

A Deep Neural Network Approach for Missing-Data Mask Estimation on Dual-Microphone Smartphones: Application to Noise-Robust Speech Recognition

Iván López-Espejo*, J.A. González†, A.M. Gómez*, and A.M. Peinado*

*Dept. of Signal Theory, Telematics and Com., University of Granada, Spain

†Dept. of Computer Science, University of Sheffield, UK

{iloes,amgg,amp}@ugr.es, j.gonzalez@sheffield.ac.uk

Outline

1 Introduction

- Motivation
- Objectives

2 The Power Level Difference

3 DNN-Based Mask Estimation System

4 Experiments and Results

- The AURORA2-2C Database
- DNN Properties
- Results

5 Conclusions

Introduction

Motivation

New ASR upswing

The use of automatic speech recognition (ASR) applications has notably increased due to latest smartphones:

- Great amount of apps (search by voice, IPA, dictation, etc.).

Noise-Robust ASR in smartphones

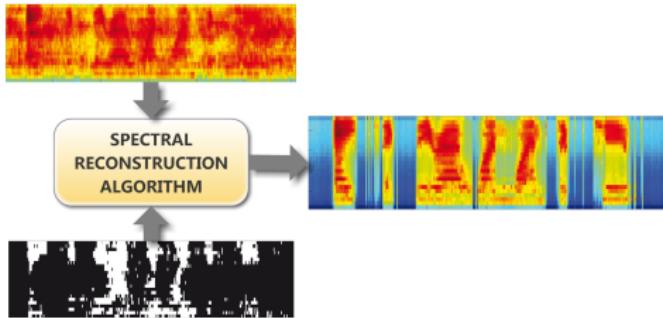
- It is crucial to tackle with noisy environments.
- We can take benefit from the novel dual-mic feature.

Introduction

Motivation

One possible approach to noise-robust ASR:
Spectral reconstruction

A BINARY MASK IS NEEDED



Introduction

Objectives

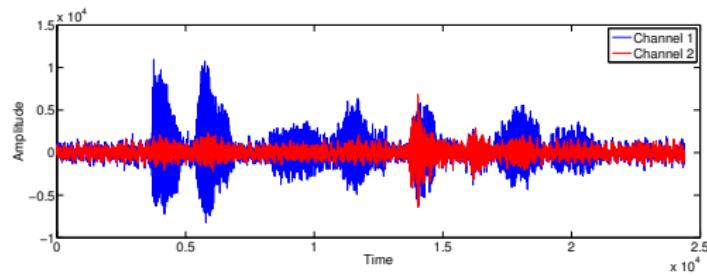
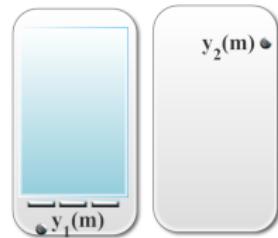
In a conversational position:

- ➊ To estimate **missing-data masks** for the first channel by using the information contained in both channels.
 - We experiment with **deep neural networks** (DNNs).
- ➋ To assess their quality when they are used by a spectral reconstruction technique over a dual-channel noisy speech database (**AURORA2-2C**).

