vs. 95.64% ± 0.33 accuracy). This may be
explained by the fact that the back-end is already optimized
to work with a Mel filterbank, so substantially altering such
a filterbank might even lead to worse performance. This
hypothesis is supported by Figure 3, which plots the Mel
filterbank and learned filterbanks from our learnable filterbank
matrix scheme. In this figure, we can see at a glance the
relatively higher similarity between the learned filterbank for
FfBt 26 + FtBf 10 and the Mel filterbank. To no avail, we
relax this constraint while still seizing the apparent virtues of
the Mel filterbank by training only the back-end from scratch
and, prior to convergence, jointly training the back- and front-
end, FfBt 13 + FtBt 13.

In general, there are no statistically significant differences between using a learned
filterbank and handcrafted speech features ⇒ the latter are still a good choice
when employing modern KWS back-ends!

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 17 / 24

Speech Representation Learning CASPR
Centre for Acoustic Signal Processing Research

Results

Is the filterbank and, in general, the speech feature design actually a crucial
part of modern KWS systems?

Using log-Mel features:

None 22-24 21-25 20-26 19-27 18-28 17-29

Range of removed filterbank channels

75

80

85

90

95

100

A
c
c
u
ra

c
y
 (

%
)

fk=23 ≈ 2, 000 Hz, [20, 26] ≡ [1, 626, 2, 564] Hz

KWS systems are fed with a great amount of redundant information ⇒ new
possibilities in the field of small-footprint KWS regarding the design of much
more compact speech features!

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 18 / 24

Robustness Against Noise CASPR
Centre for Acoustic Signal Processing Research

A Training Strategy and Loss Function

The development of KWS systems that are accurate in noisy
conditions remains a challenge. 2

1) The final fully-connected layer with softmax activation
(linear classifier) is removed and the remaining model is
multi-condition trained to be a discriminative and noise-
robust keyword embedding extractor;

2) Then, the linear classifier is trained using cross-entropy
loss and taking as input keyword embeddings extracted
by means of the model resulting from the first stage.

As a second contribution of this paper, we suggest a new
(CN,2 + 1)-pair loss function to train the keyword embedding
extractor. As it is carefully developed in a subsequent section,
this loss function extends the concept behind other well-known
tuple-based loss functions, like triplet loss [19] and N -pair
loss [20], achieving larger inter-class and smaller intra-class
variation for improved KWS performance in noisy acoustic
conditions.

In order to support the multi-condition training paradigm,
we create a noisy speech corpus with several acoustic con-
ditions —i.e., noise types and signal-to-noise ratio (SNR)
levels— from the Google Speech Commands Dataset (GSCD)
[21]. Experimental results show that our proposal is able to
enhance the generalization ability of a multi-condition trained
state-of-the-art KWS system. This means that our proposal
obtains around 12% KWS accuracy relative improvement
with respect to standard end-to-end multi-condition training
when speech is contaminated with noises not seen during
training. Besides KWS performance gains, it is also relevant to
highlight the following key features of our method: 1) it can be
applied to most of the latest (single- and multi-channel) KWS
models, 2) it does increase neither the number of parameters
nor the number of multiplications of the model1, 3) it can
potentially be useful to mitigate the effect of other types of
distortions in addition to acoustic noise, and 4) it might be
exported to other application areas (e.g., image classification).

The rest of this paper is structured into five more sections.
The suggested KWS training strategy is explained in Section
II. In Section III, the proposed training loss function is
presented along with related tuple-based loss functions. The
experimental setting is described in Section IV. Experimental
results and discussion are presented in Section V. Finally,
Section VI concludes the paper.

II. KEYWORD SPOTTING TRAINING STRATEGY

Most of the state-of-the-art KWS systems [3]–[6], [12]–
[18] follow the general approach illustrated by Figure 1.
First, a speech feature matrix (e.g., a normalized log-Mel
feature matrix) X ∈ RK×T (where K and T represent the
number of features —e.g., frequency bins— and time frames,
respectively) is typically computed from an input speech
segment. Then, X is the input to a deep learning architecture
modeling a function f(·|θ) : RK×T → IN , where θ denotes
the parameters of the model and I = [0, 1] represents
the unit interval. The final layer of this architecture is a
fully-connected (FC) layer with softmax activation. Hence,
the output of this function, y = f(X|θ), y ∈ IN , can be
interpreted as a posterior probability distribution on the N

1This is of utmost importance, since KWS systems are frequently intended
for relatively low-resource devices.

