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Abstract. The performance of many noise-robust automatic speech recog-
nition (ASR) methods, such as vector Taylor series (VTS) feature com-
pensation, heavily depends on an estimation of the noise that contami-
nates speech. Therefore, providing accurate noise estimates for this kind
of methods is crucial as well as a challenge. In this paper we investigate
the use of deep neural networks (DNNs) to perform noise estimation in
dual-microphone smartphones. Thanks to the powerful regression capa-
bilities of DNNs, accurate noise estimates can be obtained by just using
simple features as well as exploiting the power level difference (PLD) be-
tween the two microphones of the smartphone when employed in close-
talk conditions. This is confirmed by our word recognition results on
the AURORA2-2C (AURORA2 - 2 Channels - Conversational Position)
database by largely outperforming single- and dual-channel noise esti-
mation algorithms from the state-of-the-art when used together with a
VTS feature compensation method.

Keywords: Noise estimation, Deep neural network, VTS feature com-
pensation, Automatic speech recognition, Dual-microphone, Smartphone

1 Introduction

Providing robustness against acoustic noise is still a challenge in automatic
speech recognition (ASR) [1]. Many techniques devoted to noise-robust ASR
such as vector Taylor series (VTS) feature compensation [2] or Wiener filtering
[3] might require an explicit estimation of the noise that contaminates speech.
The performance of this kind of techniques heavily depends on the accuracy of
the given noise estimation. Therefore, accurate noise estimation algorithms are
needed and we can find a great variety of them in the literature [4–7].

Particularly nowadays, providing robustness in ASR is a crucial task because
of the wide use of mobile devices such as smartphones or tablets which can be
employed for ASR purposes in many different acoustic environments. Mobile
devices often integrate small microphone arrays which have been successfully
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exploited for both speech enhancement [8, 9] and noise-robust ASR [10]. In our
previous work [11], noise-robust ASR in a dual-microphone smartphone, a par-
ticular case of interest of small microphone array, was addressed. In that work, a
missing-data mask estimation method was proposed in order to perform spectral
reconstruction. The method proposed consists of a deep neural network (DNN)
fed with dual-channel noisy observations which provides a missing-data mask. It
was proven that this rather simple and straightforward approach supplies quite
accurate missing-data masks by exploiting the power level difference (PLD) be-
tween the two microphones of the smartphone. When a dual-microphone smart-
phone is employed in close-talk conditions (i.e. the loudspeaker of the smartphone
is placed on the ear of the user) the primary microphone (which is located at
the bottom of the device) captures more speech power than the secondary one
(located at the rear of the smartphone) since the latter is placed in an acoustic
shadow with respect to the speaker’s mouth. Additionally, the noise power ob-
served by both microphones is assumed to be very similar because of the typical
existence of a homogeneous noise field [8]. Thus, it is clear that a missing-data
mask can be easily derived from a comparison between the noisy speech power
present in both channels, where the secondary channel is a good noise reference.

Based on the discussion above, in this work we investigate noise estimation
for noise-robust ASR in dual-microphone smartphones by exploiting the PLD
between the two sensors of the device. Similarly to our previous work [11], a
DNN is used to find a mapping function between the dual-channel noisy obser-
vation and the noise that contaminates speech at the primary channel. While
DNNs have been employed for many different tasks from noise-robust ASR such
as missing-data mask estimation [12, 11], surprisingly they have not yet been
applied to directly estimate noise. DNN-based noise estimates will be used by a
VTS feature compensation method to perform noise-robust ASR. The resulting
robust ASR system gathers the advantages of two different approaches. Thus,
it combines a traditional signal processing technique for feature compensation
with a novel DNN-based approach for noise estimation, which undoubtedly is a
difficult task with the classical signal processing tools. It is expected that this
kind of hybrid architectures will be extensively explored in the near future [13].
Our experimental evaluation on the AURORA2-2C (AURORA2 - 2 Channels -
Conversational Position) database [10] shows the effectiveness of our proposal in
terms of word accuracy by achieving the best performance among several single-
and dual-channel noise estimation algorithms from the state-of-the-art.

The rest of the paper has been organized as follows. In Section 2 a sys-
tem overview is presented along with the proposed DNN-based noise estimation
method. Both the experimental framework and results are shown in Section 3.
Finally, in Section 4 our conclusions and future work are drawn.

