

Robust ASR on Mobile Devices with Small Array

Iván López Espejo, A. M. Peinado, and A. M. Gomez

Dept. of Signal Theory, Telematics and Communications, University of Granada, Spain
`{iloes,amp,amgg}@ugr.es`

The University of Sheffield
6-3-2015, *Sheffield*

Where I come from...

ugr

Universidad
de Granada

SigMAT (Signal Processing, Multimedia Transmission and Speech/Audio Technologies)

Main research lines of the group:

- **Robust speech recognition on mobile environments.**
 - **Robust ASR on mobile devices with small microphone array.**
- Robust transmission of speech and video.
- Ultrasonic non-destructive testing.
- Signal processing in proteomics.

Work done so far...

An overview of the work done so far

Work done by me et al. (in chronological order):

- 1 Feature Enhancement for Robust Speech Recognition on Smartphones with Dual-Microphone. *In Proc. of EUSIPCO, 2014.*
- 2 A Deep Neural Network Approach for Missing-Data Mask Estimation on Dual-Microphone Smartphones: Application to Noise-Robust Speech Recognition. *Lecture Notes in Computer Science, vol. 8854, 2014.*
- 3 Soft-Mask Spectral Weighting for Robust Speech Recognition in Smartphones with a Dual-Microphone. *Submitted to INTERSPEECH'15.*
- 4 Power Spectrum Enhancement for Noise-Robust Speech Recognition with Small Microphone Arrays. *About to submit it.*

Feature Enhancement for Robust ASR on Smartphones with Dual-Mic

Introduction and motivation

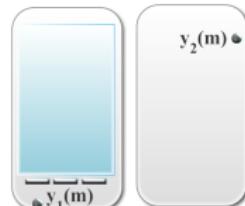
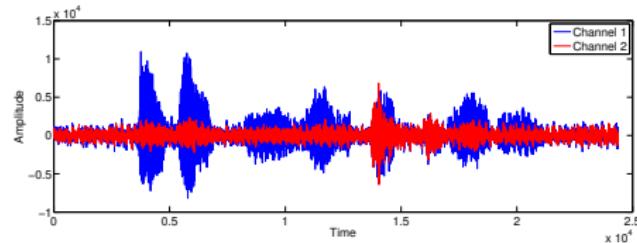
New ASR upswing

The use of ASR applications has notably increased due to the latest portable electronic devices:

- Great amount of apps (search-by-voice, IPA, dictation, etc.).

Noise-robust ASR in smartphones

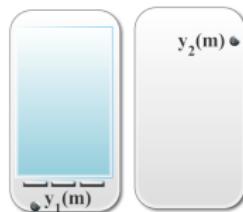
- It is crucial to tackle with noisy environments.
- We can take benefit from the novel dual-mic feature.

Feature Enhancement for Robust ASR on Smartphones with Dual-Mic

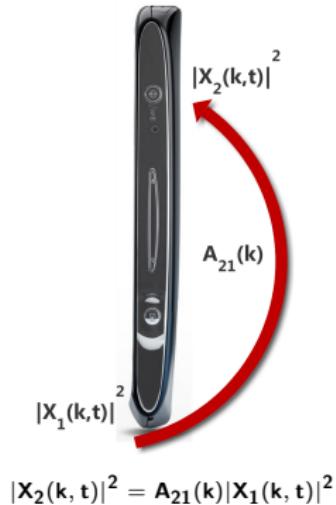
The power level difference

In a close-talk position:


- Speech power at the primary mic tends to be greater than at the secondary one.
- **Far field noise:** Noise power received at both mics is similar.
- **Our goal:** Estimating the clean speech power spectrum at the primary channel by using the information at both channels.