FC
+

SoftmaxFC
+

Softmax

FC
+

Softmax

FC
+

Softmax

y

z = fz(X|θz)

X

fz(·|θz)

f(·|θ)

Fig. 1: General state-of-the-art KWS approach. “FC + Soft-
max” stands for fully-connected layer with softmax activation.
See the text for further details.

different recognizable types of words (classes) given the input
speech feature matrix X, that is,

yi = P (i|X, θ), i = 1, ..., N, (1)

where subscript i denotes the i-th element of a vector and∑N
i=1 yi = 1. In other words, the deep learning model solves

an N -class classification problem, where, normally, N − 1
classes correspond to N − 1 different keywords and the
remaining class is the filler (non-keyword) class.

In this work, we think of the input vectors to the final fully-
connected layer with softmax activation (i.e., linear classifier),
z ∈ RD (see Figure 1), as linearly classifiable keyword
embeddings. Let fz(·|θz) : RK×T → RD, θz ⊂ θ, be
the function modeled by the architecture of Figure 1 when
removing the contribution of its final linear classifier. Then,
z = fz(X|θz) can be understood as a D-dimensional keyword
embedding, and fz(·|θz), as a keyword embedding extractor.
The keyword embedding z, which is a more compact (i.e.,
lower-dimensional) representation of X, is further processed
by the final fully-connected layer with softmax activation as

yi =
e(Wz+b)i∑N
j=1 e

(Wz+b)j
, i = 1, ..., N, (2)

where W ∈ RN×D and b ∈ RN are the weight matrix
and bias vector, respectively, of the fully-connected layer. A
keyword might be spotted by simply picking the most likely
class î from y, namely,

î = argmax
1≤i≤N

yi. (3)

A common practice is to end-to-end train the deep learning
model f(·|θ) by means of cross-entropy loss (e.g., [12]–[15]).
Alternatively, to obtain more discriminative and noise-robust
keyword embeddings for improved KWS performance in noisy

We interpret z as linearly
classifiable keyword embeddings.

Two-stage training strategy:
1 The keyword embedding extractor

fz(·|θz) is multi-condition trained
by considering a new
(CN,2 + 1)-pair loss function.

2 FC + Softmax is trained using
cross-entropy loss and
multi-condition keyword
embeddings extracted by fz(·|θz).

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 19 / 24

Robustness Against Noise CASPR
Centre for Acoustic Signal Processing Research

A Training Strategy and Loss Function

We suggested a (CN,2 + 1)-pair loss function extending the concept
behind other tuple-based loss functions like triplet and N-pair losses.

The (CN,2 + 1)-pair loss can achieve larger inter-class and smaller
intra-class variation ⇒ the generalization ability of an embedding
extractor can be improved.

4

z1(1)
z1(4)

z1(2)

z2(1)

z1(3)

z1(1)
z1(4)

z1(2)

z2(1)

z1(3)

Before update

After update

(a) Contrastive loss

za(1)
zn(4)

zn(2)

zp(1)

zn(3)

za(1)
zn(4)

zn(2)

zp(1)

zn(3)

Before update

After update

(b) Triplet loss

za(1)
zn(4)

zn(2)

zp(1)

zn(3)

za(1)
zn(4)

zn(2)

zp(1)

zn(3)

Before update

After update

(c) Quadruplet loss

za(1)
zn(4)

zn(2)

zp(1)

zn(3)

za(1)

zn(4)

zn(2)
zp(1)

zn(3)

Before update

After update

(d) N -pair loss

za(1)
zn(4)

zn(2)

zp(1)

zn(3)

za(1)

zn(4)zn(2)
zp(1)

zn(3)

