

Exploring Filterbank Learning for Keyword Spotting

Iván López-Espejo¹, Zheng-Hua Tan¹ and Jesper Jensen^{1,2}

¹*Department of Electronic Systems, Aalborg University, Denmark*

²*Oticon A/S, Denmark*

{ivl,zt,jje}@es.aau.dk, jesj@oticon.com

Monday 18th January, 2021

1 Introduction

2 Filterbank Learning for Keyword Spotting

3 Experimental Framework

4 Results

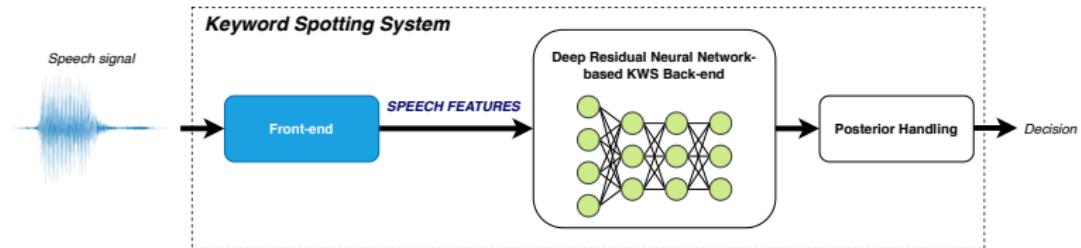
5 Conclusion

- Handcrafted speech features (e.g., MFCCs) are not necessarily optimal for any particular speech processing task.
- **Recent trend:** development of end-to-end deep learning systems where the feature extraction process is optimal according to the task and training criterion.
- For some applications, optimal filterbank learning has shown improvements with respect to using a standard Mel filterbank:
 - *Speaker verification anti-spoofing*
 - *Audio source separation and audio scene classification*
 - ...

Introduction

Objective

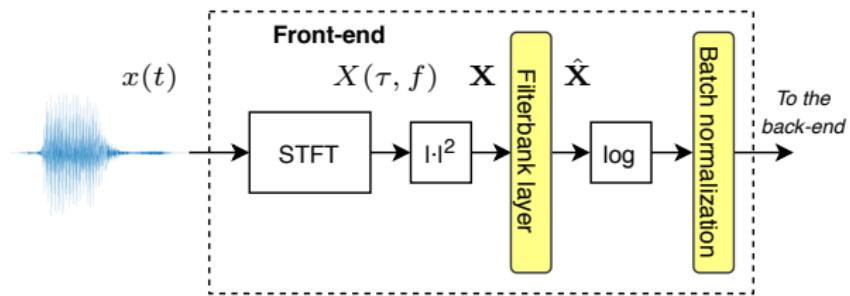
- To explore the possible advantages of employing *learned filterbanks* over *handcrafted speech features* for **keyword spotting (KWS)**:
 - ① Filterbank matrix weight learning in the power spectral domain;
 - ② Parameter learning of a (psychoacoustically-motivated) gammachirp filterbank.



For both ① and ②, the learnable filterbank parameters are optimized by backpropagation jointly with the KWS back-end!

Filterbank Learning for Keyword Spotting

Filterbank Matrix Learning



- **Filterbank layer:** $\hat{X} = X \cdot h(\mathbf{W})$
- **\mathbf{W}** is the learnable filterbank matrix.
- $h(\cdot) = \max(\cdot, 0)$ is the element-wise applied ReLU function to ensure the positivity of the filterbank weights.

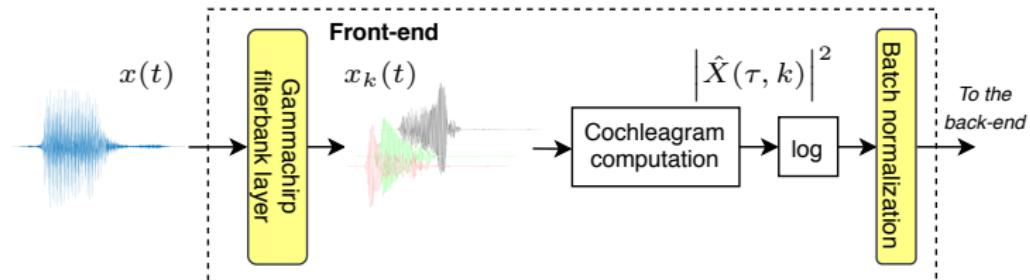
Filterbank Learning for Keyword Spotting