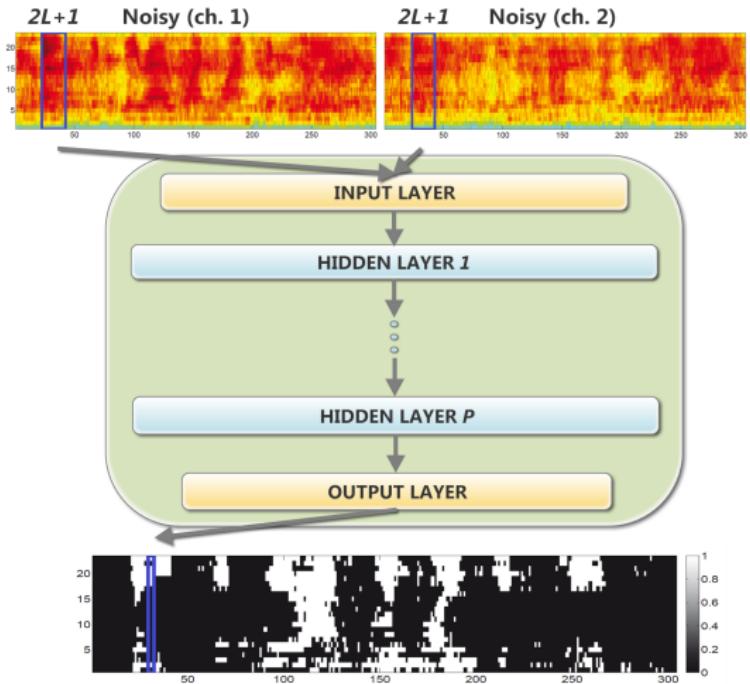
The Power Level Difference

In a conversational position:

- Speech power at the primary mic tends to be greater than at the secondary one.
- **Far field noise:** Noise power received at both mics is almost the same.



DNN-Based Mask Estimation System



Features:

$$\mathcal{Y} = \begin{pmatrix} \mathbf{y}(t-L) \\ \vdots \\ \mathbf{y}(t+L) \end{pmatrix},$$

where

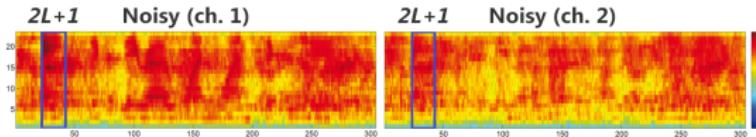
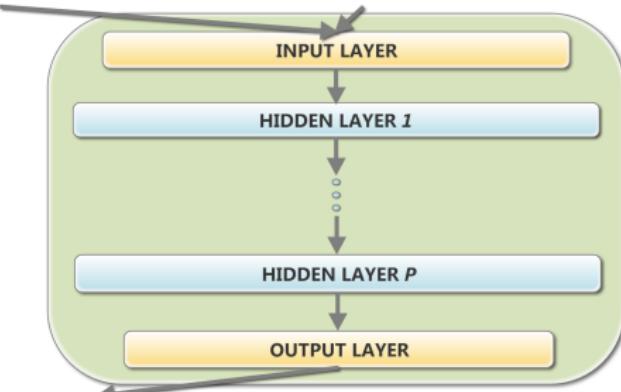
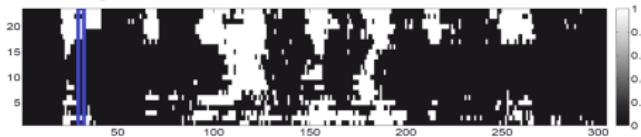
$$\mathbf{y}(t) = \begin{pmatrix} \mathbf{y}_1(t) \\ \mathbf{y}_2(t) \end{pmatrix}$$

- Input dim.:
 $d = 2 \cdot \mathcal{M} \cdot (2L + 1) \times 1$

Target:

- Oracle binary mask vector for $\mathbf{y}_1(t)$
- Output dim.: $\mathcal{M} \times 1$
- 7 dB SNR threshold

DNN-Based Mask Estimation System

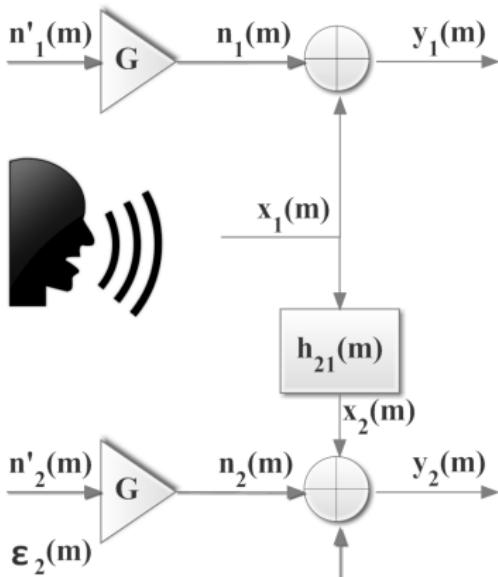
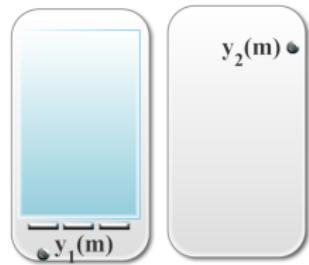