Before update

After update

(e) (CN,2 + 1)-pair loss

Fig. 2: An illustrative comparison among different tuple-based loss functions when N = 4.

of deep models using these loss functions might experience
slow convergence and poor local optima [20]. Also, these loss
functions may require expensive sample mining to provide
non-trivial tuples in order to accelerate the training. To address
these limitations, the N -pair loss was proposed in [20]:

LN -pair = log

1 +
N∑
j=1
j 6=i

exp
{
D
(
z(i)a , z(i)p

)

− D
(
z(i)a , z(j)n

)}. (10)

As can be observed from (10), given an anchor example, N -
pair loss is intended to identify a positive example represented
by z

(i)
p out of N − 1 negative examples, each from a different

class, represented by
{
z
(j)
n ; 1 ≤ j ≤ N ; j 6= i

}
. Notice that

when N = 2, Eq. (10) is equivalent to triplet loss as in (8).
This N -pair loss function has been successfully applied to
tasks like image recognition and verification [20], and context-
aware recommendation [27].

B. Proposed Training Loss Function

In N -pair loss, N − 1 negative examples, each from a
different class, are pushed away from the anchor example
in the embedding space. However, the way in which these
negative examples relate to each other in terms of distance
is not under control. Evidently, we would like them to be
as distant each other as possible. Therefore, we propose a
(CN,2+1)-pair loss that also looks for maximizing the distance
among the N − 1 negative examples as

L′(CN,2 + 1)-pair = log

1 + exp

D
(
z(i)a , z(i)p

)

− λ
N∑
j=1
j 6=i

D (z(i)a , z(j)n

)
+

N∑
k>j
k 6=i

D
(
z(j)n , z(k)n

)

, (11)

where CN,2 = N(N − 1)/2 is a binomial coefficient account-
ing for the total number of different negative pairs, and λ > 0
is a hyperparameter balancing the importance of the negative
pairs distances with respect to the positive pairs distances.

Figure 2 shows an illustrative comparison between our
proposal and the tuple-based loss functions briefly reviewed
in Subsection III-A when N = 4. As in the case of quadruplet
loss in relation to triplet loss, we hypothesize that our proposal
might achieve larger inter-class and smaller intra-class varia-
tion compared to N -pair loss in Figure 2d. This, in turn, could
improve the generalization ability of the embedding extractor.

It is important to set a proper value for the hyperparameter λ
in (11). For example, if the value of λ is too small, embeddings
will tend to collapse into a single point during training, thus
yielding a totally useless solution. We found it effective (and,
to some extent, fair for comparison purposes) to set λ in such
a manner that the importance of D

(
z
(i)
a , z

(i)
p

)
is equal to that

of the set of distances
{
D
(
z
(i)
a , z

(j)
n

)
; 1 ≤ j ≤ N ; j 6= i

}
,

as in N -pair loss (see Eq. (10)). In other words,

λ =
1

N − 1
. (12)

From (11) and (12), it is easy to show that the importance (i.e.,
weight) of the set of distances among negative embeddings{
D
(
z
(j)
n , z

(k)
n

)
; 1 ≤ j ≤ N − 1; j + 1 ≤ k ≤ N ; j, k 6= i

}
with respect to D

(
z
(i)
a , z

(i)
p

)
increases linearly with

N at a rate of λCN−1,2 = (N − 2)/2, where
CN−1,2 = (N − 1)(N − 2)/2 accounts for the number
of distances in the above set.

A common practice in deep metric learning is to apply `2-
norm normalization to embeddings so they are constrained to
be on a hypersphere of radius 1, e.g., [19], [28]. Preliminary
experiments using the N -pair loss function with and without
embedding normalization revealed no statistically significant
differences in terms of KWS performance. Nevertheless, the
application of `2-norm normalization to embeddings will facil-
itate further calibration of (11) as explained below. Hence, in
this work, instead of z, we will always employ its normalized
version

z̄ =
z

‖z‖
2

, (13)

where ‖·‖
2

is the `2-norm operator.