2 Proposed Method

The noise-robust ASR framework considered in this paper is depicted in Figure
1. The noisy speech signal captured by the primary microphone of the smart-
phone is denoted as y1(m), where m is the sampling time index. Similarly, y2(m)
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refers to the noisy speech signal recorded by the secondary microphone of the
device. As presented in Section 1, the noise components in y1(m) and y2(m) are
assumed to be quite similar while speech is very attenuated at the secondary
sensor with respect to the primary one since the former is placed in an acoustic
shadow regarding the speaker’s mouth. Then, log-Mel spectral features yi are
extracted from the noisy signals yi(m), i = 1, 2, which are employed by a DNN-
based stage in order to provide a noise estimate of the primary channel, n̂1. To
obtain the clean speech log-Mel features at the primary channel, x̂1, this noise
estimate is used along with y1 by a VTS feature compensation method. Finally,
x̂1 is transformed into the cepstral domain by application of the discrete cosine
transform (DCT) prior to be used by the speech recognizer.

Fig. 1. Block diagram of the noise-robust ASR framework considered in this work.

Subsection 2.1 is devoted to show the fundamentals of the DNN-based noise
estimation stage marked in gray in Figure 1, while a noise-aware training (NAT)-
based extension to it, intended to increase the awareness of the DNN about the
noise that contaminates speech, is presented in Subsection 2.2.

2.1 Dual-Channel Noise Estimation Based on DNN

A DNN (i.e. a feed-forward neural network with multiple hidden layers) is con-
sidered in this work to find a non-linear mapping function between dual-channel
noisy speech and noise log-Mel features at the primary channel of the smart-
phone. This DNN-based method exploits the PLD between the two microphones
of the device when employed in close-talk conditions to effectively provide accu-
rate noise estimates. An illustration on how the DNN is used to this end can be
seen in Figure 2.

First, let

yi(t) = (yi(0, t), yi(1, t), ..., yi(M− 1, t))
T
, i = 1, 2, (1)

and
n1(t) = (n1(0, t), n1(1, t), ..., n1(M− 1, t))

T
(2)

respectively be noisy speech and noise log-Mel feature vectors at time frame t.
These vectors are comprised of M frequency components where M is the total
number of filterbank channels. Moreover, the subscript indicates the channel to
which each vector belongs. Our DNN works on a frame-by-frame basis so that
it gives a noise frame estimate at each time t from an input consisting of the
dual-channel noisy speech observation at time t along with its temporal context.
In particular, if we define

y(t) =

(
y1(t)
y2(t)

)
, (3)
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Fig. 2. An outline of the DNN as used for noise estimation purposes.

the DNN input vector becomes

Y(t) =
(
yT(t− L) , ... , yT(t+ L)

)T
, (4)

where the variable L determines the size of the temporal context considered (i.e.
the size of the temporal window used is 2L + 1). Therefore, the dimension of
the input vector is dim(Y(t)) = 2M(2L + 1). Additionally, as expected, the
corresponding M-dimensional target vector is that of Eq. (2).

The DNN training consists of an unsupervised generative pre-training, where
it is considered each pair of layers as restricted Boltzmann machines (RBMs) [14],
followed by a supervised fine-tuning step. The goal of this pre-training is to avoid
getting stuck in plateaus or local minima during the fine-tuning phase because
of the complex error surface as a result of the deep architecture [15]. Thus,
the input and first hidden layers form a Gaussian-Bernoulli RBM (i.e. a visible
layer of Gaussian variables connected to binary units in a hidden layer) since
the input vector is real-valued. The successive pairs of layers form Bernoulli-
Bernoulli RBMs (i.e. two layers with connections between their binary units).
Input data are used to train the Gaussian-Bernoulli RBM and the inferred states
of its hidden units are employed to train the following Bernoulli-Bernoulli RBM,
and so on. The parameters resulting from this generative model consisting of
the stack of RBMs are used to initialize the DNN, which is then fine-tuned by
performing a supervised training by means of the backpropagation algorithm.
For backpropagation learning the minimum mean square error (MMSE) criterion
was chosen. Furthermore, the activation function type considered for the hidden
layers is sigmoid while that is linear for the output layer, as could be expected
for regression purposes.