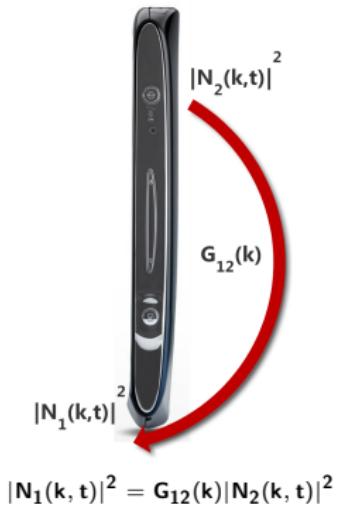
Feature Enhancement for Robust ASR on Smartphones with Dual-Mic

Dual-channel signal model

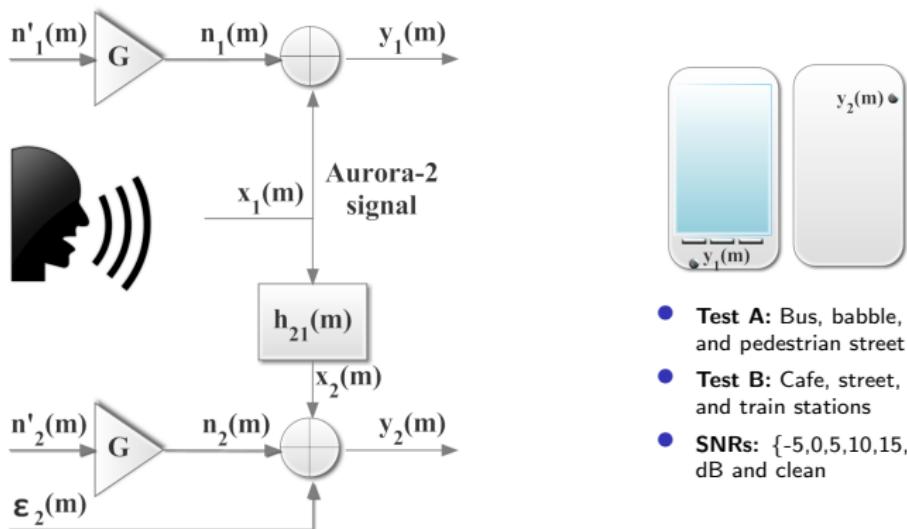

- We consider additive noise:
 $y_i(m) = x_i(m) + n_i(m)$, where $i = 1, 2$
indicates the mic (channel).
- Assuming that speech and noise are independent:
 $|Y_1(k, t)|^2 = |X_1(k, t)|^2 + |N_1(k, t)|^2$
 $|Y_2(k, t)|^2 = |X_2(k, t)|^2 + |N_2(k, t)|^2$

Feature Enhancement for Robust ASR on Smartphones with Dual-Mic

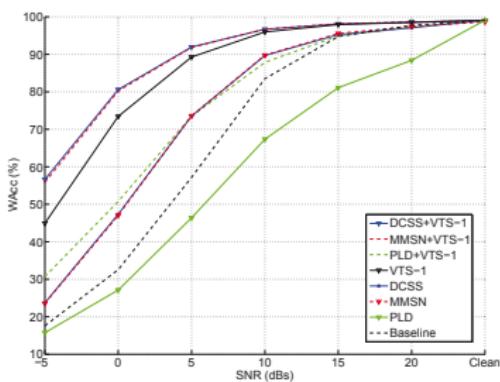
Minimum mean square noise (MMSN) feature enhancer


- Minimum mean square noise (**MMSN**) feature enhancer is defined as
$$|\hat{X}_1(k, t)|^2 = \mathbf{w}_k^T \begin{pmatrix} |Y_1(k, t)|^2 \\ |Y_2(k, t)|^2 \end{pmatrix}.$$
- The speech power in the second channel is related with the speech power in the first one through a time-invariant factor $A_{21}(k)$:
$$|Y_2(k, t)|^2 = A_{21}(k)|X_1(k, t)|^2 + |N_2(k, t)|^2.$$
- Weights are computed by using the well-known MVDR (minimum variance distortionless response) approach:
$$\mathbf{w}_k = \frac{\Phi_{N,k}^{-1}(1, A_{21}(k))^T}{(1, A_{21}(k))\Phi_{N,k}^{-1}(1, A_{21}(k))^T}.$$

Feature Enhancement for Robust ASR on Smartphones with Dual-Mic


Dual-channel spectral subtraction (DCSS)