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 20 / 24

Robustness Against Noise CASPR
Centre for Acoustic Signal Processing Research

Results

We used a noisy version of the Google Speech Commands Dataset to experiment
(10 keywords) and the same deep residual learning model as before

Accuracy results (%) with 95% confidence intervals:

8

TABLE II: Keyword spotting accuracy results, in percentages, with 95% confidence intervals. Results are broken down by
SNR level, and seen (vehicle interior, factory1, bus and pedestrian street) and unseen (factory2, Buccaneer jet cockpit, café
and street junction) noises during the training phase.

SNR (dB)
-10 -5 0 5 10 15 20 Clean Average

Seen noises

Baseline 57.51 ± 0.96 75.94 ± 1.42 88.36 ± 1.30 92.90 ± 0.43 94.59 ± 0.75 95.17 ± 0.74 96.09 ± 0.72 96.45 ± 0.87 87.13 ± 0.60
Contrastive loss 59.73 ± 1.46 75.07 ± 1.74 86.81 ± 0.83 92.56 ± 0.64 94.37 ± 0.29 95.14 ± 0.31 95.85 ± 0.80 96.72 ± 0.36 87.03 ± 0.65

Triplet loss 60.12 ± 2.68 75.70 ± 2.07 86.96 ± 0.78 93.04 ± 0.72 93.86 ± 0.78 95.14 ± 0.87 96.01 ± 0.76 96.67 ± 0.42 87.19 ± 0.91
Quadruplet loss 60.36 ± 1.47 78.00 ± 1.17 87.85 ± 1.17 92.80 ± 0.66 94.40 ± 0.90 95.58 ± 0.59 96.21 ± 0.48 96.88 ± 0.94 87.76 ± 0.68
N -pair loss 60.07 ± 1.73 77.29 ± 0.95 88.72 ± 0.61 93.41 ± 0.50 95.00 ± 0.53 95.92 ± 0.22 96.62 ± 0.64 97.00 ± 0.44 88.00 ± 0.16

(CN,2 + 1)-pair loss 61.84 ± 1.73 78.00 ± 1.97 88.82 ± 0.41 93.48 ± 0.49 95.17 ± 0.82 95.94 ± 0.57 96.76 ± 0.56 96.91 ± 0.57 88.36 ± 0.72

Unseen noises

Baseline 35.11 ± 1.87 62.06 ± 1.40 82.20 ± 1.91 89.75 ± 1.18 92.87 ± 0.92 95.11 ± 1.14 96.11 ± 0.43 96.52 ± 0.64 81.22 ± 0.69
Contrastive loss 38.98 ± 1.74 62.61 ± 2.71 81.19 ± 1.76 89.02 ± 0.87 92.50 ± 1.22 94.29 ± 0.43 95.38 ± 0.84 96.61 ± 0.32 81.32 ± 0.86

Triplet loss 37.78 ± 2.44 62.44 ± 1.14 81.84 ± 1.57 90.13 ± 0.57 93.45 ± 0.47 95.28 ± 0.37 96.01 ± 0.58 96.74 ± 0.59 81.71 ± 0.52
Quadruplet loss 38.26 ± 0.95 63.94 ± 1.37 83.02 ± 1.03 90.11 ± 0.70 93.88 ± 0.61 95.26 ± 0.44 95.94 ± 0.59 96.78 ± 0.48 82.15 ± 0.27
N -pair loss 39.93 ± 2.54 64.86 ± 1.89 83.92 ± 0.68 90.50 ± 0.27 93.81 ± 0.64 95.28 ± 0.50 96.30 ± 0.64 96.98 ± 0.54 82.70 ± 0.52

(CN,2 + 1)-pair loss 41.21 ± 2.63 65.27 ± 1.10 84.67 ± 0.99 92.26 ± 0.15 94.70 ± 0.48 96.20 ± 0.87 96.71 ± 0.49 97.19 ± 0.59 83.53 ± 0.30

TABLE III: Average intra- and inter-class Euclidean distances with 95% confidence intervals on the training and test sets.
Distances on the test set are broken down by seen and unseen noises during the training phase.