The values chosen for the DNN hyperparameters and the rest of details about
the DNN setup can be found in Subsection 3.2.
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2.2 Noise-Aware Training

DNN noise-aware training (NAT) is a method first appeared in [16] to strengthen
the DNN-based acoustic modeling for ASR. It basically consists of appending a
noise estimate to the network’s input vector containing the noisy speech features
to improve word recognition rates when employing multi-style acoustic modeling.
Since then, NAT has been successfully applied to different tasks such as, for
instance, DNN-based speech enhancement [17]. In this work, we want to explore
if the DNN-based noise estimation approach of Subsection 2.1 can be improved
by increasing the awareness of the DNN about the noise that contaminates
speech in each case.

A simple noise estimator, which has demonstrated to be quite accurate [18],
consists of the linear interpolation between the averages of the first and last M
frames of an utterance in the log-Mel domain. It should be pointed out that
this method assumes that the first and last M frames in each utterance contain
only noise energy. To imitate this method, and assuming that an utterance is
T frames long, the initial input vector Y(t) is augmented by appending the
aforementioned averages,

n̄
(0)
1 =

1

M

M−1∑
t=0

yT
1 (t); n̄

(1)
1 =

1

M

T−1∑
t=T−M

yT
1 (t), (5)

as well as a time index to indicate the frame’s relative position within the utter-
ance:

τ(t) = t/(T − 1). (6)

Additionally, we decided to also use noise variance information by computing
and appending the following sample quantities:

σ
(0)
1 =

1

M − 1

M−1∑
t=0

(
yT
1 (t)− n̄

(0)
1

)2
; σ

(1)
1 =

1

M − 1

T−1∑
t=T−M

(
yT
1 (t)− n̄

(1)
1

)2
, (7)

where (·)2 is applied element-wise. Thus, the final DNN input vector is

YNAT (t) =
(
YT(t), n̄

(0)
1 , n̄

(1)
1 , σ

(0)
1 , σ

(1)
1 , τ(t)

)T
, (8)

with dimension dim(YNAT (t)) = dim(Y(t)) + 4M+ 1 = 4M
(
L+ 3

2

)
+ 1.

3 Experimental Evaluation

The performance of the proposed dual-channel DNN-based noise estimator is
evaluated in terms of word accuracy (WAcc) when used together with a VTS
feature compensation method as depicted in Figure 1. Subsections 3.1 and 3.2
describe the recognition framework considered and how the DNN has been set
up for experiments, respectively. Then, our DNN-based noise estimation results
and a comparison with other noise estimation algorithms when they are also used
together with a VTS feature compensation method are presented in Subsections
3.3 and 3.4, respectively.
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3.1 Recognition Framework

The AURORA2-2C (AURORA2 - 2 Channels - Conversational Position) database
first reported in [10] is employed for ASR experiments. The AURORA2-2C
database is an extension to the well-known Aurora-2 database [19] that com-
prises the acquisition of noisy speech with a dual-microphone smartphone used
in close-talk conditions. Two test sets, A and B, are defined in AURORA2-2C
with different noise types in each one. The types of noise used in test set A are
bus, babble, car and pedestrian street, while test set B considers the noises café,
street, bus station and train station.

For VTS feature compensation we employ the first-order implementation
reported in [18]. The only difference with respect to [18] consists of the use of
different noise estimation algorithms. VTS is performed using a 256-component
clean speech Gaussian mixture model (GMM) with diagonal covariance matrices.
This GMM was obtained by performing the expectation-maximization (EM)
algorithm on the same dataset as that used for clean acoustic model training.

To extract acoustic features from the speech signals, the European Telecom-
munication Standards Institute front-end (ETSI FE, ES 201 108) is used [20].
Log-Mel feature vectors employed by both the DNN and VTS are composed of
M = 23 frequency bins. Twelve Mel-frequency cepstral coefficients (MFCCs)
along with the 0th order coefficient are obtained by application of the DCT to
the enhanced log-Mel features. Then, their velocity and acceleration coefficients
are appended to them to form the 39-dimensional feature vector employed by
the recognizer. To strengthen the speech recognizer against channel mismatches
cepstral mean normalization (CMN) is also applied.