- We can also relate noise power spectra at both channels:
 $|Y_1(k, t)|^2 = |X_1(k, t)|^2 + G_{12}(k)|N_2(k, t)|^2.$
- Dual-channel spectral subtraction (**DCSS**)
estimator: $|\hat{X}_1(k, t)|^2 = \frac{|Y_1(k, t)|^2 - G_{12}(k)|Y_2(k, t)|^2}{1 - G_{12}(k)A_{21}(k)}.$
- $G_{12}(k)$ is estimated by minimizing
 $\mathbb{E} [(|N_1(k, t)|^2 - G_{12}(k)|N_2(k, t)|^2)^2]:$
 $\hat{G}_{12}(k) = \frac{\hat{\phi}_{N,k}(1,2)}{\hat{\phi}_{N,k}(2,2)}.$


Feature Enhancement for Robust ASR on Smartphones with Dual-Mic

The AURORA2-2C-CT database

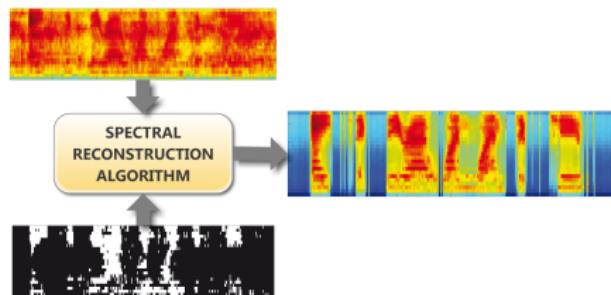
Feature Enhancement for Robust ASR on Smartphones with Dual-Mic

Results

GMM-HMM
(trained with clean speech)

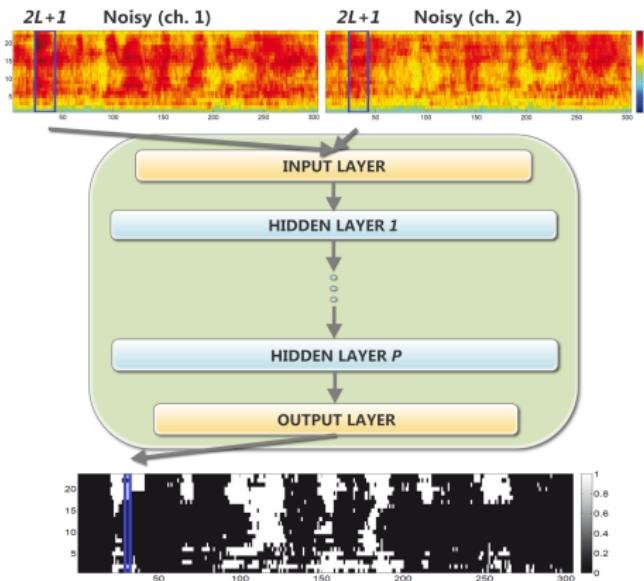
- **PLD:** speech enhancer for smartphones with dual-microphone.
- MMSN and DCSS have a similar performance when $A_{21}(k) \rightarrow 0$:
$$\begin{cases} w_1(k) \{MMSN, DCSS\} \rightarrow 1 \\ w_2(k) \{MMSN, DCSS\} \rightarrow -\frac{\phi_{N,k}(1,2)}{\phi_{N,k}(2,2)} \end{cases}$$

$$|\hat{X}_1(k, t)|^2 = w_1(k) |Y_1(k, t)|^2 + w_2(k) |Y_2(k, t)|^2$$


A DNN Approach for Mask Estimation on Dual-Mic Smartphones

Motivation for this work

Another possible approach to noise-robust ASR:
spectral reconstruction



A BINARY MASK IS NEEDED

A DNN Approach for Mask Estimation on Dual-Mic Smartphones

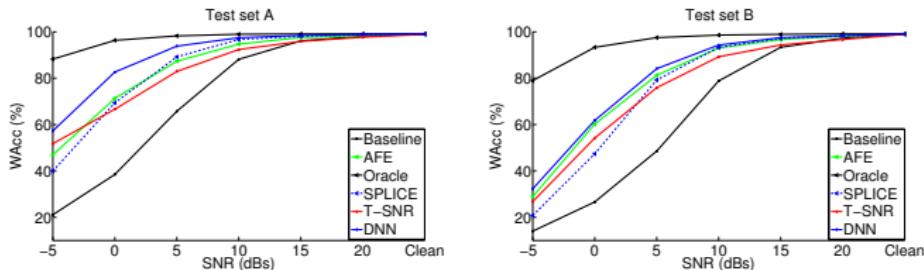
DNN-based mask estimation system

Features:

$$\mathcal{Y} = \begin{pmatrix} \mathbf{y}(t-L) \\ \vdots \\ \mathbf{y}(t+L) \end{pmatrix},$$

where

$$\mathbf{y}(t) = \begin{pmatrix} \mathbf{y}_1(t) \\ \mathbf{y}_2(t) \end{pmatrix}$$