Intra-class distance Inter-class distance
Training Test: Seen noises Test: Unseen noises Training Test: Seen noises Test: Unseen noises

Baseline 0.327 ± 0.001 0.423 ± 0.003 0.488 ± 0.003 1.272 ± 0.021 1.234 ± 0.021 1.197 ± 0.021
Contrastive loss 0.084 ± 0.001 0.235 ± 0.005 0.324 ± 0.006 1.482 ± 0.004 1.480 ± 0.004 1.477 ± 0.004

Triplet loss 0.031 ± 0.000 0.199 ± 0.005 0.280 ± 0.005 1.471 ± 0.022 1.470 ± 0.022 1.469 ± 0.022
Quadruplet loss 0.030 ± 0.000 0.196 ± 0.005 0.278 ± 0.005 1.473 ± 0.020 1.472 ± 0.020 1.471 ± 0.020

N -pair loss (D2
E (z̄1, z̄2)) 0.052 ± 0.000 0.236 ± 0.005 0.325 ± 0.005 1.482 ± 0.002 1.478 ± 0.002 1.474 ± 0.002

N -pair loss 0.023 ± 0.000 0.196 ± 0.005 0.278 ± 0.006 1.481 ± 0.009 1.481 ± 0.009 1.480 ± 0.009
(CN,2 + 1)-pair loss 0.018 ± 0.000 0.191 ± 0.005 0.268 ± 0.006 1.483 ± 0.002 1.483 ± 0.002 1.482 ± 0.002

no surprise. Thus, distance values in Table III reinforce the
utility of the proposed training strategy incorporating a tuple-
based loss function to achieve more discriminative and noise-
robust keyword embeddings in comparison with Baseline. In
particular, the (CN,2+1)-pair loss function helps for obtaining,
on all of the reported sets (i.e., training, test-seen noises and
test-unseen noises) and among all of the tested techniques,
the largest inter-class distances and the shortest intra-class
distances, being particularly remarkable the low training set
intra-class value.

Besides, as mentioned in Subsection III-C, preliminary ex-
periments using N -pair loss revealed that better KWS perfor-
mance could be achieved by utilizing the actual (non-squared)
Euclidean distance DE (z̄1, z̄2) instead of its squared version
D2

E (z̄1, z̄2). We hypothesize that this fact might be related to
D2

E (z̄1, z̄2) overestimating actual Euclidean distances above 1
while underestimating them when these are less than 1 (recall
that DE (z̄1, z̄2) ∈ [0, dmax = 2]). Hence, using the squared
Euclidean distance instead of the non-squared one would yield
less inter-class separation and higher intra-class dispersion.
This hypothesis is very much endorsed by Table III, where, as
can be seen, using D2

E (z̄1, z̄2) instead of DE (z̄1, z̄2) clearly
yields larger average intra-class distance on the different sets4.

For illustrative purposes, Figure 3 shows a test set (unseen
noises only) keyword embedding representation obtained by
means of t-distributed Stochastic Neighbor Embedding (t-
SNE) [43]. This figure suggests, in agreement with results of
Tables II and III, better class definition and separability for
our training strategy using the (CN,2 + 1)-pair loss function

4In line with this, N -pair loss (D2
E (z̄1, z̄2)) average KWS accuracy for

seen and unseen noises is 87.71% ± 0.49 and 82.11% ± 0.54, respectively.

than for the comparison techniques. This fact is also reflected
by the KWS detection error trade-off curves plotted in Figure
4, in which Baseline shows a more competitive performance
than the indicated by Tables II and III.

C. Streaming Keyword Spotting

Better capturing the use of KWS in the real world, streaming
KWS comprises the processing of a continuous stream of
audio data in which the different word classes are rather
unbalanced. To perform streaming KWS evaluations, we fol-
low a procedure similar to the one described in [17]. First,
we re-train the different KWS models to spot an additional
silence/background noise class, so now N = 12. As before,
all of the classes —including the silence/background noise
class— are rather balanced for training. Second, a basis test
audio stream is generated by concatenation of test clean speech
and silence fragments. This basis audio stream contains around
150 utterances of each keyword type and near 2,000 non-
keywords, which are randomly intermingled along the audio
sequence. This great word class unbalancing better reflects
what can be expected to observe in real-life applications. The
duration of the basis test audio stream is, approximately, 1
hour and 23 minutes.