Regarding the speech recognizer, both clean and multi-style acoustic models
are considered for evaluation. The latter models are trained with distorted speech
features to strengthen the ASR system against noisy conditions. In AURORA2-
2C, the multi-style training dataset is created from the training clean utterances
of Aurora-2 and consists of dual-channel utterances contaminated with the types
of noise in test set A at the signal-to-noise ratios (SNRs) of 5 dB, 10 dB, 15 dB
and 20 dB, along with the clean condition. Noisy utterances are compensated
with VTS using the corresponding noise estimation algorithm prior to training
the multi-style acoustic models. To model each digit, left to right continuous
density hidden Markov models (HMMs) with 16 states and 3 Gaussians per
state are used. Silences and short pauses are modeled by HMMs with 3 and 1
states, respectively, and 6 Gaussians per state [19].

3.2 DNN Setup

Taking into account the speech recognition task as well as the different noise
conditions considered in this paper, for the sake of efficiency and to avoid data
redundancy, our DNN was trained using 25600 sample pairs of input-target vec-
tors. Training input data consisted of a mixture of samples contaminated with
the noises of test set A at the SNRs of -5 dB, 0 dB, 5 dB, 10 dB, 15 dB and
20 dB. Thus, the noise types of test set B are useful to test the generaliza-
tion capability of the DNN to unseen noise conditions during training. On the
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one hand, for the unsupervised pre-training stage the number of epochs in each
RBM was 40 and the learning rate was set to 0.0005. On the other hand, for
the fine-tuning step the number of epochs was 100 and a learning rate of 0.1
was employed. The momentum rate used was 0.9. Following the tips from the
Hinton’s report in [21], the mini-batch size was 10 sample pairs. To improve the
generalization capability of the network, early-stopping was adopted as a regu-
larization strategy to avoid overfitting during training. Moreover, since the task
addressed in [11] is similar to that in this paper, and assuming that noise has
weak temporal correlations, L was set to 2 as in [11]. Since M = 23, the input
layer has dim(Y(t)) = 230 and dim(YNAT (t)) = 323 neurons for the DNN of
Subsection 2.1 (without NAT) and 2.2 (with NAT), respectively. For both DNN
configurations the output layer hasM = 23 neurons and five hidden layers were
set up, according to preliminary recognition experiments, with 512 neurons each.
For NAT, M = 20 was considered. Finally, the implementation of the DNN was
done using Python along with the library Theano [22].

3.3 DNN-Based Noise Estimation Results

Tables 1 and 2 present a comparison in terms of WAcc between our DNN with-
out NAT (DNN2) and other techniques when employing clean and multi-style
acoustic models, respectively. These reference techniques are a single-channel
DNN-based noise estimator (DNN1) as well as our previous approach reported
in [11] (TGI+DNN), which shares similarities with this work. It should be noticed
that the only difference between DNN1 and DNN2 is that Eq. (3) is redefined
as y(t) = y1(t) for the former one. Baseline results are obtained by directly
using the noisy speech features from the primary channel with no compensa-
tion. For both types of acoustic models, the best results are achieved by DNN2,
which makes it a better choice than TGI+DNN to provide robustness for ASR
in dual-microphone smartphones. Also by a large margin (11.13% and 9.06%
on average under clean and multi-style acoustic modeling, respectively) DNN2

is clearly superior to DNN1 as it exploits the information from the secondary
channel, which is a good noise reference since speech is very attenuated in it as
previously discussed. As expected, better WAcc results are generally obtained by
employing multi-style instead of clean acoustic models, since the mismatch be-
tween training and test data is lower. In addition, test set B baseline results are
substantially worse than those of test set A. Nevertheless, DNN2 exhibits some
generalization capabilities to noise conditions not seen during training. Finally,
it is worth mentioning that word recognition results for both TGI+DNN and
baseline are slightly different from those reported in [11]. This is because in this
work the AURORA2-2C database was generated considering an anechoic cham-
ber instead of a semi-anechoic environment for the acoustic path estimation, as
in [11].