Training issues:

- The DNN is pre-trained by considering each pair of layers as RBMs
- The DNN is trained by using the backpropagation algorithm **(cross-entropy criterion)**

Experiments and Results

The AURORA2-2C Database



- **Test A:** Bus, babble, car and pedestrian street
- **Test B:** Cafe, street, bus and train stations
- **SNRs:** $\{-5, 0, 5, 10, 15, 20\}$ dB and clean

López-Espejo I., et al.: "Feature Enhancement for Robust Speech Recognition on Smartphones with Dual-Microphone". In: *EUSIPCO*, Lisbon (2014)

Experiments and Results

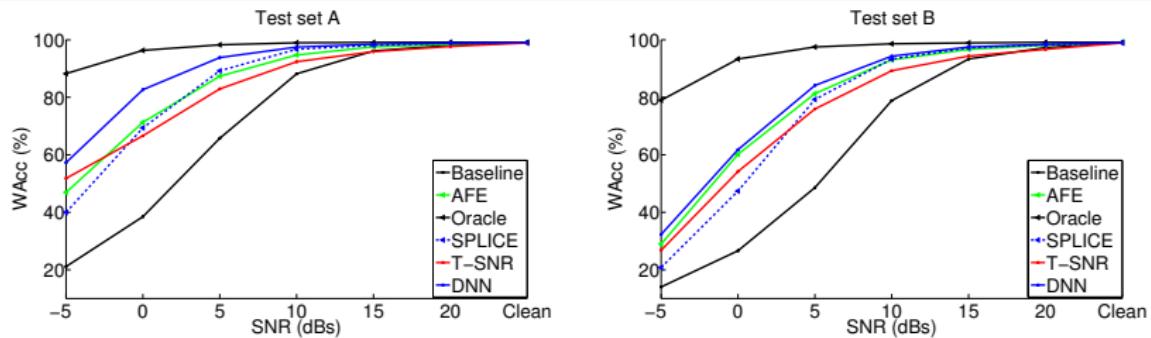
DNN Properties

About the DNN configuration...

- Two hidden layers are used.
- It was trained using 19200 sample pairs of input-output vectors by just considering noises of test set A .
- $L = 2$ was chosen (and $\mathcal{M} = 23$):
 - ① Input layer has $d = 2 \cdot \mathcal{M} \cdot (2L + 1) = 230$ nodes.
 - ② Hidden layers have 460 nodes.
 - ③ Output layer has $\mathcal{M} = 23$ nodes.

Experiments and Results

Results



	WAcc (%)			Wrong mask bins (%)		
	Test A	Test B	Average	Test A	Test B	Average
Baseline	67.96	59.78	63.87	-	-	-
AFE	82.71	76.37	79.54	-	-	-
Oracle+TGI	96.67	94.41	95.54	0	0	0
SPLICE	82.03	72.72	77.38	-	-	-
T-SNR+TGI	81.21	72.87	77.04	17.97	19.89	18.93
DNN+TGI	88.10	78.07	83.08	10.07	16.19	13.13

GMM-HMM (trained with clean speech)

Conclusions

Some conclusions and future work

- The DNN has been able to take advantage of the dual-channel information, providing significant improvements on performance.
- **Some benefits:**
 - ① No assumptions are made.
 - ② The DNN is able to learn complex non-linear dependencies between input and target.
 - ③ The dual-channel approach is efficient.
- **And as future work...**
 - ① Exhaustive search regarding the architecture and training process of the DNN.
 - ② We aim to extend this method in order to deal with a hands-free scenario.

Thanks for your attention and any questions?

Contact:

Iván López Espejo

Department of Signal Theory, Telematics and Communications

University of Granada

E-mail: iloes@ugr.es