Then, again by means of FaNT, this audio stream is suc-
cessively contaminated with the test set noises (i.e., vehicle
interior, factory1, bus, pedestrian street, factory2, Buccaneer
jet cockpit, café and street junction) at the test SNR levels
{−10,−5, 0, 5, 10, 15, 20} dB to generate a total of 8 noise
types × 7 SNR levels = 56 noisy audio sequences for testing,
in addition to the basis clean stream.

Average intra- and inter-class Euclidean distances with 95% confidence intervals:

8

TABLE II: Keyword spotting accuracy results, in percentages, with 95% confidence intervals. Results are broken down by
SNR level, and seen (vehicle interior, factory1, bus and pedestrian street) and unseen (factory2, Buccaneer jet cockpit, café
and street junction) noises during the training phase.

SNR (dB)
-10 -5 0 5 10 15 20 Clean Average

Seen noises

Baseline 57.51 ± 0.96 75.94 ± 1.42 88.36 ± 1.30 92.90 ± 0.43 94.59 ± 0.75 95.17 ± 0.74 96.09 ± 0.72 96.45 ± 0.87 87.13 ± 0.60
Contrastive loss 59.73 ± 1.46 75.07 ± 1.74 86.81 ± 0.83 92.56 ± 0.64 94.37 ± 0.29 95.14 ± 0.31 95.85 ± 0.80 96.72 ± 0.36 87.03 ± 0.65

Triplet loss 60.12 ± 2.68 75.70 ± 2.07 86.96 ± 0.78 93.04 ± 0.72 93.86 ± 0.78 95.14 ± 0.87 96.01 ± 0.76 96.67 ± 0.42 87.19 ± 0.91
Quadruplet loss 60.36 ± 1.47 78.00 ± 1.17 87.85 ± 1.17 92.80 ± 0.66 94.40 ± 0.90 95.58 ± 0.59 96.21 ± 0.48 96.88 ± 0.94 87.76 ± 0.68
N -pair loss 60.07 ± 1.73 77.29 ± 0.95 88.72 ± 0.61 93.41 ± 0.50 95.00 ± 0.53 95.92 ± 0.22 96.62 ± 0.64 97.00 ± 0.44 88.00 ± 0.16

(CN,2 + 1)-pair loss 61.84 ± 1.73 78.00 ± 1.97 88.82 ± 0.41 93.48 ± 0.49 95.17 ± 0.82 95.94 ± 0.57 96.76 ± 0.56 96.91 ± 0.57 88.36 ± 0.72

Unseen noises

Baseline 35.11 ± 1.87 62.06 ± 1.40 82.20 ± 1.91 89.75 ± 1.18 92.87 ± 0.92 95.11 ± 1.14 96.11 ± 0.43 96.52 ± 0.64 81.22 ± 0.69
Contrastive loss 38.98 ± 1.74 62.61 ± 2.71 81.19 ± 1.76 89.02 ± 0.87 92.50 ± 1.22 94.29 ± 0.43 95.38 ± 0.84 96.61 ± 0.32 81.32 ± 0.86

Triplet loss 37.78 ± 2.44 62.44 ± 1.14 81.84 ± 1.57 90.13 ± 0.57 93.45 ± 0.47 95.28 ± 0.37 96.01 ± 0.58 96.74 ± 0.59 81.71 ± 0.52
Quadruplet loss 38.26 ± 0.95 63.94 ± 1.37 83.02 ± 1.03 90.11 ± 0.70 93.88 ± 0.61 95.26 ± 0.44 95.94 ± 0.59 96.78 ± 0.48 82.15 ± 0.27
N -pair loss 39.93 ± 2.54 64.86 ± 1.89 83.92 ± 0.68 90.50 ± 0.27 93.81 ± 0.64 95.28 ± 0.50 96.30 ± 0.64 96.98 ± 0.54 82.70 ± 0.52

(CN,2 + 1)-pair loss 41.21 ± 2.63 65.27 ± 1.10 84.67 ± 0.99 92.26 ± 0.15 94.70 ± 0.48 96.20 ± 0.87 96.71 ± 0.49 97.19 ± 0.59 83.53 ± 0.30

TABLE III: Average intra- and inter-class Euclidean distances with 95% confidence intervals on the training and test sets.
Distances on the test set are broken down by seen and unseen noises during the training phase.