Table 3 shows the WAcc results achieved by both DNN1 and DNN2 when
integrating the NAT approach of Subsection 2.2, DNNNAT

1 and DNNNAT
2 . On the

one hand, DNN1 has experienced an average relative improvement of 3.74% and
2.27% in terms of WAcc when employing clean and multi-style acoustic models,
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respectively, by incorporating a noise reference by means of NAT. On the other
hand, NAT degrades the performance of DNN2. This could be explained because
the secondary channel is a better noise reference itself than the information
considered in our NAT-based approach, which introduces a greater uncertainty.

Baseline TGI+DNN DNN1 DNN2

SNR (dB) Test A Test B Avg. Test A Test B Avg. Test A Test B Avg. Test A Test B Avg.
-5 21.14 15.15 18.15 54.80 32.29 43.55 41.69 20.72 31.21 63.02 40.87 51.95
0 38.19 25.50 31.85 79.42 60.24 69.83 67.21 45.81 56.51 85.74 71.09 78.42
5 64.60 47.61 56.11 92.67 84.12 88.40 85.56 73.57 79.57 94.53 90.20 92.37
10 87.71 77.84 82.78 97.08 94.38 95.73 93.09 88.56 90.83 97.72 96.21 96.97
15 95.99 93.44 94.72 98.45 97.54 98.00 96.28 94.36 95.32 98.59 98.17 98.38
20 98.13 97.38 97.76 98.93 98.38 98.66 96.92 96.50 96.71 98.94 98.77 98.86

Clean 99.13 99.13 99.13 99.13 99.13 99.13 97.59 97.59 97.59 99.02 99.02 99.02
Avg. (-5 to 20) 67.63 59.49 63.56 86.89 77.83 82.36 80.13 69.92 75.03 89.76 82.55 86.16

Table 1. WAcc results (%) for DNN2 and other comparison techniques when clean
acoustic models are employed. Results are averaged across all types of noise in each
test set.

Baseline TGI+DNN DNN1 DNN2

SNR (dB) Test A Test B Avg. Test A Test B Avg. Test A Test B Avg. Test A Test B Avg.
-5 47.64 26.22 36.93 57.89 35.75 46.82 48.14 24.10 36.12 67.05 44.37 55.71
0 76.99 56.39 66.69 82.18 65.88 74.03 72.91 51.93 62.42 87.95 75.02 81.49
5 92.36 85.33 88.85 94.12 87.15 90.64 89.29 78.73 84.01 95.39 91.57 93.48
10 96.94 94.52 95.73 97.50 95.02 96.26 95.19 91.96 93.58 97.93 96.84 97.39
15 97.98 97.14 97.56 98.46 97.41 97.94 97.59 96.04 96.82 98.60 98.34 98.47
20 98.49 98.12 98.31 98.85 98.02 98.44 98.16 97.68 97.92 98.79 98.65 98.72

Clean 98.77 98.77 98.77 98.61 98.61 98.61 98.49 98.49 98.49 98.99 98.99 98.99
Avg. (-5 to 20) 85.07 76.29 80.68 88.17 79.87 84.02 83.55 73.41 78.48 90.95 84.13 87.54

Table 2. WAcc results (%) for DNN2 and other comparison techniques when multi-
style acoustic models are employed. Results are averaged across all types of noise in
each test set.

Clean models Multi-style models

DNNNAT
1 DNNNAT

2 DNNNAT
1 DNNNAT

2
SNR (dB) Test A Test B Avg. Test A Test B Avg. Test A Test B Avg. Test A Test B Avg.

-5 41.93 22.70 32.32 52.85 33.04 42.95 46.73 26.40 36.57 58.21 38.17 48.19
0 71.02 54.18 62.60 78.76 63.17 70.97 75.01 60.24 67.63 82.77 69.69 76.23
5 90.03 82.11 86.07 92.06 86.74 89.40 91.91 85.33 88.62 93.80 88.99 91.40
10 96.62 93.61 95.12 96.70 94.51 95.61 96.73 94.32 95.53 97.44 95.36 96.40
15 98.32 97.37 97.85 98.23 97.34 97.79 98.24 97.15 97.70 98.30 97.56 97.93
20 98.82 98.49 98.66 98.84 98.40 98.62 98.63 98.29 98.46 98.72 98.31 98.52

Clean 98.83 98.83 98.83 98.60 98.60 98.60 98.89 98.89 98.89 98.74 98.74 98.74
Avg. (-5 to 20) 82.79 74.74 78.77 86.24 78.87 82.56 84.54 76.96 80.75 88.21 81.35 84.78

Table 3. WAcc results (%) for NAT when both clean and multi-style acoustic models
are employed. Results are averaged across all types of noise in each test set.