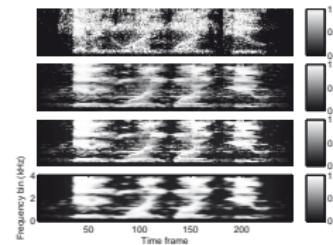

- Input dim.:
 $d = 2 \cdot \mathcal{M} \cdot (2L + 1) \times 1$

Target:

- Oracle binary mask vector for $\mathbf{y}_1(t)$
- Output dim.: $\mathcal{M} \times 1$
- 7 dB SNR threshold

A DNN Approach for Mask Estimation on Dual-Mic Smartphones

Experiments and results

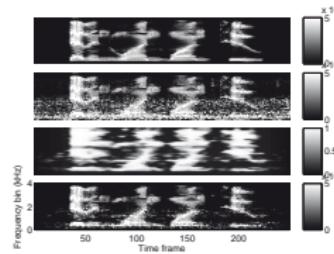

	WAcc (%)			Wrong mask bins (%)		
	Test A	Test B	Average	Test A	Test B	Average
Baseline	67.96	59.78	63.87	-	-	-
AFE	82.71	76.37	79.54	-	-	-
Oracle+TGI	96.67	94.41	95.54	0	0	0
SPLICE	82.03	72.72	77.38	-	-	-
T-SNR+TGI	81.21	72.87	77.04	17.97	19.89	18.93
DNN+TGI	88.10	78.07	83.08	10.07	16.19	13.13

GMM-HMM (trained with clean speech)

Soft-Mask Weighting for Robust ASR on Smartphones with a Dual-Mic

Description of the approach

- We follow a Wiener filter approach:
 $|\hat{X}_1(k, t)|^2 = \hat{H}_1^2(k, t) |Y_1(k, t)|^2$.
- $\hat{H}_1^2(k, t) = \left(\hat{\xi}_1(k, t) / (\hat{\xi}_1(k, t) + 1) \right)^2$ may be seen as a spectral weighting soft-mask (b).
- We exploit the PLD by assuming that $\varphi_{X_1}(k, t) \gg \varphi_{X_2}(k, t)$ and $\varphi_{N_2}(k, t) \approx \varphi_{N_1}(k, t)$:
$$\hat{\xi}_1(k, t) = \max \left(\frac{\varphi_{Y_1}(k, t)}{\varphi_{Y_2}(k, t)} - 1, 0 \right).$$
- We apply a post-processing to improve the soft-mask:
 - 1 Slight contrast by using a sigmoid function (c).
 - 2 Median and Gaussian filtering to improve the spectro-temporal coherence (d).


From top to bottom:

- (a) Oracle
- (b) $\hat{H}_1^2(k, t)$
- (c) After sigmoid
- (d) After filtering

Soft-Mask Weighting for Robust ASR on Smartphones with a Dual-Mic

Description of the approach

- We follow a Wiener filter approach:
 $|\hat{X}_1(k, t)|^2 = \hat{H}_1^2(k, t)|Y_1(k, t)|^2$.
- $\hat{H}_1^2(k, t) = \left(\hat{\xi}_1(k, t)/(\hat{\xi}_1(k, t) + 1)\right)^2$ may be seen as a spectral weighting soft-mask.
- We exploit the PLD by assuming that $\varphi_{X_1}(k, t) \gg \varphi_{X_2}(k, t)$ and $\varphi_{N_2}(k, t) \approx \varphi_{N_1}(k, t)$:
$$\hat{\xi}_1(k, t) = \max\left(\frac{\varphi_{Y_1}(k, t)}{\varphi_{Y_2}(k, t)} - 1, 0\right).$$
- We apply a post-processing to improve the soft-mask:
 - 1 Slight contrast by using a sigmoid function.
 - 2 Median and Gaussian filtering to improve the spectro-temporal coherence.