Intra-class distance Inter-class distance
Training Test: Seen noises Test: Unseen noises Training Test: Seen noises Test: Unseen noises

Baseline 0.327 ± 0.001 0.423 ± 0.003 0.488 ± 0.003 1.272 ± 0.021 1.234 ± 0.021 1.197 ± 0.021
Contrastive loss 0.084 ± 0.001 0.235 ± 0.005 0.324 ± 0.006 1.482 ± 0.004 1.480 ± 0.004 1.477 ± 0.004

Triplet loss 0.031 ± 0.000 0.199 ± 0.005 0.280 ± 0.005 1.471 ± 0.022 1.470 ± 0.022 1.469 ± 0.022
Quadruplet loss 0.030 ± 0.000 0.196 ± 0.005 0.278 ± 0.005 1.473 ± 0.020 1.472 ± 0.020 1.471 ± 0.020

N -pair loss (D2
E (z̄1, z̄2)) 0.052 ± 0.000 0.236 ± 0.005 0.325 ± 0.005 1.482 ± 0.002 1.478 ± 0.002 1.474 ± 0.002

N -pair loss 0.023 ± 0.000 0.196 ± 0.005 0.278 ± 0.006 1.481 ± 0.009 1.481 ± 0.009 1.480 ± 0.009
(CN,2 + 1)-pair loss 0.018 ± 0.000 0.191 ± 0.005 0.268 ± 0.006 1.483 ± 0.002 1.483 ± 0.002 1.482 ± 0.002

no surprise. Thus, distance values in Table III reinforce the
utility of the proposed training strategy incorporating a tuple-
based loss function to achieve more discriminative and noise-
robust keyword embeddings in comparison with Baseline. In
particular, the (CN,2+1)-pair loss function helps for obtaining,
on all of the reported sets (i.e., training, test-seen noises and
test-unseen noises) and among all of the tested techniques,
the largest inter-class distances and the shortest intra-class
distances, being particularly remarkable the low training set
intra-class value.

Besides, as mentioned in Subsection III-C, preliminary ex-
periments using N -pair loss revealed that better KWS perfor-
mance could be achieved by utilizing the actual (non-squared)
Euclidean distance DE (z̄1, z̄2) instead of its squared version
D2

E (z̄1, z̄2). We hypothesize that this fact might be related to
D2

E (z̄1, z̄2) overestimating actual Euclidean distances above 1
while underestimating them when these are less than 1 (recall
that DE (z̄1, z̄2) ∈ [0, dmax = 2]). Hence, using the squared
Euclidean distance instead of the non-squared one would yield
less inter-class separation and higher intra-class dispersion.
This hypothesis is very much endorsed by Table III, where, as
can be seen, using D2

E (z̄1, z̄2) instead of DE (z̄1, z̄2) clearly
yields larger average intra-class distance on the different sets4.

For illustrative purposes, Figure 3 shows a test set (unseen
noises only) keyword embedding representation obtained by
means of t-distributed Stochastic Neighbor Embedding (t-
SNE) [43]. This figure suggests, in agreement with results of
Tables II and III, better class definition and separability for
our training strategy using the (CN,2 + 1)-pair loss function

4In line with this, N -pair loss (D2
E (z̄1, z̄2)) average KWS accuracy for

seen and unseen noises is 87.71% ± 0.49 and 82.11% ± 0.54, respectively.

than for the comparison techniques. This fact is also reflected
by the KWS detection error trade-off curves plotted in Figure
4, in which Baseline shows a more competitive performance
than the indicated by Tables II and III.