Gammachirp Filterbank Learning

- **Gammachirp filterbank:**

$$g_c(t, k) = a_k t^{n-1} e^{-2\pi b \text{ERB}(f_k)t} \cos(2\pi f_k t + c \log(t) + \phi)$$

- At moderate stimulus levels, $\text{ERB}(f_k) = 24.7 + 0.108f_k$ [Hz]



- **Gammachirp filterbank layer:** $x_k(t) = x(t) * g_c(t, k)$

- **Trainable parameters:** a_k, n, b, c, f_k and the ERBs.

- To preserve their physical meaning, the ReLU function is applied to a_k, b, f_k and the ERBs, whereas n is constrained to be $\max(n, 1)$

Experimental Framework

- We use the Google Speech Commands Dataset (**GSCD**) for KWS experiments:
 - 105,829 one-second long speech files
 - Each file comprises one word among 35 possible candidate words
- A deep residual neural network-based KWS back-end¹ is trained to spot the **10 keywords** “yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop” and “go”.
- Utterances with the remaining 25 words of the GSCD (i.e., non-keywords) are used to define the **filler class** ⇒ the KWS back-end has to solve an **11-class classification problem**.

¹R. Tang and J. Lin, “Deep residual learning for small-footprint keyword spotting,” in *Proc. of ICASSP 2018*

Experimental Framework

- The number of filterbank channels is 40.
- The back- and front-end are trained using categorical cross-entropy and Adam.
- As a KWS performance metric, we employ **accuracy**: the ratio of the number of correct predictions over the total number of them.
- Accuracy results are provided along with 95% confidence intervals calculated from outputs of 10 different back-end realizations trained with different random parameter initialization.

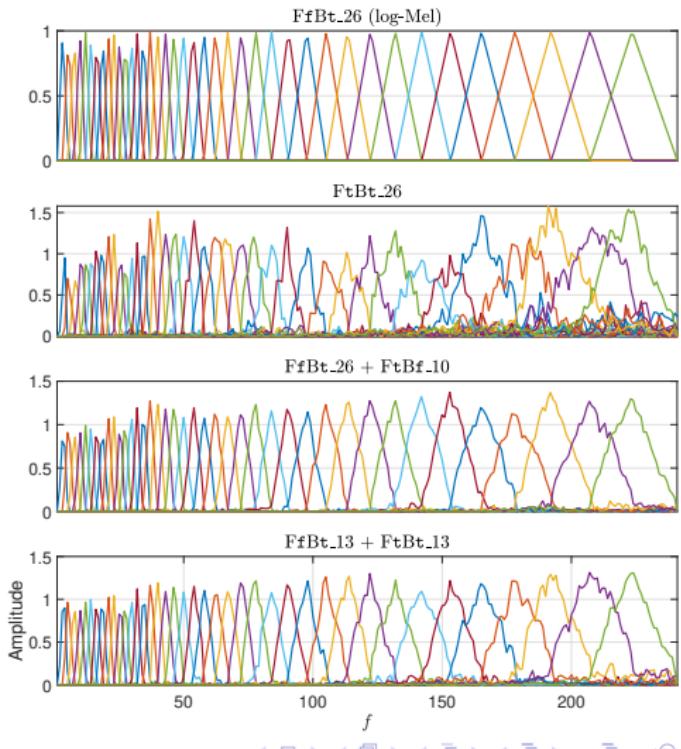
Results

Filterbank Matrix Learning

- \mathbf{W} is initialized by a Mel filterbank.
- Naming FxBy_z :

- 1 $x \in \{t, f\}$ indicates whether the front-end is trained, t , or not, f .
- 2 $y \in \{t, f\}$ is the same, but for the back-end.
- 3 z is the number of training epochs.

