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Motivation

New speech processing boom

The use of speech processing applications has
notably increased due to the latest
smartphones:

@ Great amount of apps (search-by-voice,
dictation, voice biometrics, etc.).

Noise-robust speech processing in smartphones

@ It is crucial to deal with noisy environments.

@ We can take benefit of the dual-mic feature.
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Objectives

@ To estimate the noise power spectrum
at the primary channel by exploiting the
information at both channels.

o Dual-channel MMSE estimation.

o Unscented transform (UT) vs. vector
Taylor series (VTS).

@ To explore a particular application of //' lh}

interest: speech enhancement on a
dual-mic smartphone in close-talk
conditions.
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Dual-Channel MMSE Estimation

@ k =1 is the primary mic while k = 2 is the extra mic:
T
yk(t) = (| Yk(O, t)|2, ey |Yk(M -1, t)|2)
n() = (|N(0, )2, . [Ne(M = 1,8)2) "

@ The MMSE estimate of ny(t) is

iy (t) = p, (1) +(Y1(t) _) =

Through the unscented transform!

@ y>(t) will play here a supporting role.
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Dual-Channel Distortion Model

@ Dual-channel speech distortion model:
y1(t) = x1(t) + ny(t)
y2(t) = x2(t) + n2(1)

@ We relate the speech power at both channels through
speech gains:
Xz(t) = a21(t) © Xl(t)

@ We sample the next y;(t) m
11, (). ,,(t) and E,,,,(1):
(t),

yi(t) = f(a21(t) ni(t), na(t); y2(t))
= ay'(t) O (y2(t) — mo(t)) + ny(t)

odel through UT to get
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Unscented Transform Application

Sigma point generation
Augmented signal z;(t) = zo(t)+ ( (3M + r/))l(f))
_ (aT T T T
#(t) = (a2, (0)n (1) m; (1)) zamlt) = zlt) - (VEMEDE-0)
i=1,2,....,3M

(1)
Za, (1)
i Statistics computation
zi(t) = | 24)(t) P
ZE,'J(I) oM wo = n/(3M+1n) |
n,,(t) = Z wiz) (t) = . ’,';""\.; \47 2BM+)
Nonlinear function evaluation i=0 [ i=L2..3M ]
(i) (4) — (i) (i) (i) (4. M T
t) = f( t), t), t):yo(t )
2, () 25, (1).2,)] (1), 2, (1)1 y2(t) 2.0 = Yu (Z'U','(’) _ Nu.(’)) (Z',/','(l) _ Nu.(/))
i=0,1,..,6M pr
6M T
Zan = Y wi (20 — 1, () (220 -y, (1)
i=0
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Implementation Issues

Relevant practical issues
=1,2) are

@ We assume that both a1 (t) and ng(t) (k
wide-sense stationary random processes:
o p,, and X, are obtained from a development dataset.
o Noise statistics are obtained from the first and last frames of

each utterance.

@ 7 is set to 0.
@ Negative estimated bins are replaced by those from a noise
estimation based on linear interpolation (around 2% of cases).

UT-Based Dual-Channel Noise Estimation
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Experimental Evaluation
The AURORA2-2C-CT Database

' (m)

x,(m)
)) o

@ Test A: Bus, babble,
car and pedestrian
street

“'Z(m) @ Test B: Café, street,
bus and train stations
€,(m) @ SNRs:
{-5,0,5,10,15,20} dB
Lépez-Espejo |., et al.: “Feature Enhancement for Robust Speech Recognition and clean

on Smartphones with Dual-Microphone”. In: EUSIPCO, Lisbon (2014)
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O, (f, t) = 0.9, (f, t — 1) + 0.1| Ny (f, t)|?
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SNR (dB)
@ Noise estimation methods are combined with
dual-channel Wiener filtering.

@ NA-SA: Noise Attenuation minus Speech
Attenuation.

2C-UTNE - Our proposal
PLDNE - Power Level
Difference Noise Estimator
MS - Minimum Statistics
IMCRA - Improved Minima

Controlled Recursive
Averaging

RANG - Rangachari's
algorithm

MMSE - MMSE noise
estimator
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Speech Intel

\ SNR (dB)
5 0 5 10 5 20 | Avg
Noisy | 0.260 | 0.415 | 0556 | 0.693 | 0.819 | 0.909 | 0.612
MMSE | 0.321 | 0478 | 0.620 | 0.761 | 0.867 | 0.936 | 0.665
IMCRA | 0313 | 0.470 | 0.621 | 0.753 | 0.858 | 0.928 | 0.657
RANG | 0.323 | 0.477 | 0.627 | 0.760 | 0.866 | 0.935 | 0.665
Ms 0.319 | 0.476 | 0.627 | 0.760 | 0.867 | 0.936 | 0.664
PLDNE | 0.346 | 0.496 | 0.640 | 0.767 | 0.868 | 0.933 | 0.675
2C-UTNE | 0.350 | 0.506 | 0.653 | 0.780 | 0.879 | 0.941 | 0.685

@ Noise estimation methods are combined with
dual-channel Wiener filtering.

@ CSII: Coherence Speech Intelligibility Index.
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Some conclusions and future work

@ We have achieved accurate noise estimates by taking advantage
of...
© the unscented transform.

@ the dual-channel observation (avoiding the use of a clean speech model
while keeping a simple formulation).

@ Results have shown the higher performance of our proposal with
respect to state-of-the-art noise estimation methods.

@ We will investigate on temporal dynamics modeling to further
improve the performance of our method.
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