C. Streaming Keyword Spotting

Better capturing the use of KWS in the real world, streaming
KWS comprises the processing of a continuous stream of
audio data in which the different word classes are rather
unbalanced. To perform streaming KWS evaluations, we fol-
low a procedure similar to the one described in [17]. First,
we re-train the different KWS models to spot an additional
silence/background noise class, so now N = 12. As before,
all of the classes —including the silence/background noise
class— are rather balanced for training. Second, a basis test
audio stream is generated by concatenation of test clean speech
and silence fragments. This basis audio stream contains around
150 utterances of each keyword type and near 2,000 non-
keywords, which are randomly intermingled along the audio
sequence. This great word class unbalancing better reflects
what can be expected to observe in real-life applications. The
duration of the basis test audio stream is, approximately, 1
hour and 23 minutes.

Then, again by means of FaNT, this audio stream is suc-
cessively contaminated with the test set noises (i.e., vehicle
interior, factory1, bus, pedestrian street, factory2, Buccaneer
jet cockpit, café and street junction) at the test SNR levels
{−10,−5, 0, 5, 10, 15, 20} dB to generate a total of 8 noise
types × 7 SNR levels = 56 noisy audio sequences for testing,
in addition to the basis clean stream.

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 21 / 24

Robustness Against Noise CASPR
Centre for Acoustic Signal Processing Research

Results

Test set (unseen noises only) keyword embedding representation:
9

Yes No Up Down Left Right On Off Stop Go Filler

Fig. 3: Test set (unseen noises only) keyword embedding representation obtained by means of t-SNE [43]. Black crosses mark
the location of the class centroids.

0 0.5 1 1.5 2

False alarm rate (%)

5

10

15

F
a
ls

e
 r

e
je

c
t
ra

te
 (

%
)

 Seen noises

0 1 2 3

False alarm rate (%)

10

12

14

16

18

20

F
a
ls

e
 r

e
je

c
t
ra

te
 (

%
)

 Unseen noises

Fig. 4: Keyword spotting detection error trade-off curves for
seen and unseen noises during the training phase.

0 0.5 1 1.5

False alarm rate (%)

15

20

25

30

F
a
ls

e
 r

e
je

c
t
ra

te
 (

%
)

 Seen noises

0 0.5 1 1.5

False alarm rate (%)

20

25

30

35

40

F
a
ls

e
 r

e
je

c
t
ra

te
 (

%
)

 Unseen noises

Fig. 5: Streaming KWS detection error trade-off curves for
seen and unseen noises during the training phase.

0 0.5 1

Threshold

0.6

0.65

0.7

0.75

0.8

F
-s

c
o
re

 Seen noises

0 0.5 1

Threshold

0.6

0.65

0.7

0.75

F
-s

c
o
re

 Unseen noises

Fig. 6: Streaming KWS F-score curves for seen and unseen
noises during the training phase.

At test time, the sequence of posterior probabilities
P (i|X, θ) (i = 1, ..., N), resulting from employing a one-
second long sliding window with a hop of 250 ms on the
input stream, is processed as in [44].

Figure 5 depicts streaming KWS detection error trade-
off curves. While Baseline again shows a very competitive
performance in terms of DET, our training strategy exploiting
the (CN,2 + 1)-pair loss function stands out for unseen noises
as a result of its greater generalization ability. Moreover,
streaming KWS F-score curves are plotted by Figure 6. From
this figure, we can confirm the usefulness of our training
strategy to improve KWS performance, especially in noisy
conditions not seen during the training phase. In addition, we

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 22 / 24

Robustness Against Noise CASPR
Centre for Acoustic Signal Processing Research

Conclusions

This training strategy and loss function...

1 ...can be applied to most of the latest (single- and multi-channel)
KWS models.

2 ...do increase neither the number of parameters nor the number of
multiplications of the model.

3 ...can potentially be useful to mitigate the effect of other types of
distortions in addition to acoustic noise.

4 ...might be exported to other application areas such as image
classification.

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 23 / 24

Thanks for your attention!

Iván López-Espejo (CASPR) Voice Controlled HADs Wednesday 19th May, 2021 24 / 24

	Introduction
	Deep Spoken Keyword Spotting
	Paths Explored in CASPR
	Personalization
	Speech Representation Learning
	Robustness Against Noise

