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DUAL-CHANNEL VTS FEATURE COMPENSATION

INTRODUCTION

Motivation

o It is expected that the 1st ch. is less atfected by noise than the 2nd one.

e Noise-robust ASR is of utmost importance
in mobile devices.

e L.og-Mel clean speech features are estimated as (K-component GMM)

)C
%1 =Y P(kly)x}", where y = ( z; )
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e Current mobile devices embed several mi-
crophones.

Objective Clean speech partial estimates

e To improve posterior computation for dual- o ﬁgk) — vy, — log (1 1 eMn —Mékl)>

channel VTS feature compensation.
Posterior probabilities

o Stacked formulation: The 2nd ch. is treated in a parallel manner to the 1st one.

e The relation between the noisy speech at the 2nd ch. and the clean speech is more uncertain
(because of the speech masking effect) than that of the 1st ch.

e More robust: To condition the distortion model of the 2nd ch. to the 1st ch. observation.
y) by P(klyi,y2) .

e New derivation from replacing P(k

IMPROVED POSTERIOR PROBABILITY COMPUTATION

Posterior computation

p(y1,y2|k)P(k)
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° p(y1,y21k) = p(y1lk)p(y2ly1, k)
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o P(kly1,y2) =

e Speech distortion model e Speech distortion model
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e Using a VTS approach both p(y;|k) and ' ]
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e Covariance matrix
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e Relative acoustic path: x, = as; + x3

RESULTS

e Word accuracy results (%).

e Our proposal (2-VTS-C) against dual-channel VTS based on a stacked formulation (2-VTS-S)
and single-channel VTS applied on the 1st ch. (1-VTS).

EXPERIMENTAL FRAMEWORK

Speech recognition experiments on a dual-
microphone smartphone used in both

e close-talk (AURORA2-2C-CT) and
e far-talk (AURORA2-2C-FT) conditions.

CLOSE-TALK FAR-TALK
Front-end Clean models Multi-style models Clean models Multi-style models
° (1 3 MFECCs with CMVN) e A e AA . Test A  TestB | Average Test A  Test B | Average Test A  Test B | Average Test A  Test B | Average
Baseline 36.76 31.52 34.14 90.97 77.27 84.12 40.96 30.53 35.74 91.46 74.69 83.07
AFE 74.32 69.00 71.66 89.84 83.89 86.86 74.33 69.20 71.77 90.38 83.37 86.88
DNN-HMM back-end MVDR | 4672 3898 | 4285 9134 8357 | 8745 5271 3971 | 4621 93.90 8471 | 89.30
e Clean acoustic models 1-VTS 84.37 78.05 81.21 89.76 84.20 86.98 84.39 79.06 81.72 90.01 85.12 87.57
2-VTS-S 88.23 83.23 85.73 91.50 87.36 89.43 86.57 81.23 83.90 91.01 86.32 88.66
e Multi-style acoustic models 2-VTS-C | 8870 8344 | 86.07 91.87  87.66 | 89.77 87.82 8246 | 85.14 91.61  87.05 | 89.33

CONCLUSIONS

e Dual-channel power spectrum enhancement (MMSN and DCSS) as pre-processing for VTIS.

1 CLOSE-TALK FAR-TALK

Conclusions Clean models Multi-style models Clean models Multi-style models

e Accurate POStEl‘iOI‘S have been obtained by Test A  Test B | Average Test A  Test B | Average Test A  Test B | Average Test A  Test B | Average

modeling the conditional dependence of the MMSN-1 89.55 84.62 87.08 92.74 88.84 90.79 88.29 82.67 85.48 92.47 87.51 89.99

. 7nd ch . the 1st MMSN-2S 90.02 85.49 87.75 92.99 89.44 91.22 88.07 82.70 85.39 92.21 87.72 89.96

Noisy ~nd ch. given the 1st One. MMSN-2C | 91.03 8626 | 88.64 93.56  90.03 | 91.80 89.60  84.04 | 8682 93.00 8858 | 90.79

e The new way of Computing the POSte' DCSS-1 89.65 84.72 87.19 92.92 88.99 90.95 88.77 83.10 85.93 92.66 87.95 90.30
5 h h . £ th DCSS-2S 90.06 85.57 87.82 92.84 89.46 91.15 88.37 83.14 85.76 92.33 87.90 90.11

riors has overcome the constraints of the DCSS2C | 91.02 8631 | 88.67 9347 8993 | 9170 89.70  84.04 | 86.87 93.24 8853 | 90.88

stacked formulation when combined with
MMSN and DCSS in far-talk conditions.
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Future work

e We will research on how to exploit the dual-
channel information for better clean speech
partial estimate computation.
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