3.4 A Comparison with other Noise Estimation Algorithms

To conclude our experimental evaluation, DNN2, which has exhibited the best
performance so far, is compared with different single-channel noise estimation al-
gorithms when applied on the primary channel: Rangachari’s algorithm (RANG)
[4], improved minima controlled recursive averaging (IMCRA) [5], minimum
statistics (MS) [6], MMSE-based noise estimation (MMSE) [7] and linear in-
terpolation (INT) as described in Subsection 2.2 with M = 20. Furthermore,
power level difference noise estimation (PLDNE) [8], which is a dual-channel
noise estimation algorithm based on recursive averaging, is also tested. PLDNE
is especially interesting since it is intended for dual-microphone smartphones
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employed in close-talk conditions by assuming both a homogeneous diffuse noise
field and that clean speech at the secondary channel is very attenuated with re-
spect to the primary one. The corresponding WAcc results obtained when clean
and multi-style acoustic models are used can be seen in Tables 4 and 5, respec-
tively. As can be observed, on average and for all the SNRs considered but the
clean case, DNN2 shows the best performance among the noise estimation al-
gorithms evaluated. In particular, thanks to the powerful regression capabilities
of DNNs, DNN2 is able to achieve a greater performance than PLDNE with no
other assumptions than just exploiting the PLD between the two channels of the
device.

Method / SNR (dB) -5 0 5 10 15 20 Clean Avg. (-5 to 20)

Baseline 18.15 31.85 56.11 82.78 94.72 97.76 99.13 63.56

RANG 38.15 64.35 83.30 92.22 95.42 96.40 96.48 78.31

IMCRA 35.07 63.38 83.60 93.04 96.99 98.21 99.01 78.38

MS 35.51 63.79 83.81 92.98 96.86 98.27 98.90 78.54

MMSE 38.87 66.27 85.57 93.65 97.14 98.33 99.08 79.97

INT 44.25 72.75 89.69 95.44 97.71 98.49 99.09 83.06

PLDNE 40.57 69.32 87.05 94.22 97.07 98.08 98.95 81.05

DNN2 51.95 78.42 92.37 96.97 98.38 98.86 99.02 86.16

Table 4. Comparison between several noise estimation algorithms in terms of WAcc
(%) when clean acoustic models are employed. Results are averaged across all types of
noise in test sets A and B.

Method / SNR (dB) -5 0 5 10 15 20 Clean Avg. (-5 to 20)

Baseline 36.93 66.69 88.85 95.73 97.56 98.31 98.77 80.68

RANG 45.76 73.26 89.72 95.62 97.44 98.22 98.40 83.34

IMCRA 41.78 71.49 88.80 95.32 97.69 98.47 98.88 82.26

MS 49.65 71.71 88.96 95.49 97.75 98.53 98.89 83.68

MMSE 44.99 72.85 89.22 95.38 97.58 98.49 99.01 83.09

INT 47.98 76.07 91.22 96.00 97.91 98.49 98.79 84.61

PLDNE 48.11 77.70 92.68 96.65 98.05 98.53 98.71 85.29

DNN2 55.71 81.49 93.48 97.39 98.47 98.72 98.99 87.54

Table 5. Comparison between several noise estimation algorithms in terms of WAcc
(%) when multi-style acoustic models are employed. Results are averaged across all
types of noise in test sets A and B.

4 Conclusions

In this paper we have presented a novel noise estimation method for noise-robust
ASR in dual-microphone smartphones. In particular, a DNN has successfully
been used to find a non-linear mapping function between dual-channel noisy
speech and noise log-Mel features at the primary channel of the smartphone.
Thanks to the powerful regression capabilities of DNNs, very high word recogni-
tion results have been obtained by just using simple features as well as exploiting
the PLD between the two channels of the device when employed in close-talk
conditions. As future work, we would like to explore the performance of this ap-
proach under different mobile devices with different small array configurations
(e.g. with more than two microphones) as well as employed in arbitrary positions
and not only in close-talk conditions.
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