Test	Accuracy (%)
FfBt_26 (log-Mel)	95.64 ± 0.33
FtBt_26	95.73 ± 0.24
FfBt_26 + FtBf_10	95.73 ± 0.38
FfBt_13 + FtBt_13	95.30 ± 0.82

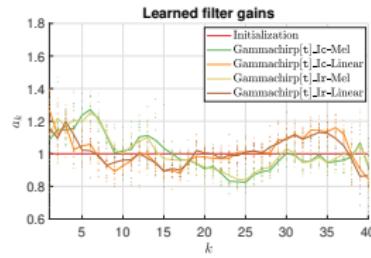
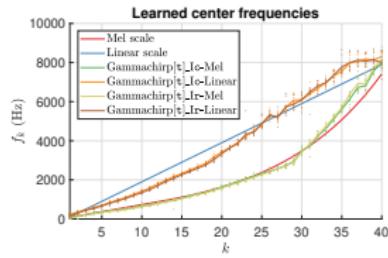
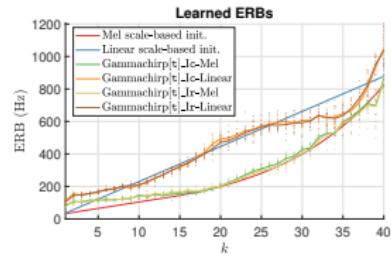


Results

Gammachirp Filterbank Learning

- Naming $GC[x]_ly-z$:

- 1 $x \in \{t, f\}$ indicates whether the front-end is trained, t , or not, f (back-end is always trained).
- 2 $y \in \{c, r\}$ refers to the initialization of n , b and c , which can be constant, c , or random, r .
- 3 z tells whether f_k and the ERBs are initialized by a Mel or a linear scale.



Results

Feature Fusion

- *In speech acoustic modeling:* Sainath *et al.*² achieve to beat log-Mel features **only** by fusing learnable front-end features with them \Leftarrow *it is unclear if this improvement is statistically significant!*

Test	Accuracy (%)
FfBt_26 (log-Mel)	95.64 \pm 0.33
GC[t]_Ic-Linear	95.19 \pm 0.52
Fusion	95.65 \pm 0.43

- The learned gammachirp filterbank conveys no additional information for KWS.
- Other fusion combinations lead to the same conclusion.

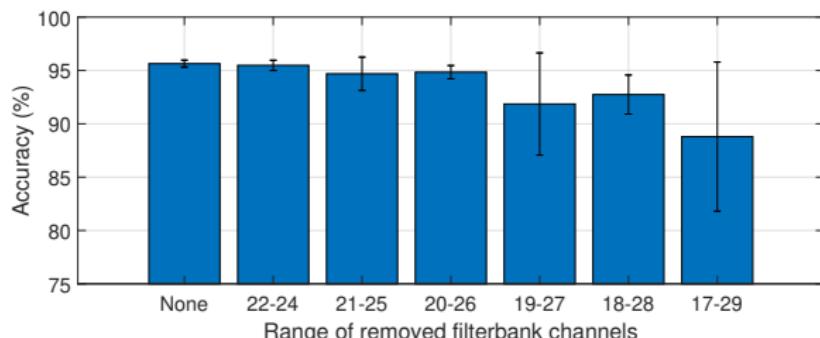
²T. N. Sainath *et al.*, "Learning the speech front-end with raw waveform CLDNNs," in *Proc. of Interspeech 2015*

Results

Filter Removal

- Is the filterbank and, in general, the speech feature design actually a crucial part of modern KWS systems?

Using log-Mel features:



$$f_{k=23} \approx 2,000 \text{ Hz}, \quad [20, 26] \equiv [1,626, 2,564] \text{ Hz}$$

- KWS systems are fed with a great amount of redundant information.
- This gives clues on why the performance of learned filterbanks and handcrafted speech features is comparable.

- We have explored two different filterbank learning approaches for keyword spotting.
- In general, there are **no** statistically significant differences in terms of KWS accuracy between using a learned filterbank and handcrafted speech features \Rightarrow the latter are still a good choice when employing modern KWS back-ends.
- The above could be a symptom of information redundancy \Rightarrow new possibilities in the field of small-footprint KWS regarding the design of much more compact speech features.

Thanks for your attention!