From top to bottom:

1. Clean
2. Noisy
3. Soft-mask
4. Enhanced

Soft-Mask Weighting for Robust ASR on Smartphones with a Dual-Mic Results

Tech./SNR (dB)	-5	0	5	10	15	20	Clean	Av. (-5 to 20)
Baseline	18.15	31.85	56.11	82.78	94.72	97.76	99.13	63.56
SMW	26.23	51.76	77.03	89.49	94.19	96.09	98.40	72.47
MMSN	24.16	46.31	74.78	90.66	96.14	97.87	98.90	71.65
DCSS	24.37	46.69	75.06	90.65	96.03	97.64	99.13	71.74
New	28.36	52.59	79.65	92.39	96.68	98.04	99.11	74.62
VTS-1	44.25	72.75	89.69	95.44	97.71	98.49	99.09	83.06
SMW+VTS-1	29.37	56.52	79.75	90.19	94.08	95.72	98.13	74.27
MMSN+VTS-1	56.15	81.05	92.41	96.60	98.15	98.65	98.99	87.17
DCSS+VTS-1	56.22	81.04	92.40	96.57	98.21	98.63	99.09	87.18
New+VTS-1	61.14	81.43	92.05	95.89	97.82	98.48	99.05	87.80

Table: WAcc results in terms of percentage. Results are averaged across all types of noise in test sets A and B.

Power Spectrum Enhancement for Noise-Robust ASR with Small Mic Arrays

Motivation

Facts...

- Several types of devices can be used.
- Devices can have more than two mics arranged in different ways.
- Devices can be used in different and variable positions.

Therefore...

- We generalize our previous work to \mathcal{C} mics and a variable position.
 - MMSN → **P-MVDR** (power MVDR)
 - DCSS → **MSS** (multichannel spectral subtraction)

Power Spectrum Enhancement for Noise-Robust ASR with Small Mic Arrays

Speech gain vector and P-MVDR and MSS equations

P-MVDR:

$$|\hat{X}_1(k, t)|^2 = \left(\frac{\Phi_{k, t}^{-1} \mathbf{A}_{k, t}}{\mathbf{A}_{k, t}^T \Phi_{k, t}^{-1} \mathbf{A}_{k, t}} \right)^T \mathbf{Y}_{k, t}$$

MSS:

$$|\hat{X}_1(k, t)|^2 = \frac{\mathbf{Y}_{k, t}^T \Gamma_{k, t} \mathbf{A}_{k, t} - \mathbf{Y}_{k, t}^T \mathbf{A}_{k, t} \cdot \|\mathbf{G}_{k, t}\|^2}{(\mathbf{A}_{k, t}^T \mathbf{G}_{k, t})^2 - \|\mathbf{A}_{k, t}\|^2 \cdot \|\mathbf{G}_{k, t}\|^2}$$

$$\Gamma_{k, t} = \mathbf{G}_{k, t} \cdot \mathbf{G}_{k, t}^T$$

$$\mathbf{G}_{k, t} = (1, G_{21}(k, t), \dots, G_{C1}(k, t))^T$$

- Use position or acoustics may be variable.
- We developed an MMSE-based estimator to estimate $\mathbf{A}_{k, t} = (1, A_{21}(k, t), \dots, A_{C1}(k, t))^T$ on a frame-by-frame basis.

Power Spectrum Enhancement for Noise-Robust ASR with Small Mic Arrays

About our experiments and results

- We created the AURORA2-2C-FT database emulating a smartphone with a dual-mic but in far-talk conditions.
- We created validation test datasets with real noisy data for both close-talk and far-talk conditions.
- Our recognition results showed the success of our developments in all cases.

Conclusions and future work

- Multichannel information can be exploited to improve ASR performance.
- There is little work on robust ASR with small mic arrays → We should be able to achieve further improvements.
- We are very interested in obtaining new and good results on the CHiME-3 database.

Thanks for your attention and any
questions?

Contact:

Iván López Espejo

Department of Signal Theory, Telematics and Communications

University of Granada

E-mail: iloes@ugr.es

